Principal Bundles
 Day 4: Chern Classes

Bradley Zykoski

June 18, 2020

Summary of Day 3

Given a principal G-bundle $\pi: P \rightarrow B$ with a connection $\omega \in \Omega^{1}(P, \mathfrak{g})$, the horizontal projection $h: T P \rightarrow H P=\operatorname{ker} \omega$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$.

Summary of Day 3

Given a principal G-bundle $\pi: P \rightarrow B$ with a connection $\omega \in \Omega^{1}(P, \mathfrak{g})$, the horizontal projection $h: T P \rightarrow H P=\operatorname{ker} \omega$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$.

We thereby defined the curvature of the connection to be

$$
\Omega=d_{\omega} \omega .
$$

Summary of Day 3

Given a principal G-bundle $\pi: P \rightarrow B$ with a connection $\omega \in \Omega^{1}(P, \mathfrak{g})$, the horizontal projection $h: T P \rightarrow H P=\operatorname{ker} \omega$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$.

We thereby defined the curvature of the connection to be

$$
\Omega=d_{\omega} \omega .
$$

We have seen that the curvature:

- satisfies $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$ (Cartan),

Summary of Day 3

Given a principal G-bundle $\pi: P \rightarrow B$ with a connection $\omega \in \Omega^{1}(P, \mathfrak{g})$, the horizontal projection $h: T P \rightarrow H P=\operatorname{ker} \omega$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$.

We thereby defined the curvature of the connection to be

$$
\Omega=d_{\omega} \omega .
$$

We have seen that the curvature:

- satisfies $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$ (Cartan),
- satisfies $d_{\omega} \Omega=0$ (Bianchi),

Summary of Day 3

Given a principal G-bundle $\pi: P \rightarrow B$ with a connection $\omega \in \Omega^{1}(P, \mathfrak{g})$, the horizontal projection $h: T P \rightarrow H P=\operatorname{ker} \omega$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$.

We thereby defined the curvature of the connection to be

$$
\Omega=d_{\omega} \omega .
$$

We have seen that the curvature:

- satisfies $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$ (Cartan),
- satisfies $d_{\omega} \Omega=0$ (Bianchi),
- vanishes if and only if HP is integrable,

Summary of Day 3

Given a principal G-bundle $\pi: P \rightarrow B$ with a connection $\omega \in \Omega^{1}(P, \mathfrak{g})$, the horizontal projection $h: T P \rightarrow H P=\operatorname{ker} \omega$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$.

We thereby defined the curvature of the connection to be

$$
\Omega=d_{\omega} \omega .
$$

We have seen that the curvature:

- satisfies $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$ (Cartan),
- satisfies $d_{\omega} \Omega=0$ (Bianchi),
- vanishes if and only if HP is integrable,
- obstructs $\left(\Omega_{\text {hor }}^{*}(P, \mathfrak{g})^{G}, d_{\omega}\right)$ from being a cochain complex.

Summary of Day 3

Given a principal G-bundle $\pi: P \rightarrow B$ with a connection $\omega \in \Omega^{1}(P, \mathfrak{g})$, the horizontal projection $h: T P \rightarrow H P=\operatorname{ker} \omega$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$.

We thereby defined the curvature of the connection to be

$$
\Omega=d_{\omega} \omega .
$$

We have seen that the curvature:

- satisfies $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$ (Cartan),
- satisfies $d_{\omega} \Omega=0$ (Bianchi),
- vanishes if and only if HP is integrable,
- obstructs $\left(\Omega_{\text {hor }}^{*}(P, \mathfrak{g})^{G}, d_{\omega}\right)$ from being a cochain complex.
- models the electromagnetic field when $B=\mathbb{R}^{4}, G=U(1)$.

The first Chern class

Recall that a connection splits the exact sequence

$$
0 \longrightarrow V P \xrightarrow{\text { L- }-\cdots} T P \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0,
$$

and so we have an isomorphism $d \pi: \operatorname{ker} \omega=H P \xrightarrow{\sim} \pi^{*} T B$. Let $b \in B$. Then for $p \in \pi^{-1}(b)$ and $X_{b} \in T_{b} B$, there is a unique $\widetilde{X}_{p} \in H_{p} P$ with $d \pi\left(\widetilde{X}_{p}\right)=X_{b}$.

The first Chern class

Recall that a connection splits the exact sequence

$$
0 \longrightarrow V P \xrightarrow{k^{\underline{\omega}}-} T P \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0
$$

and so we have an isomorphism $d \pi: \operatorname{ker} \omega=H P \xrightarrow{\sim} \pi^{*} T B$. Let $b \in B$. Then for $p \in \pi^{-1}(b)$ and $X_{b} \in T_{b} B$, there is a unique $X_{p} \in H_{p} P$ with $d \pi\left(\widetilde{X}_{p}\right)=X_{b}$.

Definition

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connection ω. Then we define $F_{\omega} \in \Omega^{2}(B, \mathfrak{u}(1))$ via

$$
F_{\omega}\left(X_{b}, Y_{b}\right)=\Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right)
$$

for any $b \in B$ and an arbitrary choice of $p \in \pi^{-1}(b)$.

The first Chern class

Recall that a connection splits the exact sequence

$$
0 \longrightarrow V P \xrightarrow{\text { K- }-\cdots} T P \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0,
$$

and so we have an isomorphism $d \pi: \operatorname{ker} \omega=H P \xrightarrow{\sim} \pi^{*} T B$. Let $b \in B$. Then for $p \in \pi^{-1}(b)$ and $X_{b} \in T_{b} B$, there is a unique $X_{p} \in H_{p} P$ with $d \pi\left(\widetilde{X}_{p}\right)=X_{b}$.

Definition

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connection ω. Then we define $F_{\omega} \in \Omega^{2}(B, \mathfrak{u}(1))$ via

$$
F_{\omega}\left(X_{b}, Y_{b}\right)=\Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right)
$$

for any $b \in B$ and an arbitrary choice of $p \in \pi^{-1}(b)$.
Observe that this gives $\Omega=\pi^{*} F_{\omega}$.

