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Summary of Day 2

Given a principal bundle 7 : P — B, we would like to have a way of
uniquely lifting paths from B up to P. We do this by splitting

TP = HP & VP so that every tangent vector in TB lifts to a unique vector
in HP. Succinctly, wp, is the projection T,P — V,P with kernel H,P.
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Summary of Day 2

Given a principal bundle 7 : P — B, we would like to have a way of
uniquely lifting paths from B up to P. We do this by splitting

TP = HP & VP so that every tangent vector in TB lifts to a unique vector
in HP. Succinctly, wp, is the projection T,P — V,P with kernel H,P.

Definition

Let G be a Lie group with Lie algebra g, and let 7 : P — B be a principal

G-bundle. A connection 1-form on 7 is a g-valued 1-form w € Q*(P, g)
such that

w (%Rexp(m)) =A VA € g, (Projection to vertical)
Rzw = Adg-1 0w Vg € G. (G-equivariance)
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Summary of Day 2

Given a principal bundle 7 : P — B, we would like to have a way of
uniquely lifting paths from B up to P. We do this by splitting

TP = HP & VP so that every tangent vector in TB lifts to a unique vector
in HP. Succinctly, wp, is the projection T,P — V,P with kernel H,P.

Definition

Let G be a Lie group with Lie algebra g, and let 7 : P — B be a principal
G-bundle. A connection 1-form on 7 is a g-valued 1-form w € Q1(P, g)
such that

w (%Rexp(m)) =A VA € g, (Projection to vertical)
Rzw = Adg-1 0w Vg € G. (G-equivariance)

On Day 2, we referred to the choice of splitting TP = HP & VP as the
connection. We will now succinctly refer to w as the connection.
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The covariant exterior derivative

Recall that the horizontal projection h: TP — HP gives a covariant
exterior derivative d,n = (dn) o h®k*1 for n € QK(P, g). Further, recall
that Q*(P, g) is equipped with a bracket [7, k] defined as an alternating
sum of the g-brackets of 1 and k evaluated on permutations of input
vectors.

Bradley Zykoski Curvature June 17, 2020 3/19



The covariant exterior derivative

Recall that the horizontal projection h: TP — HP gives a covariant
exterior derivative d,n = (dn) o h®k*1 for n € QK(P, g). Further, recall
that Q*(P, g) is equipped with a bracket [7, k] defined as an alternating
sum of the g-brackets of 1 and k evaluated on permutations of input
vectors.

On Day 2, we showed that for n € QF_(P, )¢, we have the formulas

hor

dun = dn + [w,n]A
du2177 = [dw + %[waw]/\an]/\ :
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The covariant exterior derivative

Recall that the horizontal projection h: TP — HP gives a covariant
exterior derivative d,n = (dn) o h®k*1 for n € QK(P, g). Further, recall
that Q*(P, g) is equipped with a bracket [7, k] defined as an alternating
sum of the g-brackets of 1 and k evaluated on permutations of input
vectors.

On Day 2, we showed that for n € QF_(P, )¢, we have the formulas

hor

dun = dn + [w,n]A
du2177 = [dw + %[waw]/\an]/\ :

Today, we will define Q = d,w € Q2_(P,g)® and show that

hor
Q = dw + [w,w] A, so that the latter formula becomes

d3n = [, ]
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Curvature

Definition

Let 7 : P — B be a principal G-bundle with connection w. The curvature
of w is the 2-form
Q = d,w € Q3(P, g).
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Curvature

Definition
Let 7 : P — B be a principal G-bundle with connection w. The curvature
of w is the 2-form

Q = d,w € Q3(P, g).

Observe that if X € V,,P, then for any Y € T,P we have

Qp(X. ¥) = (dw)o(h(X), h(Y)) = (de),(0, h(Y)) = 0.
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Curvature

Definition
Let 7 : P — B be a principal G-bundle with connection w. The curvature
of w is the 2-form

Q = d,w € Q3(P, g).

Observe that if X € V,,P, then for any Y € T,P we have
Qp(X, Y) = (dw)p(h(X), h(Y)) = (dw),(0, h(Y)) = 0.

