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Summary of Day 3

Given a principal G -bundle π : P � B with a connection ω ∈ Ω1(P, g),
the horizontal projection h : TP � HP = kerω gives a covariant exterior
derivative dωη = (dη) ◦ h⊗k+1 for η ∈ Ωk(P, g).

We thereby defined the curvature of the connection to be

Ω = dωω.

We have seen that the curvature:

satisfies Ω = dω + 1
2 [ω, ω]∧ (Cartan),

satisfies dωΩ = 0 (Bianchi),

vanishes if and only if HP is integrable,

obstructs
(
Ω∗hor(P, g)G , dω

)
from being a cochain complex.

models the electromagnetic field when B = R4, G = U(1).
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The first Chern class

Recall that a connection splits the exact sequence

0 VP TP π∗TB 0,dπ

ω

and so we have an isomorphism dπ : kerω = HP
∼−→ π∗TB. Let b ∈ B.

Then for p ∈ π−1(b) and Xb ∈ TbB, there is a unique X̃p ∈ HpP with

dπ(X̃p) = Xb.

Definition

Let π : P → B be a principal U(1)-bundle with connection ω. Then we
define Fω ∈ Ω2(B, u(1)) via

Fω(Xb,Yb) = Ω(X̃p, Ỹp)

for any b ∈ B and an arbitrary choice of p ∈ π−1(b).

Observe that this gives Ω = π∗Fω.
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The first Chern class

F (Xb,Yb) = Ω(X̃p, Ỹp) ∀b ∈ B, p ∈ π−1(b)

Recall that since our connection is principal, we have Hp.gP = dRg (HpP),

and hence X̃p.g = dRg (X̃p) for every g ∈ U(1).

Therefore

Ω(X̃p.g , Ỹp.g ) = Ω(dRg (X̃p), dRg (Ỹp)) = Adg−1 ◦ Ω(X̃p, Ỹp) = Ω(X̃p, Ỹp),

where the final equality follows since U(1) is abelian, and hence
Adg−1 = Idu(1) for every g ∈ U(1). We conclude that Fω is independent of
the choice of p ∈ π−1(b).

Now observe that

dFω(X ,Y ) = dΩ(X̃ , Ỹ ) = dΩ(h(X̃ ), h(Ỹ )) = dωΩ(X̃ , Ỹ ) = 0,

where the final equality follows from the Bianchi identity.
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The first Chern class

We have now shown that Fω(X ,Y ) = Ω(X̃ , Ỹ ) is a well-defined closed
u(1)-valued 2-form on B. But u(1) = R, and so this is just an ordinary
closed 2-form. We conclude that we may give the following definition.

Definition (First Chern class)

Let π : P → B be a principal U(1)-bundle with connection ω. We define
the first Chern class of P by

c1(P) = [Fω] ∈ H2(B;R).

A homotopy argument shows that c1(P) does not depend on the choice of
ω, hence our notation.
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The first Chern class

Theorem

Let π : P → B be a principal U(1)-bundle with connections ω0, ω1. Then
we have [Fω0 ] = [Fω1 ] ∈ H2(B;R).

Proof.

Consider the principal U(1)-bundle (π × IdR) : P × R→ B × R where
P × R x G via (p, t).g = (p.g , t). We endow this with the connection

ω = (1− t)(projP)∗ω0 + t(projP)∗ω1.

For j = 0, 1, consider the inclusion ιP, j : P → P × R, p 7→ (p, j) and
similarly ιB, j . Note ι∗P, jω = ωj . By Cartan’s structure equation, we have

Ωj = dωj +
1
2 [ωj , ωj ]∧ = dι∗P, jω+ 1

2 [ι∗P, jω, ι
∗
P, jω]∧ = ι∗P, j

(
dω + 1

2 [ω, ω]∧
)
,

and hence Ωj = ι∗P, jΩ. (cont’d)
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The first Chern class

Theorem

Let π : P → B be a principal U(1)-bundle with connections ω0, ω1. Then
we have [Fω0 ] = [Fω1 ] ∈ H2(B;R).