The first Chern class

$$
F\left(X_{b}, Y_{b}\right)=\Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right) \quad \forall b \in B, p \in \pi^{-1}(b)
$$

Recall that since our connection is principal, we have $H_{p . g} P=d R_{g}\left(H_{p} P\right)$, and hence $\widetilde{X}_{p . g}=d R_{g}\left(\widetilde{X}_{p}\right)$ for every $g \in \mathrm{U}(1)$.

The first Chern class

$$
F\left(X_{b}, Y_{b}\right)=\Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right) \quad \forall b \in B, p \in \pi^{-1}(b)
$$

Recall that since our connection is principal, we have $H_{p . g} P=d R_{g}\left(H_{p} P\right)$, and hence $\widetilde{X}_{p . g}=d R_{g}\left(\widetilde{X}_{p}\right)$ for every $g \in U(1)$. Therefore

$$
\Omega\left(\widetilde{X}_{p . g}, \widetilde{Y}_{p . g}\right)=\Omega\left(d R_{g}\left(\widetilde{X}_{p}\right), d R_{g}\left(\widetilde{Y}_{p}\right)\right)=\operatorname{Ad}_{g^{-1}} \circ \Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right)=\Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right),
$$

where the final equality follows since $U(1)$ is abelian, and hence $\mathrm{Ad}_{g^{-1}}=\mathrm{Id}_{u(1)}$ for every $g \in \mathrm{U}(1)$. We conclude that F_{ω} is independent of the choice of $p \in \pi^{-1}(b)$.

The first Chern class

$$
F\left(X_{b}, Y_{b}\right)=\Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right) \quad \forall b \in B, p \in \pi^{-1}(b)
$$

Recall that since our connection is principal, we have $H_{p . g} P=d R_{g}\left(H_{p} P\right)$, and hence $\widetilde{X}_{p . g}=d R_{g}\left(\widetilde{X}_{p}\right)$ for every $g \in \mathrm{U}(1)$. Therefore

$$
\Omega\left(\widetilde{X}_{p . g}, \widetilde{Y}_{p . g}\right)=\Omega\left(d R_{g}\left(\widetilde{X}_{p}\right), d R_{g}\left(\widetilde{Y}_{p}\right)\right)=\operatorname{Ad}_{g-1} \circ \Omega\left(\widetilde{X}_{p}, \tilde{Y}_{p}\right)=\Omega\left(\widetilde{X}_{p}, \widetilde{Y}_{p}\right),
$$

where the final equality follows since $U(1)$ is abelian, and hence Ad $_{g^{-1}}=\mathrm{Id}_{u(1)}$ for every $g \in \mathrm{U}(1)$. We conclude that F_{ω} is independent of the choice of $p \in \pi^{-1}(b)$.

Now observe that

$$
d F_{\omega}(X, Y)=d \Omega(\widetilde{X}, \widetilde{Y})=d \Omega(h(\widetilde{X}), h(\widetilde{Y}))=d_{\omega} \Omega(\widetilde{X}, \tilde{Y})=0,
$$

where the final equality follows from the Bianchi identity.

The first Chern class

We have now shown that $F_{\omega}(X, Y)=\Omega(\widetilde{X}, \widetilde{Y})$ is a well-defined closed $\mathfrak{u}(1)$-valued 2 -form on B. But $\mathfrak{u}(1)=\mathbb{R}$, and so this is just an ordinary closed 2 -form. We conclude that we may give the following definition.

The first Chern class

We have now shown that $F_{\omega}(X, Y)=\Omega(\widetilde{X}, \widetilde{Y})$ is a well-defined closed $\mathfrak{u}(1)$-valued 2 -form on B. But $\mathfrak{u}(1)=\mathbb{R}$, and so this is just an ordinary closed 2 -form. We conclude that we may give the following definition.

Definition (First Chern class)

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connection ω. We define the first Chern class of P by

$$
c_{1}(P)=\left[F_{\omega}\right] \in H^{2}(B ; \mathbb{R}) .
$$

The first Chern class

We have now shown that $F_{\omega}(X, Y)=\Omega(\widetilde{X}, \widetilde{Y})$ is a well-defined closed $\mathfrak{u}(1)$-valued 2 -form on B. But $\mathfrak{u}(1)=\mathbb{R}$, and so this is just an ordinary closed 2 -form. We conclude that we may give the following definition.

Definition (First Chern class)

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connection ω. We define the first Chern class of P by

$$
c_{1}(P)=\left[F_{\omega}\right] \in H^{2}(B ; \mathbb{R}) .
$$

A homotopy argument shows that $c_{1}(P)$ does not depend on the choice of ω, hence our notation.

The first Chern class

Theorem
 Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

Consider the principal $\mathrm{U}(1)$-bundle $\left(\pi \times \operatorname{Id}_{\mathbb{R}}\right): P \times \mathbb{R} \rightarrow B \times \mathbb{R}$ where $P \times \mathbb{R} \curvearrowleft G$ via $(p, t) \cdot g=(p . g, t)$.

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $U(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

Consider the principal $\mathrm{U}(1)$-bundle $\left(\pi \times \mathrm{Id}_{\mathbb{R}}\right): P \times \mathbb{R} \rightarrow B \times \mathbb{R}$ where $P \times \mathbb{R} \curvearrowleft G$ via $(p, t) \cdot g=(p \cdot g, t)$. We endow this with the connection

$$
\omega=(1-t)\left(\operatorname{proj}_{P}\right)^{*} \omega_{0}+t\left(\operatorname{proj}_{P}\right)^{*} \omega_{1} .
$$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

Consider the principal $\mathrm{U}(1)$-bundle $\left(\pi \times \mathrm{Id}_{\mathbb{R}}\right): P \times \mathbb{R} \rightarrow B \times \mathbb{R}$ where $P \times \mathbb{R} \curvearrowleft G$ via $(p, t) \cdot g=(p . g, t)$. We endow this with the connection

$$
\omega=(1-t)\left(\operatorname{proj}_{P}\right)^{*} \omega_{0}+t\left(\operatorname{proj}_{P}\right)^{*} \omega_{1} .
$$

For $j=0,1$, consider the inclusion $\iota_{P, j}: P \rightarrow P \times \mathbb{R}, p \mapsto(p, j)$ and similarly $\iota_{B, j}$. Note $\iota_{P, j}^{*} \omega=\omega_{j}$.