Since w is a principal connection, dR, respects the direct-sum
decomposition TP = HP ® VP, i.e. R; oh*=h*o Réf. Thus

R:Q = Ri(h*(dw)) = h*(d(Riw)) = h*(d(Adg-1 0w)) = Ady-1 0 Q.
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Curvature

Definition
Let 7 : P — B be a principal G-bundle with connection w. The curvature
of w is the 2-form

Q = d,w € Q3(P, g).

Observe that if X € V,,P, then for any Y € T,P we have
Qp(X, Y) = (dw)p(h(X), h(Y)) = (dw),(0, h(Y)) = 0.

Since w is a principal connection, dR, respects the direct-sum
decomposition TP = HP ® VP, i.e. R; oh*=h*o Réf. Thus

R:Q = Ri(h*(dw)) = h*(d(Riw)) = h*(d(Adg-1 0w)) = Ady-1 0 Q.

We conclude Q € Q2_ (P, g)°.

hor
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Cartan's structure equation

Theorem (Cartan'’s structure equation)

Let 7 : P — B be a principal G-bundle with connection w € Q*(P, g).
Then Q = dw + 1w, w],.

v
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Cartan's structure equation
Theorem (Cartan'’s structure equation)

Let 7 : P — B be a principal G-bundle with connection w € Q*(P, g).
Then Q = dw + 1w, w],.

From the definition of [-,|», one may check that
[w, WA (X, Y) = 2[w(X),w(Y)]. Thus, we must show

QX,Y) =dw(X,Y) + [w(X),w(Y)]

for all vector fields X, Y.

v
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Cartan's structure equation

Theorem (Cartan'’s structure equation)

Let 7 : P — B be a principal G-bundle with connection w € Q*(P, g).
Then Q = dw + 1w, w],.

From the definition of [-,|», one may check that
[w, WA (X, Y) = 2[w(X),w(Y)]. Thus, we must show

QX,Y) =dw(X,Y) + [w(X),w(Y)]

for all vector fields X, Y. If X, Y are horizontal, then the above is just the
definition of €.

v
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Cartan's structure equation

Theorem (Cartan'’s structure equation)

Let 7 : P — B be a principal G-bundle with connection w € Q*(P, g).
Then Q = dw + 1w, w],.

Proof

From the definition of [-,|», one may check that
[w, WA (X, Y) = 2[w(X),w(Y)]. Thus, we must show

QX,Y) =dw(X,Y) + [w(X),w(Y)]

for all vector fields X, Y. If X, Y are horizontal, then the above is just the
definition of Q. If X, Y € V,P, there are A, B € g with X = A Y = B
Applying the coordinate- free expression for the exterior derlvatlve we have

dw(A, B) = A(w(B)) — B(w(A)) — w([A, B]).

v
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Cartan's structure equation

Q = dw + 3w, w]s

Proof (cont'd).

dw(A, B) = A(w(B)) - B(w(A)) - w([A, B]).

~ -~

Since w(B) and w(A) are the constant functions p — B, A, respectively,
the first two terms vanish.

O

v
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Cartan's structure equation

Q = dw + 3w, w]s

Proof (cont'd).
dw(A, B) = A(w(B)) - B(w(A)) - w([A, B]).

~ -~

Since w(B) and w(A) are the constant functions p — B, A, respectively,

the first two terms vanish. It is an exercise to see that [A, B] = [A, B], so
that w([A, B]) = [w(A),w(B)].

O
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Cartan's structure equation

Q = dw + 3w, w]s

Proof (cont'd).
dw(A, B) = A(w(B)) - B(w(A)) - w([A, B]).

~ -~

Since w(B) and w(A) are the constant functions p — B, A, respectively,

the first two terms vanish. It is an exercise to see that [A, B] = [A, B], so
that w([A, B]) = [w(A),w(B)]. Altogether, we get

(dw)p(X, ¥) + [wp(X), wp(Y)] = —[w(A), w(B)] + [w(A),w(B)] = 0.

O
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Cartan's structure equation

Q = dw + 3w, w]s

Proof (cont'd).

dw(A, B) = A(w(B)) - B(w(A)) - w([A, B]).

