Constructing e using first-year calculus

Bradley Zykoski

In these 3-page notes, we prove the following facts, assuming only a background in the first two semesters of a standard course on calculus:

- $\frac{d}{d x} \ln (x)=\frac{1}{x}$
- $\frac{d}{d x} e^{x}=e^{x}$
- $e=\sum_{n=0}^{\infty} \frac{1}{n!}$
- $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

1 Only logarithms convert multiplication to addition

We begin by investigating continuous functions $f(x)$ that satisfy the equation

$$
\begin{equation*}
f(x y)=f(x)+f(y) . \tag{1}
\end{equation*}
$$

Suppose that there is some $b>0$ such that $f(b) \neq 0$. For any rational number p / q, we can assume that p is positive by letting q be negative whenever p / q is negative. Then we have

$$
\begin{aligned}
f\left(b^{p / q}\right) & =f(\underbrace{b^{1 / q} b^{1 / q} \cdots b^{p / q}}_{p \text { times }}) \\
& =\underbrace{f\left(b^{1 / q}\right)+f\left(b^{1 / q}\right)+\cdots+f\left(b^{1 / q}\right)}_{p \text { times }} \\
& =p f\left(b^{1 / q}\right) .
\end{aligned}
$$

In particular, when p is equal to q, we get $f(b)=q f\left(b^{1 / q}\right)$, and so $f\left(b^{1 / q}\right)=(1 / q) f(b)$. In conclusion, we have

$$
f\left(b^{p / q}\right)=(p / q) f(b)
$$

Because we are assuming the function f is continuous, and because every real number x is a limit of rational numbers ${ }^{17}$, we have

$$
f\left(b^{x}\right)=f\left(b^{\lim r}\right)=f\left(\lim b^{r}\right)=\lim f\left(b^{r}\right)=\lim r f(b)=x f(b),
$$

where \lim stands for $\lim _{\substack{r \rightarrow x \\ r \in \mathbb{Q}}}$. In particular, we have $f\left(b^{1 / f(b)}\right)=(1 / f(b)) f(b)=1$. Let us define $a=b^{1 / f(b)}$, so that $f(a)=1$.

[^0]Since $f(a) \neq 0$, all of the above formulas are true with a in place of b. Therefore $f\left(a^{x}\right)=x$. Also, $f(-1)=0$, because $f(1)=f\left(a^{0}\right)=0$, and

$$
\begin{aligned}
f(1) & =f((-1) \cdot(-1)) \\
0 & =f(-1)+f(-1)=2 f(-1) .
\end{aligned}
$$

Therefore $f\left(-a^{x}\right)=f\left((-1) \cdot a^{x}\right)=0+f\left(a^{x}\right)=x$. Every $x>0$ is eqaul to $a^{\log _{a}(x)}$, and every $x<0$ is equal to $-a^{\log _{a}(-x)}$, and so we conclude that, for $x \neq 0$, we have

$$
f(x)=\log _{a}|x| .
$$

Since $\lim _{x \rightarrow 0}|f(x)|=\infty$, we see that f cannot have an output value at $x=0$ while still being continuous. In conclusion, we have the following theorem.

Theorem 1.1. Let $f(x)$ be a continuous function satisfying Equation 1. Then there exists a>0 such that

$$
f(x)=\log _{a}|x| .
$$

2 The integral of $\frac{1}{t}$ is a logarithm

Consider the function $f(x)=\int_{1}^{x} \frac{1}{t} d t$ for $x>0$. For $y>0$, we have

$$
f(x y)=\int_{1}^{x y} \frac{1}{t} d t=\int_{1}^{x} \frac{1}{t} d t+\int_{x}^{x y} \frac{1}{t} d t .
$$

Using the change of variables $u=x t$, we get

$$
\int_{x}^{x y} \frac{1}{t} d t=\int_{1}^{y} \frac{1}{u / x}(1 / x) d u=\int_{1}^{y} \frac{1}{u} d u .
$$

Therefore,

$$
f(x y)=\int_{1}^{x} \frac{1}{t} d t+\int_{1}^{y} \frac{1}{u} d u=f(x)+f(y),
$$

which means that the function $f(x)$ satisfies Equation 11. Since $f(x)$ is the integral of a continuous function, it is continuous, and so by Theorem 1.1, there is some number e such that $f(x)=\log _{e}|x|$. Since we are only considering $x>0$, we may drop the absolute value symbol, and write $f(x)=$ $\log _{e}(x)$. We write $\ln (x)$ instead of $\log _{e}(x)$.