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

Consider the principal $\mathrm{U}(1)$-bundle $\left(\pi \times \mathrm{Id}_{\mathbb{R}}\right): P \times \mathbb{R} \rightarrow B \times \mathbb{R}$ where $P \times \mathbb{R} \curvearrowleft G$ via $(p, t) \cdot g=(p \cdot g, t)$. We endow this with the connection

$$
\omega=(1-t)\left(\operatorname{proj}_{P}\right)^{*} \omega_{0}+t\left(\operatorname{proj}_{P}\right)^{*} \omega_{1} .
$$

For $j=0,1$, consider the inclusion $\iota_{P, j}: P \rightarrow P \times \mathbb{R}, p \mapsto(p, j)$ and similarly $\iota_{B, j}$. Note $\iota_{P, j}^{*} \omega=\omega_{j}$. By Cartan's structure equation, we have $\Omega_{j}=d \omega_{j}+\frac{1}{2}\left[\omega_{j}, \omega_{j}\right]_{\wedge}$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

Consider the principal $\mathrm{U}(1)$-bundle $\left(\pi \times \mathrm{Id}_{\mathbb{R}}\right): P \times \mathbb{R} \rightarrow B \times \mathbb{R}$ where $P \times \mathbb{R} \curvearrowleft G$ via $(p, t) \cdot g=(p \cdot g, t)$. We endow this with the connection

$$
\omega=(1-t)\left(\operatorname{proj}_{P}\right)^{*} \omega_{0}+t\left(\operatorname{proj}_{P}\right)^{*} \omega_{1} .
$$

For $j=0,1$, consider the inclusion $\iota_{P, j}: P \rightarrow P \times \mathbb{R}, p \mapsto(p, j)$ and similarly $\iota_{B, j}$. Note $\iota_{P, j}^{*} \omega=\omega_{j}$. By Cartan's structure equation, we have $\Omega_{j}=d \omega_{j}+\frac{1}{2}\left[\omega_{j}, \omega_{j}\right]_{\wedge}=d \iota_{P, j}^{*} \omega+\frac{1}{2}\left[\iota_{P, j}^{*} \omega, \iota_{P, j}^{*} \omega\right]_{\wedge}$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

Consider the principal $\mathrm{U}(1)$-bundle $\left(\pi \times \mathrm{Id}_{\mathbb{R}}\right): P \times \mathbb{R} \rightarrow B \times \mathbb{R}$ where $P \times \mathbb{R} \curvearrowleft G$ via $(p, t) \cdot g=(p \cdot g, t)$. We endow this with the connection

$$
\omega=(1-t)\left(\operatorname{proj}_{P}\right)^{*} \omega_{0}+t\left(\operatorname{proj}_{P}\right)^{*} \omega_{1} .
$$

For $j=0,1$, consider the inclusion $\iota_{P, j}: P \rightarrow P \times \mathbb{R}, p \mapsto(p, j)$ and similarly $\iota_{B, j}$. Note $\iota_{P, j}^{*} \omega=\omega_{j}$. By Cartan's structure equation, we have $\Omega_{j}=d \omega_{j}+\frac{1}{2}\left[\omega_{j}, \omega_{j}\right]_{\wedge}=d \iota_{P, j}^{*} \omega+\frac{1}{2}\left[\iota_{P, j}^{*} \omega, \iota_{P, j}^{*} \omega\right]_{\wedge}=\iota_{P, j}^{*}\left(d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}\right)$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof.

Consider the principal $\mathrm{U}(1)$-bundle $\left(\pi \times \mathrm{Id}_{\mathbb{R}}\right): P \times \mathbb{R} \rightarrow B \times \mathbb{R}$ where $P \times \mathbb{R} \curvearrowleft G$ via $(p, t) \cdot g=(p . g, t)$. We endow this with the connection

$$
\omega=(1-t)\left(\operatorname{proj}_{P}\right)^{*} \omega_{0}+t\left(\operatorname{proj}_{P}\right)^{*} \omega_{1} .
$$

For $j=0,1$, consider the inclusion $\iota_{P, j}: P \rightarrow P \times \mathbb{R}, p \mapsto(p, j)$ and similarly $\iota_{B, j}$. Note $\iota_{P, j}^{*} \omega=\omega_{j}$. By Cartan's structure equation, we have $\Omega_{j}=d \omega_{j}+\frac{1}{2}\left[\omega_{j}, \omega_{j}\right]_{\wedge}=d \iota_{P, j}^{*} \omega+\frac{1}{2}\left[\iota_{P, j}^{*} \omega, \iota_{P, j}^{*} \omega\right]_{\wedge}=\iota_{P, j}^{*}\left(d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}\right)$, and hence $\Omega_{j}=\iota_{P, j}^{*} \Omega$. (cont'd)

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$.

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$. We now have

$$
\iota_{B, j}^{*} F_{\omega}(X, Y)=F_{\omega}\left(d \iota_{B, j}(X), d \iota_{B, j}(Y)\right)
$$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$. We now have

$$
\left.\iota_{B, j}^{*} F_{\omega}(X, Y)=F_{\omega}\left(d \iota_{B, j}(X), d \iota_{B, j}(Y)\right)=\Omega\left(\widetilde{\iota_{B, j}(X}\right), \widetilde{ } \widetilde{\iota_{B, j}(X)}\right)
$$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$. We now have

$$
\begin{aligned}
\iota_{B, j}^{*} F_{\omega}(X, Y) & =F_{\omega}\left(d \iota_{B, j}(X), d \iota_{B, j}(Y)\right)=\Omega\left(\widetilde{\iota_{B, j}(X)}, \widetilde{d \iota_{B, j}(X)}\right) \\
& =\Omega\left(d \iota_{P, j}(\widetilde{X}), d \iota_{P, j}(\widetilde{Y})\right)
\end{aligned}
$$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$. We now have

