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Course summary

Today is the last day! Let’s summarize what we’ve learned so far.

1 A principal G -bundle is a fiber bundle π : P → B with a right
G -action P y G so that the fibers of P are G -torsors.

2 A principal connection is a G -equivariant splitting

0 VP TP π∗TB 0,dπ

ω

and since VP ∼= P × g, we may write ω ∈ Ω1(P, g)G .

3 We have a covariant exterior derivative dω = d ◦ h⊗k acting on
Ωk(P, g), where h is the projection TP → HP = kerω. We define
dωω = Ω ∈ Ω2

hor(P, g)G , which vanishes if and only if HP is
integrable.

4 The curvature Ω descends to a form Fω ∈ Ω2(P, gP) with Ω = π∗Fω,
where gP = (P × g)/G for the adjoint action G y g. In the case
G = U(1) we have c1(P) = [Fω] ∈ H2(B;R).
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Induced connections

Let π : P → B be a principal G -bundle. Recall that our notion of
connection was developed so that we could construct a notion of parallel
transport: for any path γ : [0, 1]→ B and p ∈ P with π(p) = γ(0), we
construct a unique lift γ̃p : [0, 1]→ P satisfying γ̃p(0) = p.

Equipped with such notion of parallel transport, we can induce a notion of
parallel transport on any associated bundle to P. Recall that if G y F , we
have an action (p, f ).g = (p.g , g−1.f ) of G on P × F , and the quotient
E = (P × F )/G is a bundle π : E → B with fiber F .

The let γ : [0, 1]→ B be a path, let e = (p, f ) modG ∈ E such that
π(e) = γ(0). We define

γ̃e(t) = (γ̃p(t), f ) modG .

Since principal connections are G -equivariant, we have γp.g (t) = γp(t).g ,
and hence if we write e = (p.g , g−1.f ) modG instead, we get

(γ̃p.g (t), g−1.f ) modG = (γ̃p(t).g , g−1.f ) modG = (γ̃p(t), f ) modG .
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Induced connections

Since the horizontal lifting of vectors from TB up to TE is simply the
infinitesimal version of parallel transport, we may also express our notion
of induced connection as follows.

Let π : P → B be a principal G -bundle with parallel transport (γ, p) 7→ γ̃p
given by a connection ω. Then any associated bundle
π : E = (P × F )/G → B has an induced connection given by the splitting

0 VE TE π∗TB 0,dπ

hω

where hω is defined as follows. Every (e,X ) ∈ π∗TB is of the form ∂
∂t γ for

some path γ in B with γ(0) = π(e). We define hω
(
∂
∂t γ
)

= ∂
∂t γ̃e ∈ TE .
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Induced connections

Both a right-splitting and a left-splitting of a short exact sequence of
vector bundles are equivalent to a direct sum decomposition
TE = VE ⊕ HE of the middle term. Given such a right-splitting
hω : π∗TB → TE , consider the associated left-splitting

0 VE TE π∗TB 0.dπ

vω

When the fiber F of E = (P × F )/G is a vector space, with F x G by
linear maps, then it is an exercise to see that VE ∼= π∗E .

Given a section (s : B → E ) ∈ Ω0(B,E ), we may define a 1-form
(∇s : TB → E ) ∈ Ω1(B,E ) via

∇s : TB
ds−→ s∗TE

s∗vω−−−→ s∗VE = s∗π∗E = E .

In words, for X = ∂
∂t γ, the vector ∇s(X ) is the infinitesimal vertical

displacement along s ◦ γ.
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Covariant derivatives

The map ∇ = vω ◦ d : Ω0(B,E )→ Ω1(B,E ) is a covariant derivative.

Definition

A covariant derivative on a vector bundle π : E → B is an R-linear map
∇ : Ω0(B,E )→ Ω1(B,E ) satisfying the Leibniz rule:

∇(fs) = df ⊗ s + f∇s, ∀f ∈ C∞(B), s ∈ Ω0(M,E ).

We can come full circle and use a connection to define a notion of parallel
transport. Given a path γ : [0, 1]→ B, a section s : B → E satisfying
∇s(γ′(t)) = 0 for each t ∈ [0, 1] gives a lift s ◦ γ of γ.

From now on, we will write ∇X s instead of ∇s(X ).
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Curvature in the language of covariant derivatives

Given a covariant derivative ∇ : Ω0(B,E )→ Ω1(B,E ), we define the
curvature tensor R∇ ∈ Ω2(B,End(E )) by

R∇(X ,Y )(s) = ∇X∇Y s −∇Y∇X s −∇[X ,Y ]s

for vectors X ,Y ∈ TB and sections s : B → E .

We have not strayed from our original definition of curvature. If
E = (P × V )/G where G y V by a representation ρ : G → GL(V ), then
one may check that we have an isomorphism
Ω∗(B,End(E )) ∼= Ω∗hor(B,End(V ))G . Then for a connection ω on P and
∇ = vω ◦ d , we have

ρ̇ ◦ Ω = R∇ ∈ Ω2
hor(B,End(V ))G ,

where ρ̇ : g→ End(V ) is the induced map on Lie algebras.
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Moduli of curves and the Hodge bundle

(switch to virtual drawing board)
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