~ -~

Since w(B) and w(A) are the constant functions p — B, A, respectively,

the first two terms vanish. It is an exercise to see that [/Z\\, §] = ﬁ o)
that w([A, B]) = [w(A),w(B)]. Altogether, we get

(dw)p(X, ¥) + [wp(X), wp( V)] = ~[w(A), w(B)] + [w(A), w(B)] = 0.
On the other hand, since X, Y € V,P, we have Q,(X,Y) =0, so the

structure equation reduces to 0 = 0.

O
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Cartan's structure equation

Q = dw + 3w, w]s

Proof (cont'd).

dw(A, B) = A(w(B)) - B(w(A)) - w([A, B]).

Since w(B) and w(A) are the constant functions p — B, A, respectively,

the first two terms vanish. It is an exercise to see that [/Z\\, §] = [A, B], so
that w([A, B]) = [w(A),w(B)]. Altogether, we get

(dw)p(X, ¥) + [wp(X), wp(Y)] = =[w(A),w(B)] + [w(A),w(B)] = 0.

On the other hand, since X, Y € V,P, we have Q,(X,Y) =0, so the
structure equation reduces to 0 = 0.

We leave the final case X € H,P, Y € V,P as an exercise. See Theorem
[1.5.2 of Kobayashi and Nomizu's text for the solution. O

v
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Cartan's structure equation

Q = dw + 3w, w]s
Observe that for the principal G-bundle G — {x}, the only connection

1-form is the Maurer-Cartan form 6(A) = A for A € g. Since the base

manifold is a point, {2 must vanish identically, and so we recover the
Maurer-Cartan equation

0=d0+ 3[0,0].
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Cartan's structure equation

Q = dw + 3w, w]s

Observe that for the principal G-bundle G — {x}, the only connection
1-form is the Maurer-Cartan form 6(A) = A for A € g. Since the base
manifold is a point, {2 must vanish identically, and so we recover the
Maurer-Cartan equation

0=d0+ 3[0,0].

As consequences of Cartan's structure equation, we will derive the
following two facts:

e d,2 = 0 (the Bianchi identity),

@ HP = kerw is integrable if and only if 2 = 0.
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The Bianchi identity

Theorem (Bianchi identity)

Let 7 : P — B be a principal G-bundle with connection w € QY(P, g).
Then

d,Q2 = 0.

Proof.

By Cartan’s structure equation, we have

Ol

i

Bradley Zykoski Curvature June 17, 2020 8 /19



The Bianchi identity

Theorem (Bianchi identity)

Let 7 : P — B be a principal G-bundle with connection w € QY(P, g).
Then

d,Q2 = 0.

Proof.

By Cartan’s structure equation, we have

d.Q = h*ddw + h*d(1[w,w]A)

Ol
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The Bianchi identity

Theorem (Bianchi identity)

Let 7 : P — B be a principal G-bundle with connection w € QY(P, g).
Then

d,Q2 = 0.

Proof.

By Cartan’s structure equation, we have

d.Q = h*ddw + h*d(%[w,w]A)
=0+ h*[dw,w]A

Ol

i
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The Bianchi identity

Theorem (Bianchi identity)

Let 7 : P — B be a principal G-bundle with connection w € QY(P, g).
Then

d,Q2 = 0.

Proof.

By Cartan’s structure equation, we have

d.Q = h*ddw + h*d(1[w,w]A)
=0+ h*[dw, w]A
= [h*dw, h*w]A

Ol

i

Bradley Zykoski Curvature June 17, 2020 8 /19



The Bianchi identity

Theorem (Bianchi identity)

Let 7 : P — B be a principal G-bundle with connection w € QY(P, g).
Then

d,Q2 = 0.

Proof.

By Cartan’s structure equation, we have

d.Q = h*ddw + h*d(1[w,w]A)
=0+ h*[dw,w]
= [ dw, h*w]A
=0,

where the final equality follows because h*w = w o h is a composition of
two projections with complementary images. O

v
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Let M be an n-dimensional manifold. Recall that a rank r subbundle

E C TM is integrable if for every xg € M, there is an open neighborhood
U > xo and a coordinate chart ¢ : (V C R") — U so that

o 0 0
EX—dQO (Span<a)(1’8x27”"8)(r>> Vx € U.
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Let M be an n-dimensional manifold. Recall that a rank r subbundle

E C TM is integrable if for every xg € M, there is an open neighborhood
U > xo and a coordinate chart ¢ : (V C R") — U so that

o 0 0
EX—d(,O <Span<a)q,ax2,...,axr>> Vx € U.