$$
\begin{aligned}
\iota_{B, j}^{*} F_{\omega}(X, Y) & \left.=F_{\omega}\left(d \iota_{B, j}(X), d \iota_{B, j}(Y)\right)=\Omega\left(\widetilde{\iota_{B, j}(X}\right), \widetilde{d \iota_{B, j}(X)}\right) \\
& =\Omega\left(d \iota_{P, j}(\widetilde{X}), d \iota_{P, j}(\widetilde{Y})\right)=\widetilde{\iota_{P, j}^{*} \Omega(\widetilde{X}, \widetilde{Y})}
\end{aligned}
$$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$. We now have

$$
\begin{aligned}
\iota_{B, j}^{*} F_{\omega}(X, Y) & =F_{\omega}\left(d \iota_{B, j}(X), d \iota_{B, j}(Y)\right)=\Omega\left(\widetilde{\iota_{B, j}(X)}, \widetilde{ } \widetilde{\iota_{B, j}(X)}\right) \\
& =\Omega\left(d \iota_{P, j}(\widetilde{X}), d \iota_{P, j}(\widetilde{Y})\right)=\iota_{P, j}^{*} \Omega(\widetilde{X}, \widetilde{Y}) \\
& =\Omega_{j}(\widetilde{X}, \widetilde{Y})
\end{aligned}
$$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$. We now have

$$
\begin{aligned}
\iota_{B, j}^{*} F_{\omega}(X, Y) & \left.=F_{\omega}\left(d \iota_{B, j}(X), d \iota_{B, j}(Y)\right)=\Omega\left(\widetilde{\iota_{B, j}(X}\right), \widetilde{ } \widetilde{\iota_{B, j}(X)}\right) \\
& =\Omega\left(d \iota_{P, j}(\widetilde{X}), d \iota_{P, j}(\widetilde{Y})\right)=\iota_{P, j}^{*} \Omega(\widetilde{X}, \widetilde{Y}) \\
& =\Omega_{j}(\widetilde{X}, \widetilde{Y})=F_{\omega_{j}}(X, Y)
\end{aligned}
$$

The first Chern class

Theorem

Let $\pi: P \rightarrow B$ be a principal $\mathrm{U}(1)$-bundle with connections ω_{0}, ω_{1}. Then we have $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right] \in H^{2}(B ; \mathbb{R})$.

Proof (cont'd).

Recall that \tilde{X} denotes the lift to $H P$ of a vector $X \in T B$. It is an exercise to see that $d \iota_{P, j}(\widetilde{X})=d \iota_{B, j}(X)$ for every $X \in T B$. We now have

$$
\begin{aligned}
\iota_{B, j}^{*} F_{\omega}(X, Y) & =F_{\omega}\left(d \iota_{B, j}(X), d \iota_{B, j}(Y)\right)=\Omega\left(\widetilde{\iota_{B, j}(X)}, \widetilde{\left(\widetilde{\iota_{B, j}(X)}\right)}\right. \\
& =\Omega\left(d \iota_{P, j}(\widetilde{X}), d \iota_{P, j}(\widetilde{Y})\right)=\iota_{P, j}^{*} \Omega(\widetilde{X}, \widetilde{Y}) \\
& =\Omega_{j}(\widetilde{X}, \widetilde{Y})=F_{\omega_{j}}(X, Y)
\end{aligned}
$$

Thus $F_{\omega_{j}}=\iota_{B, j}^{*} F_{\omega}$. Since $\iota_{B, 0} \simeq \iota_{B, 1}$, we conclude that $\left[F_{\omega_{0}}\right]=\left[F_{\omega_{1}}\right]$.

The first Chern class

In complex geometry, one often sees the first Chern class defined via the long exact sequence in cohomology that is induced by the exponential exact sequence.

We will not discuss this definition, as it involves a background with Čech cohomology that we do not assume, but we remark that it differs from our definition by a constant multiple. See page 141 of Griffiths-Harris for the proof of this.

Symplectic manifolds

Definition

Let M be a smooth manifold, and let $\alpha \in \bigwedge^{2} T^{*} M$ be a closed 2-form. Then we say α is symplectic if the bilinear pairing $\alpha(\cdot, \cdot)$ is nondegenerate on every tangent space. We call the pair (M, α) a symplectic manifold.

Symplectic manifolds

Definition

Let M be a smooth manifold, and let $\alpha \in \bigwedge^{2} T^{*} M$ be a closed 2-form. Then we say α is symplectic if the bilinear pairing $\alpha(\cdot, \cdot)$ is nondegenerate on every tangent space. We call the pair (M, α) a symplectic manifold.

It is a consequence of the definition that the dimension of M is an even number $2 n$, and that $\alpha^{\wedge n} \in \bigwedge^{2 n} T^{*} M$ is a volume form.

Symplectic manifolds

Definition

Let M be a smooth manifold, and let $\alpha \in \bigwedge^{2} T^{*} M$ be a closed 2-form. Then we say α is symplectic if the bilinear pairing $\alpha(\cdot, \cdot)$ is nondegenerate on every tangent space. We call the pair (M, α) a symplectic manifold.

It is a consequence of the definition that the dimension of M is an even number $2 n$, and that $\alpha^{\wedge n} \in \bigwedge^{2 n} T^{*} M$ is a volume form.

Since α is nondegenerate, it induces a duality $T^{*} M \leftrightarrow T M$. In particular, for every smooth function $H: M \rightarrow \mathbb{R}$, there exists a vector field X_{H} on M called the Hamiltonian vector field for H given by $\alpha\left(X_{H}, \cdot\right)=d H(\cdot)$.

Symplectic manifolds

Definition

Let M be a smooth manifold, and let $\alpha \in \bigwedge^{2} T^{*} M$ be a closed 2-form. Then we say α is symplectic if the bilinear pairing $\alpha(\cdot, \cdot)$ is nondegenerate on every tangent space. We call the pair (M, α) a symplectic manifold.

It is a consequence of the definition that the dimension of M is an even number $2 n$, and that $\alpha^{\wedge n} \in \bigwedge^{2 n} T^{*} M$ is a volume form.

Since α is nondegenerate, it induces a duality $T^{*} M \leftrightarrow T M$. In particular, for every smooth function $H: M \rightarrow \mathbb{R}$, there exists a vector field X_{H} on M called the Hamiltonian vector field for H given by $\alpha\left(X_{H}, \cdot\right)=d H(\cdot)$. Cf. when (M, g) is a Riemannian manifold, and we have $g(\operatorname{grad}(H), \cdot)=d H(\cdot)$.