Proof (cont’d).

Recall that X̃ denotes the lift to HP of a vector X ∈ TB. It is an exercise
to see that dιP, j(X̃ ) = ˜dιB, j(X ) for every X ∈ TB.

We now have

ι∗B, jFω(X ,Y ) = Fω(dιB, j(X ), dιB, j(Y )) = Ω( ˜dιB, j(X ), ˜dιB, j(X ))

= Ω(dιP, j(X̃ ), dιP, j(Ỹ )) = ι∗P, jΩ(X̃ , Ỹ )

= Ωj(X̃ , Ỹ ) = Fωj (X ,Y )

Thus Fωj = ι∗B, jFω. Since ιB, 0 ' ιB, 1, we conclude that [Fω0 ] = [Fω1 ].
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The first Chern class

In complex geometry, one often sees the first Chern class defined via the
long exact sequence in cohomology that is induced by the exponential
exact sequence.

We will not discuss this definition, as it involves a background with Čech
cohomology that we do not assume, but we remark that it differs from our
definition by a constant multiple. See page 141 of Griffiths-Harris for the
proof of this.
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Symplectic manifolds

Definition

Let M be a smooth manifold, and let α ∈
∧2 T ∗M be a closed 2-form.

Then we say α is symplectic if the bilinear pairing α(·, ·) is nondegenerate
on every tangent space. We call the pair (M, α) a symplectic manifold.

It is a consequence of the definition that the dimension of M is an even
number 2n, and that α∧n ∈

∧2n T ∗M is a volume form.

Since α is nondegenerate, it induces a duality T ∗M ↔ TM. In particular,
for every smooth function H : M → R, there exists a vector field XH on M
called the Hamiltonian vector field for H given by α(XH , ·) = dH(·).

Cf. when (M, g) is a Riemannian manifold, and we have
g(grad(H), ·) = dH(·).
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Examples of symplectic manifolds

If M is a 2-dimensional manifold, then every volume form on M is
symplectic.

If M is any n-manifold, then T ∗M admits a symplectic form as
follows. Let U be a chart on M over which T ∗M is trivial, and let
q1, . . . , qn be coordinates on U. Then we have coordinate functions
pj : T ∗U → R that give the dqj -coefficient of a cotangent vector.
Together q1, . . . , qn, p1, . . . , pn form a coordinate system on T ∗U.
We thereby define a 1-form θ ∈ T ∗(T ∗M) via the local expressions

θ|T∗U =
n∑

j=1

pjdqj .

Then α = −dθ is closed because it is exact, and the coordinate
expression α|T∗U =

∑
j dqj ∧ dpj shows that α is nondegenerate.

Let h be a hermitian metric on a complex manifold M. Then h is
Kähler if and only if α = −Imh ∈

∧2 T ∗M is symplectic.
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Hamiltonian actions

Let (M, α) be a symplectic manifold, and let M x G via
symplectomorphisms. That is, R∗gα = α for every g ∈ G . As we’ve seen

before, each A ∈ g defines a vector field Â on M via Â = ∂
∂tRexp(tA).

We

say that the action is Hamiltonian if each Â is the Hamiltonian vector field
of a function HA : M → R. That is,

dHA(·) = α(Â, ·).

We then define the moment map µ : M → g∗ via

µ(x)(A) = HA(x) ∀x ∈ M, A ∈ g.

We will be concerned with analyzing the level sets µ−1(a) for Hamiltonian
U(1)-actions.

Bradley Zykoski Chern Classes June 18, 2020 11 / 17



Hamiltonian actions

Let (M, α) be a symplectic manifold, and let M x G via
symplectomorphisms. That is, R∗gα = α for every g ∈ G . As we’ve seen

before, each A ∈ g defines a vector field Â on M via Â = ∂
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∂tRexp(tA). We

say that the action is Hamiltonian if each Â is the Hamiltonian vector field
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The reduced space

Let (M, α) be a symplectic manifold, and let M x U(1) be a Hamiltonian
action. We see that µ is U(1)-invariant, i.e. µ is constant along the
flowline of any B ∈ u(1) = R, as follows.