Theorem (Frobenius’ integrability theorem)

A subbundle F C TM s integrable if and only if [X, Y]x € Ex for every

x € M whenever X and Y are vector fields with Xy, Y.« € Ex for every
x € M.
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Let M be an n-dimensional manifold. Recall that a rank r subbundle
E C TM is integrable if for every xg € M, there is an open neighborhood
U > xo and a coordinate chart ¢ : (V C R") — U so that

o 0 0
EX—d(,O <Span<aXl,8X2,...,er>> Vx € U.

Theorem (Frobenius’ integrability theorem)

A subbundle F C TM s integrable if and only if [X, Y]x € Ex for every
x € M whenever X and Y are vector fields with Xy, Y.« € Ex for every
x € M.

Theorem

We say that a connection w is flat if HP = kerw C TP is integrable. We
have that w is flat if and only if Q2 = 0.

v

Bradley Zykoski Curvature June 17, 2020 9 /19



A connection w is flat if and only if 2 = 0.

For vector fields X, Y with w(X) = w(Y) =0, we have
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A connection w is flat if and only if 2 = 0.

For vector fields X, Y with w(X) = w(Y) =0, we have

Q(X,Y) = dw(X, Y) + 3[w(X),w(Y)]s (Cartan)
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A connection w is flat if and only if 2 = 0.

For vector fields X, Y with w(X) = w(Y) =0, we have

X, Y) = dw(X, Y) + Lw(X),w(Y)]n  (Cartan)
= X(w(Y)) = Y(w(X)) —w([X, Y]) +0
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A connection w is flat if and only if 2 = 0.

For vector fields X, Y with w(X) = w(Y) =0, we have

Q(X,Y) = dw(X, Y) + 3[w(X),w(Y)]s (Cartan)
= X(w(Y)) = Y(w(X)) —w([X, Y]) +0
=0—-0—-w([X,Y)])
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A connection w is flat if and only if Q = 0.

For vector fields X, Y with w(X) = w(Y) =0, we have

Q(X,Y) = dw(X, Y) + 3[w(X),w(Y)]s (Cartan)
= X(w(Y)) = Y(w(X)) —w(X, Y]) +0
=0—-0—-w([X,Y])
= —w([X, Y]).

Thus [X, Y] € kerw if and only if Q(X, Y) = 0. By Frobenius’
integrability theorem, we are done. [
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Moving down to the base manifold

Let m: P — B be a principal G-bundle with a connection w. On
neighborhoods U C B, we always have Fyy € Q?(U, g) so that
Q|7r*1(U) = ﬂ'*Fu.
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Moving down to the base manifold

Let m: P — B be a principal G-bundle with a connection w. On
neighborhoods U C B, we always have Fyy € Q?(U, g) so that
Qlz—1yy = 7 Fy. We will discuss this fact more tomorrow in the special

case G = U(1).
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Moving down to the base manifold

Let m: P — B be a principal G-bundle with a connection w. On
neighborhoods U C B, we always have Fyy € Q?(U, g) so that

Qlz—1yy = 7 Fy. We will discuss this fact more tomorrow in the special
case G = U(1).

If one keeps track of the coordinate transitions that these Fyy must obey,

one obtains a vector bundle gp over B and a form F € Q2(B, gp) so that
Flu = Fu.
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Moving down to the base manifold

Let m: P — B be a principal G-bundle with a connection w. On
neighborhoods U C B, we always have Fyy € Q?(U, g) so that

Qlz—1yy = 7 Fy. We will discuss this fact more tomorrow in the special
case G = U(1).

If one keeps track of the coordinate transitions that these Fyy must obey,
one obtains a vector bundle gp over B and a form F € Q2(B, gp) so that
Flu = Fu.

Definition

Let m: P — B be a principal G-bundle, and let G ~ g via the adjoint
action. Then the adjoint bundle associated to P is

gp = (P x9)/G.
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Moving down to the base manifold

Let m: P — B be a principal G-bundle with a connection w. On
neighborhoods U C B, we always have Fyy € Q?(U, g) so that

Qlz—1yy = 7 Fy. We will discuss this fact more tomorrow in the special
case G = U(1).