Examples of symplectic manifolds

- If M is a 2-dimensional manifold, then every volume form on M is symplectic.

Examples of symplectic manifolds

- If M is a 2-dimensional manifold, then every volume form on M is symplectic.
- If M is any n-manifold, then $T^{*} M$ admits a symplectic form as follows. Let U be a chart on M over which $T^{*} M$ is trivial, and let q_{1}, \ldots, q_{n} be coordinates on U.

Examples of symplectic manifolds

- If M is a 2-dimensional manifold, then every volume form on M is symplectic.
- If M is any n-manifold, then $T^{*} M$ admits a symplectic form as follows. Let U be a chart on M over which $T^{*} M$ is trivial, and let q_{1}, \ldots, q_{n} be coordinates on U. Then we have coordinate functions $p_{j}: T^{*} U \rightarrow \mathbb{R}$ that give the $d q_{j}$-coefficient of a cotangent vector. Together $q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}$ form a coordinate system on $T^{*} U$.

Examples of symplectic manifolds

- If M is a 2-dimensional manifold, then every volume form on M is symplectic.
- If M is any n-manifold, then $T^{*} M$ admits a symplectic form as follows. Let U be a chart on M over which $T^{*} M$ is trivial, and let q_{1}, \ldots, q_{n} be coordinates on U. Then we have coordinate functions $p_{j}: T^{*} U \rightarrow \mathbb{R}$ that give the $d q_{j}$-coefficient of a cotangent vector. Together $q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}$ form a coordinate system on $T^{*} U$. We thereby define a 1-form $\theta \in T^{*}\left(T^{*} M\right)$ via the local expressions

$$
\left.\theta\right|_{T^{*} U}=\sum_{j=1}^{n} p_{j} d q_{j}
$$

Then $\alpha=-d \theta$ is closed because it is exact, and the coordinate expression $\left.\alpha\right|_{T^{*} U}=\sum_{j} d q_{j} \wedge d p_{j}$ shows that α is nondegenerate.

Examples of symplectic manifolds

- If M is a 2-dimensional manifold, then every volume form on M is symplectic.
- If M is any n-manifold, then $T^{*} M$ admits a symplectic form as follows. Let U be a chart on M over which $T^{*} M$ is trivial, and let q_{1}, \ldots, q_{n} be coordinates on U. Then we have coordinate functions $p_{j}: T^{*} U \rightarrow \mathbb{R}$ that give the $d q_{j}$-coefficient of a cotangent vector. Together $q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}$ form a coordinate system on $T^{*} U$. We thereby define a 1 -form $\theta \in T^{*}\left(T^{*} M\right)$ via the local expressions

$$
\left.\theta\right|_{T * U}=\sum_{j=1}^{n} p_{j} d q_{j}
$$

Then $\alpha=-d \theta$ is closed because it is exact, and the coordinate expression $\left.\alpha\right|_{T^{*} U}=\sum_{j} d q_{j} \wedge d p_{j}$ shows that α is nondegenerate.

- Let h be a hermitian metric on a complex manifold M. Then h is Kähler if and only if $\alpha=-\operatorname{Im} h \in \bigwedge^{2} T^{*} M$ is symplectic.

Hamiltonian actions

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft G$ via symplectomorphisms. That is, $R_{g}^{*} \alpha=\alpha$ for every $g \in G$. As we've seen before, each $A \in \mathfrak{g}$ defines a vector field \widehat{A} on M via $\widehat{A}=\frac{\partial}{\partial t} R_{\exp (t A)}$.

Hamiltonian actions

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft G$ via symplectomorphisms. That is, $R_{g}^{*} \alpha=\alpha$ for every $g \in G$. As we've seen before, each $A \in \mathfrak{g}$ defines a vector field \widehat{A} on M via $\widehat{A}=\frac{\partial}{\partial t} R_{\exp (t A)}$. We say that the action is Hamiltonian if each \widehat{A} is the Hamiltonian vector field of a function $H_{A}: M \rightarrow \mathbb{R}$. That is,

$$
d H_{A}(\cdot)=\alpha(\widehat{A}, \cdot)
$$

Hamiltonian actions

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft G$ via symplectomorphisms. That is, $R_{g}^{*} \alpha=\alpha$ for every $g \in G$. As we've seen before, each $A \in \mathfrak{g}$ defines a vector field \widehat{A} on M via $\widehat{A}=\frac{\partial}{\partial t} R_{\exp (t A)}$. We say that the action is Hamiltonian if each \widehat{A} is the Hamiltonian vector field of a function $H_{A}: M \rightarrow \mathbb{R}$. That is,

$$
d H_{A}(\cdot)=\alpha(\widehat{A}, \cdot)
$$

We then define the moment map $\mu: M \rightarrow \mathfrak{g}^{*}$ via

$$
\mu(x)(A)=H_{A}(x) \quad \forall x \in M, A \in \mathfrak{g} .
$$

Hamiltonian actions

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft G$ via symplectomorphisms. That is, $R_{g}^{*} \alpha=\alpha$ for every $g \in G$. As we've seen before, each $A \in \mathfrak{g}$ defines a vector field \widehat{A} on M via $\widehat{A}=\frac{\partial}{\partial t} R_{\exp (t A)}$. We say that the action is Hamiltonian if each \widehat{A} is the Hamiltonian vector field of a function $H_{A}: M \rightarrow \mathbb{R}$. That is,

$$
d H_{A}(\cdot)=\alpha(\widehat{A}, \cdot)
$$

We then define the moment map $\mu: M \rightarrow \mathfrak{g}^{*}$ via

$$
\mu(x)(A)=H_{A}(x) \quad \forall x \in M, A \in \mathfrak{g} .
$$

We will be concerned with analyzing the level sets $\mu^{-1}(a)$ for Hamiltonian $\mathrm{U}(1)$-actions.