Let A ∈ u(1). Then

∂

∂t
µ(x . exp(tB))(A) =

∂

∂t
HA(x . exp(tB)) = dHA(B) = α(A,B) = 0,

since A,B ∈ u(1) = R are multiples of each other.

One may rephrase this by saying that each level set µ−1(a) is preserved by
the U(1)-action. Suppose µ is proper and the actions µ−1(a) x U(1) are
free. Hence for each a ∈ u(1)∗, we have a principal U(1)-bundle

πa : µ−1(a)→ µ−1(a)/U(1) = Ma.
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A product model

One may verify that the reduced space Ma = µ−1(a)/U(1) admits a unique
symplectic form νa satisfying π∗aνa = α|µ−1(a). We seek a convenient
model for these Ma so that we may compute how νa depends on a.

Let us consider the product space µ−1(0)× (−ε, ε), and let
ω ∈ Ω1(µ−1(0)) be a principal connection for the bundle
π0 : µ−1(0)→ µ−1(0)/U(1). Let t denote the (−ε, ε)-coordinate.

Theorem

The form α̃ = α|µ−1(0) + d(tω) ∈ Ω2(µ−1(0)× (−ε, ε)) is symplectic if ε
is small enough.

Proof.

By definition, α|µ−1(0) is closed and d(tω) is exact; hence α̃ is closed.

The
expression α̃|t=0 = α|µ−1(0) + dt ∧ ω shows that α̃t=0 is nondegenerate,
and thus the general expression α̃ = α|µ−1(0) + dt ∧ ω + tΩ shows that α̃
is nondegenerate for t � 1.
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expression α̃|t=0 = α|µ−1(0) + dt ∧ ω shows that α̃t=0 is nondegenerate,
and thus the general expression α̃ = α|µ−1(0) + dt ∧ ω + tΩ shows that α̃
is nondegenerate for t � 1.
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A product model

Let us consider the action µ−1(0)× (−ε, ε) x U(1) given by
(x , t).g = (x .g , t). It is an exercise to verify that this action is Hamiltonian
with moment map J : µ−1(0)× (−ε, ε)→ u(1)∗ = R given by J(x , t) = t.

It is a consequence of the coisotropic embedding theorem (see Guillemin,
pages 25-26), that there is a neighborhood M ⊃ U ⊃ µ−1(0) and a
U(1)-equivariant symplectomorphism

(U, α)
∼−→ (µ−1(0)× (−ε, ε), α̃)

for small enough ε, so that µ−1(a)
∼−→ µ−1(0)× {a}.

Our reduced space Ma = µ−1(a)/U(1) with symplectic form νa given by
π∗νa = α|µ−1(a) is therefore symplectomorphic to M0 × {a} with
symplectic form ν̃a given by

π∗ν̃a = α̃|t=a

= α|µ−1(0) + dt|t=a ∧ ω + aΩ

= α|µ−1(0) + aΩ.
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Variation of reduced spaces

For small enough a, we have now shown that

(Ma, νa) ∼= (M0, ν̃a)

where

π∗ν̃a = α|µ−1(0) + aΩ

= π∗ν0 + aπ∗Fω

ν̃0 = νa + aFω.

In particular, when we identify (Ma, νa) = (M0, ν̃a) and take cohomology
classes, we find that

[νa] = [ν0] + ac1(µ−1(0)).
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Variation of volume is a polynomial

Let n = dimMa, and recall that ν∧na is a volume form. The expression
[νa] = [ν0] + ac1(µ−1(0)) then gives

vol(Ma) =
n∑

k=0

(
n

k

)
ak
∫
M0

[ν0]n−k ^ c1(µ−1(0))k .
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