If one keeps track of the coordinate transitions that these Fyy must obey,
one obtains a vector bundle gp over B and a form F € Q2(B, gp) so that
Flu = Fu.

Definition

Let m: P — B be a principal G-bundle, and let G ~ g via the adjoint
action. Then the adjoint bundle associated to P is

gp = (P x9)/G.

It is an exercise to see that we have an isomorphism
7 Q*(B,gp) — Q_ (P,g)¢. Therefore, d,, acts on Q*(B, gp).

hor
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Maxwell's equations

It was determined by physical experiment that we may model
electromagnetism with the following equations, where E(t) and B(t) are
time-dependent vector fields in R3, called respectively the electric and

magnetic fields.
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Maxwell's equations

It was determined by physical experiment that we may model
electromagnetism with the following equations, where E(t) and B(t) are
time-dependent vector fields in R3, called respectively the electric and

magnetic fields.

V-B=0 (Gauss' law for magnetism)

VxE= —QB (Faraday’s law of induction)

ot
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Maxwell's equations

It was determined by physical experiment that we may model
electromagnetism with the following equations, where E(t) and B(t) are
time-dependent vector fields in R3, called respectively the electric and
magnetic fields.

V-B=0 (Gauss' law for magnetism)

VxE= —aatB (Faraday’s law of induction)

These are called the homogeneous equations, and they relate E(t) and
B(t) to each other. There are also two inhomogenous equations, which
relation E(t) and B(t) to each other and to:

e a function p(t) : R3 — R for each time t (electric charge density),
o a time-dependent vector field J(t) on R3 (electric current).
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Maxwell's equations

V-B=0
VxE+gB:0
ot
V-E=p
0
VxB—aE—J

Bradley Zykoski

Gauss' law for magnetism)

(
(Faraday's law of induction)
(Gauss' law)

(

Ampere’s law with Maxwell's addition)
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Maxwell's equations

V-B=0
0
E+—B=
V x T 0
V-E=p
0
VxB—aE—J

Gauss' law for magnetism)

(
(Faraday's law of induction)
(Gauss' law)

(

Ampere’s law with Maxwell's addition)

Notice the formal similarity of the first pair and the second pair, especially

when p and J are 0.

Bradley Zykoski
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Maxwell's equations

The previous equations are the more classical expressions of Maxwell's
laws. We will now stop treating t as an auxiliary parameter and think of it
as a coordinate on R*. In this setting (general relativity), physicists tell us
that we ought to endow R* with the Lorentzian metric

g(v,w) = —dt(v)dt(w) + Z dx;(v)dx;(w).
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Maxwell's equations

The previous equations are the more classical expressions of Maxwell's
laws. We will now stop treating t as an auxiliary parameter and think of it
as a coordinate on R*. In this setting (general relativity), physicists tell us
that we ought to endow R* with the Lorentzian metric

g(v,w) = —dt(v)dt(w) + Z dx;(v)dx;(w).

This Lorentzian metric induces a natural pairing (-, -) on differential forms,
and so we may define a Hodge star x : A*_; TAR* — AT{ T:R* via

k
aAxf = (o, B)volg a, B e /\ T;R“.

i=1

where vol, is the volume form determined by the metric g.
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Maxwell's equations

Let E; denote the %—component of E, and similarly for B and J. Then
define

n = Erdxy + Exdxa + Esdxz € Q1 (R*),
B = Bidxy A dx3 + Badxz A dxy + Bzdxy A dxz € Q3(R?),
J = —pdt + Jidxy + Jadxa + Jzdxs € QH(RY).
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Maxwell's equations

Let E; denote the %—component of E, and similarly for B and J. Then
define

n = Erdxy + Exdxa + Esdxz € Q1 (R*),
B = Bidxy A dx3 + Badxz A dxy + Bzdxy A dxz € Q3(R?),
J = —pdt + Jidxy + Jadxa + Jzdxs € QH(RY).