The reduced space

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft \mathrm{U}(1)$ be a Hamiltonian action. We see that μ is $\mathrm{U}(1)$-invariant, i.e. μ is constant along the flowline of any $B \in \mathfrak{u}(1)=\mathbb{R}$, as follows.

The reduced space

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft \mathrm{U}(1)$ be a Hamiltonian action. We see that μ is $\mathrm{U}(1)$-invariant, i.e. μ is constant along the flowline of any $B \in \mathfrak{u}(1)=\mathbb{R}$, as follows. Let $A \in \mathfrak{u}(1)$. Then

$$
\frac{\partial}{\partial t} \mu(x \cdot \exp (t B))(A)
$$

The reduced space

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft \mathrm{U}(1)$ be a Hamiltonian action. We see that μ is $\mathrm{U}(1)$-invariant, i.e. μ is constant along the flowline of any $B \in \mathfrak{u}(1)=\mathbb{R}$, as follows. Let $A \in \mathfrak{u}(1)$. Then

$$
\frac{\partial}{\partial t} \mu(x \cdot \exp (t B))(A)=\frac{\partial}{\partial t} H_{A}(x \cdot \exp (t B))
$$

The reduced space

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft \mathrm{U}(1)$ be a Hamiltonian action. We see that μ is $\mathrm{U}(1)$-invariant, i.e. μ is constant along the flowline of any $B \in \mathfrak{u}(1)=\mathbb{R}$, as follows. Let $A \in \mathfrak{u}(1)$. Then

$$
\frac{\partial}{\partial t} \mu(x \cdot \exp (t B))(A)=\frac{\partial}{\partial t} H_{A}(x \cdot \exp (t B))=d H_{A}(B)
$$

The reduced space

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft \mathrm{U}(1)$ be a Hamiltonian action. We see that μ is $\mathrm{U}(1)$-invariant, i.e. μ is constant along the flowline of any $B \in \mathfrak{u}(1)=\mathbb{R}$, as follows. Let $A \in \mathfrak{u}(1)$. Then

$$
\frac{\partial}{\partial t} \mu(x \cdot \exp (t B))(A)=\frac{\partial}{\partial t} H_{A}(x \cdot \exp (t B))=d H_{A}(B)=\alpha(A, B)=0
$$

since $A, B \in \mathfrak{u}(1)=\mathbb{R}$ are multiples of each other.

The reduced space

Let (M, α) be a symplectic manifold, and let $M \curvearrowleft \mathrm{U}(1)$ be a Hamiltonian action. We see that μ is $\mathrm{U}(1)$-invariant, i.e. μ is constant along the flowline of any $B \in \mathfrak{u}(1)=\mathbb{R}$, as follows. Let $A \in \mathfrak{u}(1)$. Then

$$
\frac{\partial}{\partial t} \mu(x \cdot \exp (t B))(A)=\frac{\partial}{\partial t} H_{A}(x \cdot \exp (t B))=d H_{A}(B)=\alpha(A, B)=0
$$

since $A, B \in \mathfrak{u}(1)=\mathbb{R}$ are multiples of each other.
One may rephrase this by saying that each level set $\mu^{-1}(a)$ is preserved by the $\mathrm{U}(1)$-action. Suppose μ is proper and the actions $\mu^{-1}(a) \curvearrowleft \mathrm{U}(1)$ are free. Hence for each $a \in \mathfrak{u}(1)^{*}$, we have a principal $U(1)$-bundle

$$
\pi_{a}: \mu^{-1}(a) \rightarrow \mu^{-1}(a) / U(1)=M_{a}
$$

A product model

One may verify that the reduced space $M_{a}=\mu^{-1}(a) / U(1)$ admits a unique symplectic form ν_{a} satisfying $\pi_{a}^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$. We seek a convenient model for these M_{a} so that we may compute how ν_{a} depends on a.

A product model

One may verify that the reduced space $M_{a}=\mu^{-1}(a) / U(1)$ admits a unique symplectic form ν_{a} satisfying $\pi_{a}^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$. We seek a convenient model for these M_{a} so that we may compute how ν_{a} depends on a.
Let us consider the product space $\mu^{-1}(0) \times(-\varepsilon, \varepsilon)$, and let $\omega \in \Omega^{1}\left(\mu^{-1}(0)\right)$ be a principal connection for the bundle $\pi_{0}: \mu^{-1}(0) \rightarrow \mu^{-1}(0) / \mathrm{U}(1)$. Let t denote the $(-\varepsilon, \varepsilon)$-coordinate.

A product model

One may verify that the reduced space $M_{a}=\mu^{-1}(a) / U(1)$ admits a unique symplectic form ν_{a} satisfying $\pi_{a}^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$. We seek a convenient model for these M_{a} so that we may compute how ν_{a} depends on a.
Let us consider the product space $\mu^{-1}(0) \times(-\varepsilon, \varepsilon)$, and let $\omega \in \Omega^{1}\left(\mu^{-1}(0)\right)$ be a principal connection for the bundle $\pi_{0}: \mu^{-1}(0) \rightarrow \mu^{-1}(0) / \mathrm{U}(1)$. Let t denote the $(-\varepsilon, \varepsilon)$-coordinate.

Theorem

The form $\widetilde{\alpha}=\left.\alpha\right|_{\mu^{-1}(0)}+d(t \omega) \in \Omega^{2}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon)\right)$ is symplectic if ε is small enough.

A product model

One may verify that the reduced space $M_{a}=\mu^{-1}(a) / U(1)$ admits a unique symplectic form ν_{a} satisfying $\pi_{a}^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$. We seek a convenient model for these M_{a} so that we may compute how ν_{a} depends on a.
Let us consider the product space $\mu^{-1}(0) \times(-\varepsilon, \varepsilon)$, and let $\omega \in \Omega^{1}\left(\mu^{-1}(0)\right)$ be a principal connection for the bundle $\pi_{0}: \mu^{-1}(0) \rightarrow \mu^{-1}(0) / \mathrm{U}(1)$. Let t denote the $(-\varepsilon, \varepsilon)$-coordinate.

Theorem

The form $\widetilde{\alpha}=\left.\alpha\right|_{\mu^{-1}(0)}+d(t \omega) \in \Omega^{2}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon)\right)$ is symplectic if ε is small enough.

