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In these 3-page notes, we prove the following facts, assuming only a background in the first two
semesters of a standard course on calculus:

• d
dx ln(x) = 1

x

• d
dxe

x = ex

• e =
∑∞

n=0
1
n!

• e = limn→∞
(
1 + 1

n

)n
1 Only logarithms convert multiplication to addition

We begin by investigating continuous functions f(x) that satisfy the equation

f(xy) = f(x) + f(y). (1)

Suppose that there is some b > 0 such that f(b) 6= 0. For any rational number p/q, we can assume
that p is positive by letting q be negative whenever p/q is negative. Then we have

f(bp/q) = f(b1/qb1/q · · · bp/q︸ ︷︷ ︸
p times

)

= f(b1/q) + f(b1/q) + · · ·+ f(b1/q)︸ ︷︷ ︸
p times

= pf(b1/q).

In particular, when p is equal to q, we get f(b) = qf(b1/q), and so f(b1/q) = (1/q)f(b). In conclusion,
we have

f(bp/q) = (p/q)f(b).

Because we are assuming the function f is continuous, and because every real number x is a
limit of rational numbers1 , we have

f(bx) = f(blim r) = f(lim br) = lim f(br) = lim rf(b) = xf(b),

where lim stands for lim
r→x
r∈Q

. In particular, we have f(b1/f(b)) = (1/f(b))f(b) = 1. Let us define

a = b1/f(b), so that f(a) = 1.

1Every real number has a decimal expansion x = a0.a1a2a3 . . . , and every finite decimal is a rational number, so
x = limn→∞ a0.a1a2 . . . an.
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Since f(a) 6= 0, all of the above formulas are true with a in place of b. Therefore f(ax) = x.
Also, f(−1) = 0, because f(1) = f(a0) = 0, and

f(1) = f((−1) · (−1))

0 = f(−1) + f(−1) = 2f(−1).

Therefore f(−ax) = f((−1) · ax) = 0 + f(ax) = x. Every x > 0 is eqaul to aloga(x), and every x < 0
is equal to −aloga(−x), and so we conclude that, for x 6= 0, we have

f(x) = loga |x|.

Since limx→0 |f(x)| = ∞, we see that f cannot have an output value at x = 0 while still being
continuous. In conclusion, we have the following theorem.

Theorem 1.1. Let f(x) be a continuous function satisfying Equation 1. Then there exists a > 0
such that

f(x) = loga |x|.

2 The integral of
1

t
is a logarithm

Consider the function f(x) =
∫ x
1

1
t dt for x > 0. For y > 0, we have

f(xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt +

∫ xy

x

1

t
dt.

Using the change of variables u = xt, we get∫ xy

x

1

t
dt =

∫ y

1

1

u/x
(1/x)du =

∫ y

1

1

u
du.

Therefore,

f(xy) =

∫ x

1

1

t
dt +

∫ y

1

1

u
du = f(x) + f(y),

which means that the function f(x) satisfies Equation 1. Since f(x) is the integral of a continuous
function, it is continuous, and so by Theorem 1.1, there is some number e such that f(x) = loge |x|.
Since we are only considering x > 0, we may drop the absolute value symbol, and write f(x) =
loge(x). We write ln(x) instead of loge(x).

3 The derivative of an exponential function

Let us continue to write f(x) = ln(x) =
∫ x
1

1
t dt. By the Fundamental Theorem of Calculus, we

have d
dxf(x) = 1/x. Since f(ex) = x, we have f−1(x) = ex. By the formula for the derivative of an

inverse function, we have

d

dx
ex =

(
f−1

)′
(x) =

1

f ′ (f−1(x))
=

1

1/ex
= ex.

For any a > 0, we have ax = eln(a)x. By the Chain Rule, we have d
dxa

x = ln(a)eln(a)x = ln(a)ax.
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4 A series formula for e

Let g(x) = ex. Since g′(x) = ex = g(x), the nth derivative g(n)(x) is also equal to g(x) = ex, and
so g(n)(0) = e0 = 1. Therefore the Taylor series for ex about x = 0 is

∑∞
n=0 g

(n)(0)x
n

n! =
∑∞

n=0
xn

n! .
We show that this series converges for every x ∈ R.

We first show that the geometric series
∑∞

n=0 k
−n converges to k

k−1 for every number k > 1.
Observe that

(1− x)(1 + x + x2 + · · ·+ xN ) = 1− x + x− x2 + · · · − xN + xN − xN+1

(1− x)(1 + x + x2 + · · ·+ xN ) = 1− xN+1

1 + x + x2 + · · ·+ xN =
1− xN+1

1− x

Letting x = k−1, this becomes
∑N

n=0 k
−n = 1−k−(N+1)

1−k−1 , and so

∞∑
n=0

k−n = lim
N→∞

N∑
n=0

k−n = lim
N→∞

1− k−(N+1)

1− k−1
=

1

1− k−1
=

k

k − 1
.

Let k be an integer greater than |x|. Then |x|
n

n! < kn

n! , and so by the Direct Comparison Test, it

suffices to show that
∑∞

n=0
kn

n! converges for every integer k > 1. By the Direct Comparison Test
and the fact that

∑∞
n=0 k

−n converges, it suffices to show that for all sufficiently large n, we have
kn

n! < k−n, or equivalently, k2n < n!.

When n is greater than k3, the number n! is greater than An = (k3)! · k3(n−k3), which is
divisible by k at least 3(n − k3) times. But k2n is divisible by k exactly 2n times. The difference
3(n− k3)− 2n = n− 3k3 is positive for sufficiently large n, since limn→∞(n− 3k3) =∞, and so An

is eventually divisible by k more times than k2n is. That means An is eventually larger than k2n.
Since n! > An when n > k3, we are done.

We conclude that
∑∞

n=0
xn

n! converges for every x ∈ R, and so the formula ex =
∑∞

n=0
xn

n! is true
everywhere. In particular, we have

e = e1 =

∞∑
n=0

1
n! .

5 A limit formula for e

We show that ex = limn→∞(1 + x
n)n. Since ln(x) is an increasing continuous function with no

horizontal asymptotes, it suffices to show that limn→∞ ln((1 + x
n)n) = x. Letting h = x

n , we have

lim
n→∞

ln
(
(1 + x

n)n
)

= lim
h→0

ln
(

(1 + h)
x
h

)
= lim

h→0
x

ln(1 + h)

h

= x lim
h→0

ln(1 + h)− ln(1)

h

= x
d

dt

∣∣∣∣
t=1

ln(t)

= x
1

1
= x.

In particular, we have e = limn→∞(1 + 1
n)n.
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