Then for F = 8+ n A dt (the electromagnetic field), Maxwell's equations
are

dF =0 (Homogeneous equations)

xdxF =7 (Inhomogeneous equations)
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Dirac’s magnetic monopole

The equation V - B = 0 tells us that we cannot have any magnetic
monopoles, but we can still model the idea of a magnetic monopole by
setting X = R3 . (0,0,0) and considering Maxwell's equations on X x R,
where the R factor represents time.
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Dirac’s magnetic monopole

The equation V - B = 0 tells us that we cannot have any magnetic
monopoles, but we can still model the idea of a magnetic monopole by
setting X = R3 . (0,0,0) and considering Maxwell's equations on X x R,
where the R factor represents time.

Indeed, one may verify that if we set = 0 and
3
B= (x12 + X3 + x32)_2 (x1dx2 A dxz + xadxz A dxq + x3dxq A dx3),

then F = B+ nAdt € Q*(X x R) satisfies Maxwell's equations for J = 0.
Since F is not an exact form, it does not admit an antiderivative on X x R.
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Dirac’s magnetic monopole

The equation V - B = 0 tells us that we cannot have any magnetic
monopoles, but we can still model the idea of a magnetic monopole by
setting X = R3 . (0,0,0) and considering Maxwell's equations on X x R,
where the R factor represents time.

Indeed, one may verify that if we set = 0 and
3
B= (x12 + X3 + x32)_2 (x1dx2 A dxz + xadxz A dxq + x3dxq A dx3),

then F = B+ nAdt € Q*(X x R) satisfies Maxwell's equations for J = 0.
Since F is not an exact form, it does not admit an antiderivative on X x R.

Let G be one of U(1), R, so that g = R. We would like to postulate a
principal G-bundle 7 : P — X x R with a connection w so that

7 F = Q = d,w. In this situation, we call w the electromagnetic
potential, and it serves as the next best thing to an antiderivative for F.
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Reformulating Maxwell's equations

Let's check that the equation 7*F = €2 makes sense. Recall that we must
have F € Q2(X xR, gp) in order for m*F = Q. Since g = R is abelian, the
adjoint action G ~ g is trivial, and so gp = (X x R) x g. Thus

F e Q?(X xR, g) = Q%(X xR, gp).
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Reformulating Maxwell's equations

Let's check that the equation 7*F = €2 makes sense. Recall that we must
have F € Q2(X xR, gp) in order for m*F = Q. Since g = R is abelian, the
adjoint action G ~ g is trivial, and so gp = (X x R) x g. Thus

F e Q?(X xR, g) = Q%(X xR, gp).

Again because g is abelian, we have d,(-) = d(-) + [w, |]x» = d(*).
Therefore, the conditions dF = 0, xd x F = J become d,,F = 0 (Bianchi),
*d, x F = 7. We have now written Maxwell's equations in the language
of principal connections!
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So far, we have no reason to choose G = U(1) or G = R. A further
feature of the physical theory is that the set Hom(G, U(1)) should be in
1-1 correspondence with the set C of possible values of a particle’s electric
charge.
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Reformulating Maxwell's equations

Let's check that the equation 7*F = €2 makes sense. Recall that we must
have F € Q2(X xR, gp) in order for m*F = Q. Since g = R is abelian, the
adjoint action G ~ g is trivial, and so gp = (X x R) x g. Thus

F e Q?(X xR, g) = Q%(X xR, gp).

Again because g is abelian, we have d,(-) = d(-) + [w, |]x» = d(*).
Therefore, the conditions dF = 0, xd x F = J become d,,F = 0 (Bianchi),
*d, x F = 7. We have now written Maxwell's equations in the language
of principal connections!

So far, we have no reason to choose G = U(1) or G = R. A further
feature of the physical theory is that the set Hom(G, U(1)) should be in
1-1 correspondence with the set C of possible values of a particle’s electric
charge. Since it has been determined by physical experiment that electric
charge is quantized (i.e. C is discrete), we must take G = U(1).
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The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell's
equations, i.e. the case where J = 0.
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Let G be a Lie group (typically non-abelian) and 7 : P — B a principal

G-bundle with connection w, where B is equipped with a Hodge star .
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The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell's
equations, i.e. the case where J = 0.

Let G be a Lie group (typically non-abelian) and 7 : P — B a principal
G-bundle with connection w, where B is equipped with a Hodge star .
Let F € Q2(B, gp) satisfy Q = 7*F.

The Yang-Mills equations are then

d,F=0 (Bianchi)
*d,* F = 0.
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