Proof.

By definition, $\left.\alpha\right|_{\mu^{-1}(0)}$ is closed and $d(t \omega)$ is exact; hence $\widetilde{\alpha}$ is closed.

A product model

One may verify that the reduced space $M_{a}=\mu^{-1}(a) / U(1)$ admits a unique symplectic form ν_{a} satisfying $\pi_{a}^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$. We seek a convenient model for these M_{a} so that we may compute how ν_{a} depends on a.
Let us consider the product space $\mu^{-1}(0) \times(-\varepsilon, \varepsilon)$, and let $\omega \in \Omega^{1}\left(\mu^{-1}(0)\right)$ be a principal connection for the bundle $\pi_{0}: \mu^{-1}(0) \rightarrow \mu^{-1}(0) / \mathrm{U}(1)$. Let t denote the $(-\varepsilon, \varepsilon)$-coordinate.

Theorem

The form $\widetilde{\alpha}=\left.\alpha\right|_{\mu^{-1}(0)}+d(t \omega) \in \Omega^{2}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon)\right)$ is symplectic if ε is small enough.

Proof.

By definition, $\left.\alpha\right|_{\mu^{-1}(0)}$ is closed and $d(t \omega)$ is exact; hence $\widetilde{\alpha}$ is closed. The expression $\left.\widetilde{\alpha}\right|_{t=0}=\left.\alpha\right|_{\mu^{-1}(0)}+d t \wedge \omega$ shows that $\widetilde{\alpha}_{t=0}$ is nondegenerate,

A product model

One may verify that the reduced space $M_{a}=\mu^{-1}(a) / U(1)$ admits a unique symplectic form ν_{a} satisfying $\pi_{a}^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$. We seek a convenient model for these M_{a} so that we may compute how ν_{a} depends on a.
Let us consider the product space $\mu^{-1}(0) \times(-\varepsilon, \varepsilon)$, and let $\omega \in \Omega^{1}\left(\mu^{-1}(0)\right)$ be a principal connection for the bundle $\pi_{0}: \mu^{-1}(0) \rightarrow \mu^{-1}(0) / \mathrm{U}(1)$. Let t denote the $(-\varepsilon, \varepsilon)$-coordinate.

Theorem

The form $\widetilde{\alpha}=\left.\alpha\right|_{\mu^{-1}(0)}+d(t \omega) \in \Omega^{2}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon)\right)$ is symplectic if ε is small enough.

Proof.

By definition, $\left.\alpha\right|_{\mu^{-1}(0)}$ is closed and $d(t \omega)$ is exact; hence $\widetilde{\alpha}$ is closed. The expression $\left.\widetilde{\alpha}\right|_{t=0}=\left.\alpha\right|_{\mu^{-1}(0)}+d t \wedge \omega$ shows that $\widetilde{\alpha}_{t=0}$ is nondegenerate, and thus the general expression $\widetilde{\alpha}=\left.\alpha\right|_{\mu^{-1}(0)}+d t \wedge \omega+t \Omega$ shows that $\widetilde{\alpha}$ is nondegenerate for $t \ll 1$.

A product model

Let us consider the action $\mu^{-1}(0) \times(-\varepsilon, \varepsilon) \curvearrowleft \mathrm{U}(1)$ given by $(x, t) \cdot g=(x . g, t)$. It is an exercise to verify that this action is Hamiltonian with moment map $J: \mu^{-1}(0) \times(-\varepsilon, \varepsilon) \rightarrow \mathfrak{u}(1)^{*}=\mathbb{R}$ given by $J(x, t)=t$.

A product model

Let us consider the action $\mu^{-1}(0) \times(-\varepsilon, \varepsilon) \curvearrowleft \mathrm{U}(1)$ given by $(x, t) \cdot g=(x . g, t)$. It is an exercise to verify that this action is Hamiltonian with moment map $J: \mu^{-1}(0) \times(-\varepsilon, \varepsilon) \rightarrow \mathfrak{u}(1)^{*}=\mathbb{R}$ given by $J(x, t)=t$.

It is a consequence of the coisotropic embedding theorem (see Guillemin, pages 25-26), that there is a neighborhood $M \supset U \supset \mu^{-1}(0)$ and a $\mathrm{U}(1)$-equivariant symplectomorphism

$$
(U, \alpha) \xrightarrow{\sim}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon), \widetilde{\alpha}\right)
$$

for small enough ε, so that $\mu^{-1}(a) \xrightarrow{\sim} \mu^{-1}(0) \times\{a\}$.

A product model

Let us consider the action $\mu^{-1}(0) \times(-\varepsilon, \varepsilon) \curvearrowleft \mathrm{U}(1)$ given by $(x, t) \cdot g=(x . g, t)$. It is an exercise to verify that this action is Hamiltonian with moment map $J: \mu^{-1}(0) \times(-\varepsilon, \varepsilon) \rightarrow \mathfrak{u}(1)^{*}=\mathbb{R}$ given by $J(x, t)=t$.

It is a consequence of the coisotropic embedding theorem (see Guillemin, pages 25-26), that there is a neighborhood $M \supset U \supset \mu^{-1}(0)$ and a $\mathrm{U}(1)$-equivariant symplectomorphism

$$
(U, \alpha) \xrightarrow{\sim}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon), \widetilde{\alpha}\right)
$$

for small enough ε, so that $\mu^{-1}(a) \xrightarrow{\sim} \mu^{-1}(0) \times\{a\}$.
Our reduced space $M_{a}=\mu^{-1}(a) / U(1)$ with symplectic form ν_{a} given by $\pi^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$ is therefore symplectomorphic to $M_{0} \times\{a\}$ with symplectic form $\widetilde{\nu}_{a}$ given by

$$
\pi^{*} \widetilde{\nu}_{a}=\left.\widetilde{\alpha}\right|_{t=a}
$$

A product model

Let us consider the action $\mu^{-1}(0) \times(-\varepsilon, \varepsilon) \curvearrowleft \mathrm{U}(1)$ given by $(x, t) \cdot g=(x . g, t)$. It is an exercise to verify that this action is Hamiltonian with moment map $J: \mu^{-1}(0) \times(-\varepsilon, \varepsilon) \rightarrow \mathfrak{u}(1)^{*}=\mathbb{R}$ given by $J(x, t)=t$.