3 The derivative of an exponential function

Let us continue to write $f(x)=\ln (x)=\int_{1}^{x} \frac{1}{t} d t$. By the Fundamental Theorem of Calculus, we have $\frac{d}{d x} f(x)=1 / x$. Since $f\left(e^{x}\right)=x$, we have $f^{-1}(x)=e^{x}$. By the formula for the derivative of an inverse function, we have

$$
\frac{d}{d x} e^{x}=\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{1 / e^{x}}=e^{x} .
$$

For any $a>0$, we have $a^{x}=e^{\ln (a) x}$. By the Chain Rule, we have $\frac{d}{d x} a^{x}=\ln (a) e^{\ln (a) x}=\ln (a) a^{x}$.

4 A series formula for e

Let $g(x)=e^{x}$. Since $g^{\prime}(x)=e^{x}=g(x)$, the nth derivative $g^{(n)}(x)$ is also equal to $g(x)=e^{x}$, and so $g^{(n)}(0)=e^{0}=1$. Therefore the Taylor series for e^{x} about $x=0$ is $\sum_{n=0}^{\infty} g^{(n)}(0) \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. We show that this series converges for every $x \in \mathbb{R}$.

We first show that the geometric series $\sum_{n=0}^{\infty} k^{-n}$ converges to $\frac{k}{k-1}$ for every number $k>1$. Observe that

$$
\begin{aligned}
(1-x)\left(1+x+x^{2}+\cdots+x^{N}\right) & =1-x+x-x^{2}+\cdots-x^{N}+x^{N}-x^{N+1} \\
(1-x)\left(1+x+x^{2}+\cdots+x^{N}\right) & =1-x^{N+1} \\
1+x+x^{2}+\cdots+x^{N} & =\frac{1-x^{N+1}}{1-x}
\end{aligned}
$$

Letting $x=k^{-1}$, this becomes $\sum_{n=0}^{N} k^{-n}=\frac{1-k^{-(N+1)}}{1-k^{-1}}$, and so

$$
\sum_{n=0}^{\infty} k^{-n}=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} k^{-n}=\lim _{N \rightarrow \infty} \frac{1-k^{-(N+1)}}{1-k^{-1}}=\frac{1}{1-k^{-1}}=\frac{k}{k-1}
$$

Let k be an integer greater than $|x|$. Then $\frac{|x|^{n}}{n!}<\frac{k^{n}}{n!}$, and so by the Direct Comparison Test, it suffices to show that $\sum_{n=0}^{\infty} \frac{k^{n}}{n!}$ converges for every integer $k>1$. By the Direct Comparison Test and the fact that $\sum_{n=0}^{\infty} k^{-n}$ converges, it suffices to show that for all sufficiently large n, we have $\frac{k^{n}}{n!}<k^{-n}$, or equivalently, $k^{2 n}<n!$.

When n is greater than k^{3}, the number $n!$ is greater than $A_{n}=\left(k^{3}\right)!\cdot k^{3\left(n-k^{3}\right)}$, which is divisible by k at least $3\left(n-k^{3}\right)$ times. But $k^{2 n}$ is divisible by k exactly $2 n$ times. The difference $3\left(n-k^{3}\right)-2 n=n-3 k^{3}$ is positive for sufficiently large n, since $\lim _{n \rightarrow \infty}\left(n-3 k^{3}\right)=\infty$, and so A_{n} is eventually divisible by k more times than $k^{2 n}$ is. That means A_{n} is eventually larger than $k^{2 n}$. Since $n!>A_{n}$ when $n>k^{3}$, we are done.

We conclude that $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for every $x \in \mathbb{R}$, and so the formula $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is true everywhere. In particular, we have

$$
e=e^{1}=\sum_{n=0}^{\infty} \frac{1}{n!} .
$$

5 A limit formula for e

We show that $e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$. Since $\ln (x)$ is an increasing continuous function with no horizontal asymptotes, it suffices to show that $\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{x}{n}\right)^{n}\right)=x$. Letting $h=\frac{x}{n}$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{x}{n}\right)^{n}\right) & =\lim _{h \rightarrow 0} \ln \left((1+h)^{\frac{x}{h}}\right) \\
& =\lim _{h \rightarrow 0} x \frac{\ln (1+h)}{h} \\
& =x \lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} \\
& =\left.x \frac{d}{d t}\right|_{t=1} \ln (t) \\
& =x \frac{1}{1} \\
& =x .
\end{aligned}
$$

In particular, we have $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.

[^0]: ${ }^{1}$ Every real number has a decimal expansion $x=a_{0} . a_{1} a_{2} a_{3} \ldots$, and every finite decimal is a rational number, so $x=\lim _{n \rightarrow \infty} a_{0} \cdot a_{1} a_{2} \ldots a_{n}$.