It is a consequence of the coisotropic embedding theorem (see Guillemin, pages 25-26), that there is a neighborhood $M \supset U \supset \mu^{-1}(0)$ and a $\mathrm{U}(1)$-equivariant symplectomorphism

$$
(U, \alpha) \xrightarrow{\sim}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon), \widetilde{\alpha}\right)
$$

for small enough ε, so that $\mu^{-1}(a) \xrightarrow{\sim} \mu^{-1}(0) \times\{a\}$.
Our reduced space $M_{a}=\mu^{-1}(a) / U(1)$ with symplectic form ν_{a} given by $\pi^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$ is therefore symplectomorphic to $M_{0} \times\{a\}$ with symplectic form $\widetilde{\nu}_{a}$ given by

$$
\pi^{*} \widetilde{\nu}_{a}=\left.\widetilde{\alpha}\right|_{t=a}=\left.\alpha\right|_{\mu^{-1}(0)}+\left.d t\right|_{t=a} \wedge \omega+a \Omega
$$

A product model

Let us consider the action $\mu^{-1}(0) \times(-\varepsilon, \varepsilon) \curvearrowleft \mathrm{U}(1)$ given by $(x, t) \cdot g=(x . g, t)$. It is an exercise to verify that this action is Hamiltonian with moment map $J: \mu^{-1}(0) \times(-\varepsilon, \varepsilon) \rightarrow \mathfrak{u}(1)^{*}=\mathbb{R}$ given by $J(x, t)=t$.

It is a consequence of the coisotropic embedding theorem (see Guillemin, pages 25-26), that there is a neighborhood $M \supset U \supset \mu^{-1}(0)$ and a $\mathrm{U}(1)$-equivariant symplectomorphism

$$
(U, \alpha) \xrightarrow{\sim}\left(\mu^{-1}(0) \times(-\varepsilon, \varepsilon), \widetilde{\alpha}\right)
$$

for small enough ε, so that $\mu^{-1}(a) \xrightarrow{\sim} \mu^{-1}(0) \times\{a\}$.
Our reduced space $M_{a}=\mu^{-1}(a) / U(1)$ with symplectic form ν_{a} given by $\pi^{*} \nu_{a}=\left.\alpha\right|_{\mu^{-1}(a)}$ is therefore symplectomorphic to $M_{0} \times\{a\}$ with symplectic form $\widetilde{\nu}_{a}$ given by

$$
\begin{aligned}
\pi^{*} \widetilde{\nu}_{a}=\left.\widetilde{\alpha}\right|_{t=a} & =\left.\alpha\right|_{\mu^{-1}(0)}+\left.d t\right|_{t=a} \wedge \omega+a \Omega \\
& =\left.\alpha\right|_{\mu^{-1}(0)}+a \Omega .
\end{aligned}
$$

Variation of reduced spaces

For small enough a, we have now shown that

$$
\left(M_{a}, \nu_{a}\right) \cong\left(M_{0}, \widetilde{\nu}_{a}\right)
$$

where

$$
\pi^{*} \widetilde{\nu}_{a}=\left.\alpha\right|_{\mu^{-1}(0)}+a \Omega
$$

Variation of reduced spaces

For small enough a, we have now shown that

$$
\left(M_{a}, \nu_{a}\right) \cong\left(M_{0}, \widetilde{\nu}_{a}\right)
$$

where

$$
\begin{aligned}
\pi^{*} \widetilde{\nu}_{a} & =\left.\alpha\right|_{\mu^{-1}(0)}+a \Omega \\
& =\pi^{*} \nu_{0}+a \pi^{*} F_{\omega}
\end{aligned}
$$

Variation of reduced spaces

For small enough a, we have now shown that

$$
\left(M_{a}, \nu_{a}\right) \cong\left(M_{0}, \widetilde{\nu}_{a}\right)
$$

where

$$
\begin{aligned}
\pi^{*} \widetilde{\nu}_{a} & =\left.\alpha\right|_{\mu^{-1}(0)}+a \Omega \\
& =\pi^{*} \nu_{0}+a \pi^{*} F_{\omega} \\
\widetilde{\nu}_{0} & =\nu_{a}+a F_{\omega}
\end{aligned}
$$

Variation of reduced spaces

For small enough a, we have now shown that

$$
\left(M_{a}, \nu_{a}\right) \cong\left(M_{0}, \widetilde{\nu}_{a}\right)
$$

where

$$
\begin{aligned}
\pi^{*} \widetilde{\nu}_{a} & =\left.\alpha\right|_{\mu^{-1}(0)}+a \Omega \\
& =\pi^{*} \nu_{0}+a \pi^{*} F_{\omega} \\
\widetilde{\nu}_{0} & =\nu_{a}+a F_{\omega}
\end{aligned}
$$

In particular, when we identify $\left(M_{a}, \nu_{a}\right)=\left(M_{0}, \widetilde{\nu}_{a}\right)$ and take cohomology classes, we find that

$$
\left[\nu_{a}\right]=\left[\nu_{0}\right]+a c_{1}\left(\mu^{-1}(0)\right) .
$$

Variation of volume is a polynomial

Let $n=\operatorname{dim} M_{a}$, and recall that $\nu_{a}^{\wedge n}$ is a volume form. The expression $\left[\nu_{a}\right]=\left[\nu_{0}\right]+a c_{1}\left(\mu^{-1}(0)\right)$ then gives

$$
\operatorname{vol}\left(M_{a}\right)=\sum_{k=0}^{n}\binom{n}{k} a^{k} \int_{M_{0}}\left[\nu_{0}\right]^{n-k} \smile c_{1}\left(\mu^{-1}(0)\right)^{k}
$$

References

- P. Griffiths and J. Harris, Principles of algebraic geometry
- V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian T^{n}-spaces
- P. Michor, Topics in Differential Geometry
- M. Mirzakhani, Weil-Petersson volume and intersection theory on the moduli space of curves
- T. Walpuski, Notes on the geometry of manifolds, https: //math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf

