Principal Bundles

Day 3: Curvature

Bradley Zykoski

June 17, 2020

Summary of Day 2

Given a principal bundle $\pi: P \rightarrow B$, we would like to have a way of uniquely lifting paths from B up to P. We do this by splitting $T P=H P \oplus V P$ so that every tangent vector in $T B$ lifts to a unique vector in $H P$. Succinctly, ω_{p} is the projection $T_{p} P \rightarrow V_{p} P$ with kernel $H_{p} P$.

Summary of Day 2

Given a principal bundle $\pi: P \rightarrow B$, we would like to have a way of uniquely lifting paths from B up to P. We do this by splitting $T P=H P \oplus V P$ so that every tangent vector in $T B$ lifts to a unique vector in $H P$. Succinctly, ω_{p} is the projection $T_{p} P \rightarrow V_{p} P$ with kernel $H_{p} P$.

Definition

Let G be a Lie group with Lie algebra \mathfrak{g}, and let $\pi: P \rightarrow B$ be a principal G-bundle. A connection 1-form on π is a \mathfrak{g}-valued 1-form $\omega \in \Omega^{1}(P, \mathfrak{g})$ such that

$$
\begin{aligned}
\omega\left(\frac{\partial}{\partial t} R_{\exp (t A)}\right) & =A & & \forall A \in \mathfrak{g}, \text { (Projection to vertical) } \\
R_{g}^{*} \omega & =\operatorname{Ad}_{g^{-1}} \circ \omega & & \forall g \in G .(G \text {-equivariance })
\end{aligned}
$$

Summary of Day 2

Given a principal bundle $\pi: P \rightarrow B$, we would like to have a way of uniquely lifting paths from B up to P. We do this by splitting $T P=H P \oplus V P$ so that every tangent vector in $T B$ lifts to a unique vector in $H P$. Succinctly, ω_{p} is the projection $T_{p} P \rightarrow V_{p} P$ with kernel $H_{p} P$.

Definition

Let G be a Lie group with Lie algebra \mathfrak{g}, and let $\pi: P \rightarrow B$ be a principal G-bundle. A connection 1-form on π is a \mathfrak{g}-valued 1-form $\omega \in \Omega^{1}(P, \mathfrak{g})$ such that

$$
\begin{aligned}
\omega\left(\frac{\partial}{\partial t} R_{\exp (t A)}\right) & =A & & \forall A \in \mathfrak{g}, \text { (Projection to vel } \\
R_{g}^{*} \omega & =\operatorname{Ad}_{g^{-1}} \circ \omega & & \forall g \in G . \text { (G-equivariance) }
\end{aligned}
$$

On Day 2, we referred to the choice of splitting $T P=H P \oplus V P$ as the connection. We will now succinctly refer to ω as the connection.

The covariant exterior derivative

Recall that the horizontal projection $h: T P \rightarrow H P$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$. Further, recall that $\Omega^{*}(P, \mathfrak{g})$ is equipped with a bracket $[\eta, \kappa]_{\wedge}$ defined as an alternating sum of the \mathfrak{g}-brackets of η and κ evaluated on permutations of input vectors.

The covariant exterior derivative

Recall that the horizontal projection $h: T P \rightarrow H P$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$. Further, recall that $\Omega^{*}(P, \mathfrak{g})$ is equipped with a bracket $[\eta, \kappa]_{\wedge}$ defined as an alternating sum of the \mathfrak{g}-brackets of η and κ evaluated on permutations of input vectors.

On Day 2, we showed that for $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have the formulas

$$
\begin{aligned}
d_{\omega} \eta & =d \eta+[\omega, \eta]_{\wedge} \\
d_{\omega}^{2} \eta & =\left[d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}, \eta\right]_{\wedge}
\end{aligned}
$$

The covariant exterior derivative

Recall that the horizontal projection $h: T P \rightarrow H P$ gives a covariant exterior derivative $d_{\omega} \eta=(d \eta) \circ h^{\otimes k+1}$ for $\eta \in \Omega^{k}(P, \mathfrak{g})$. Further, recall that $\Omega^{*}(P, \mathfrak{g})$ is equipped with a bracket $[\eta, \kappa]_{\wedge}$ defined as an alternating sum of the \mathfrak{g}-brackets of η and κ evaluated on permutations of input vectors.

On Day 2, we showed that for $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have the formulas

$$
\begin{aligned}
d_{\omega} \eta & =d \eta+[\omega, \eta]_{\wedge} \\
d_{\omega}^{2} \eta & =\left[d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}, \eta\right]_{\wedge}
\end{aligned}
$$

Today, we will define $\Omega=d_{\omega} \omega \in \Omega_{\text {hor }}^{2}(P, \mathfrak{g})^{G}$ and show that $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$, so that the latter formula becomes

$$
d_{\omega}^{2} \eta=[\Omega, \eta]_{\wedge} .
$$

Curvature

Definition

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection ω. The curvature of ω is the 2-form

$$
\Omega=d_{\omega} \omega \in \Omega^{2}(P, \mathfrak{g}) .
$$

Curvature

Definition

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection ω. The curvature of ω is the 2-form

$$
\Omega=d_{\omega} \omega \in \Omega^{2}(P, \mathfrak{g}) .
$$

Observe that if $X \in V_{p} P$, then for any $Y \in T_{p} P$ we have

$$
\Omega_{p}(X, Y)=(d \omega)_{p}(h(X), h(Y))=(d \omega)_{p}(0, h(Y))=0
$$

Curvature

Definition

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection ω. The curvature of ω is the 2 -form

$$
\Omega=d_{\omega} \omega \in \Omega^{2}(P, \mathfrak{g}) .
$$

Observe that if $X \in V_{p} P$, then for any $Y \in T_{p} P$ we have

$$
\Omega_{p}(X, Y)=(d \omega)_{p}(h(X), h(Y))=(d \omega)_{p}(0, h(Y))=0
$$

Since ω is a principal connection, $d R_{g}$ respects the direct-sum decomposition $T P=H P \oplus V P$, i.e. $R_{g}^{*} \circ h^{*}=h^{*} \circ R_{g}^{*}$. Thus

$$
R_{g}^{*} \Omega=R_{g}^{*}\left(h^{*}(d \omega)\right)=h^{*}\left(d\left(R_{g}^{*} \omega\right)\right)=h^{*}\left(d\left(\operatorname{Ad}_{g^{-1}} \circ \omega\right)\right)=\operatorname{Ad}_{g^{-1}} \circ \Omega
$$

Curvature

Definition

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection ω. The curvature of ω is the 2 -form

$$
\Omega=d_{\omega} \omega \in \Omega^{2}(P, \mathfrak{g}) .
$$

Observe that if $X \in V_{p} P$, then for any $Y \in T_{p} P$ we have

$$
\Omega_{p}(X, Y)=(d \omega)_{p}(h(X), h(Y))=(d \omega)_{p}(0, h(Y))=0
$$

Since ω is a principal connection, $d R_{g}$ respects the direct-sum decomposition $T P=H P \oplus V P$, i.e. $R_{g}^{*} \circ h^{*}=h^{*} \circ R_{g}^{*}$. Thus

$$
R_{g}^{*} \Omega=R_{g}^{*}\left(h^{*}(d \omega)\right)=h^{*}\left(d\left(R_{g}^{*} \omega\right)\right)=h^{*}\left(d\left(\operatorname{Ad}_{g^{-1}} \circ \omega\right)\right)=\operatorname{Ad}_{g^{-1}} \circ \Omega
$$

We conclude $\Omega \in \Omega_{\text {hor }}^{2}(P, \mathfrak{g})^{G}$.

Cartan's structure equation

Theorem (Cartan's structure equation)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$.

Proof.

Cartan's structure equation

Theorem (Cartan's structure equation)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$.

Proof.

From the definition of $[\cdot, \cdot]_{\wedge}$, one may check that $[\omega, \omega]_{\wedge}(X, Y)=2[\omega(X), \omega(Y)]$. Thus, we must show

$$
\Omega(X, Y)=d \omega(X, Y)+[\omega(X), \omega(Y)]
$$

for all vector fields X, Y.

Cartan's structure equation

Theorem (Cartan's structure equation)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$.

Proof.

From the definition of $[\cdot, \cdot]_{\wedge}$, one may check that $[\omega, \omega]_{\wedge}(X, Y)=2[\omega(X), \omega(Y)]$. Thus, we must show

$$
\Omega(X, Y)=d \omega(X, Y)+[\omega(X), \omega(Y)]
$$

for all vector fields X, Y. If X, Y are horizontal, then the above is just the definition of Ω.

Cartan's structure equation

Theorem (Cartan's structure equation)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then $\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$.

Proof.

From the definition of $[\cdot, \cdot]_{\wedge}$, one may check that $[\omega, \omega]_{\wedge}(X, Y)=2[\omega(X), \omega(Y)]$. Thus, we must show

$$
\Omega(X, Y)=d \omega(X, Y)+[\omega(X), \omega(Y)]
$$

for all vector fields X, Y. If X, Y are horizontal, then the above is just the definition of Ω. If $X, Y \in V_{p} P$, there are $A, B \in \mathfrak{g}$ with $X=\widehat{A}_{p}, Y=\widehat{B}_{p}$. Applying the coordinate-free expression for the exterior derivative, we have

$$
d \omega(\widehat{A}, \widehat{B})=\widehat{A}(\omega(\widehat{B}))-\widehat{B}(\omega(\widehat{A}))-\omega([\widehat{A}, \widehat{B}])
$$

Cartan's structure equation

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}
$$

Proof (cont'd).

$$
d \omega(\widehat{A}, \widehat{B})=\widehat{A}(\omega(\widehat{B}))-\widehat{B}(\omega(\widehat{A}))-\omega([\widehat{A}, \widehat{B}])
$$

Since $\omega(\widehat{B})$ and $\omega(\widehat{A})$ are the constant functions $p \mapsto B, A$, respectively, the first two terms vanish.

Cartan's structure equation

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}
$$

Proof (cont'd).

$$
d \omega(\widehat{A}, \widehat{B})=\widehat{A}(\omega(\widehat{B}))-\widehat{B}(\omega(\widehat{A}))-\omega([\widehat{A}, \widehat{B}])
$$

Since $\omega(\widehat{B})$ and $\omega(\widehat{A})$ are the constant functions $p \mapsto B, A$, respectively, the first two terms vanish. It is an exercise to see that $[\widehat{A}, \widehat{B}]=\widehat{[A, B]}$, so that $\omega([\widehat{A}, \widehat{B}])=[\omega(\widehat{A}), \omega(\widehat{B})]$.

Cartan's structure equation

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}
$$

Proof (cont'd).

$$
d \omega(\widehat{A}, \widehat{B})=\widehat{A}(\omega(\widehat{B}))-\widehat{B}(\omega(\widehat{A}))-\omega([\widehat{A}, \widehat{B}])
$$

Since $\omega(\widehat{B})$ and $\omega(\widehat{A})$ are the constant functions $p \mapsto B, A$, respectively, the first two terms vanish. It is an exercise to see that $[\widehat{A}, \widehat{B}]=\widehat{[A, B]}$, so that $\omega([\widehat{A}, \widehat{B}])=[\omega(\widehat{A}), \omega(\widehat{B})]$. Altogether, we get

$$
(d \omega)_{p}(X, Y)+\left[\omega_{p}(X), \omega_{p}(Y)\right]=-[\omega(\widehat{A}), \omega(\widehat{B})]+[\omega(\widehat{A}), \omega(\widehat{B})]=0
$$

Cartan's structure equation

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}
$$

Proof (cont'd).

$$
d \omega(\widehat{A}, \widehat{B})=\widehat{A}(\omega(\widehat{B}))-\widehat{B}(\omega(\widehat{A}))-\omega([\widehat{A}, \widehat{B}])
$$

Since $\omega(\widehat{B})$ and $\omega(\widehat{A})$ are the constant functions $p \mapsto B, A$, respectively, the first two terms vanish. It is an exercise to see that $[\widehat{A}, \widehat{B}]=\widehat{[A, B]}$, so that $\omega([\widehat{A}, \widehat{B}])=[\omega(\widehat{A}), \omega(\widehat{B})]$. Altogether, we get

$$
(d \omega)_{p}(X, Y)+\left[\omega_{p}(X), \omega_{p}(Y)\right]=-[\omega(\widehat{A}), \omega(\widehat{B})]+[\omega(\widehat{A}), \omega(\widehat{B})]=0
$$

On the other hand, since $X, Y \in V_{p} P$, we have $\Omega_{p}(X, Y)=0$, so the structure equation reduces to $0=0$.

Cartan's structure equation

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}
$$

Proof (cont'd).

$$
d \omega(\widehat{A}, \widehat{B})=\widehat{A}(\omega(\widehat{B}))-\widehat{B}(\omega(\widehat{A}))-\omega([\widehat{A}, \widehat{B}])
$$

Since $\omega(\widehat{B})$ and $\omega(\widehat{A})$ are the constant functions $p \mapsto B, A$, respectively, the first two terms vanish. It is an exercise to see that $[\widehat{A}, \widehat{B}]=\widehat{[A, B]}$, so that $\omega([\widehat{A}, \widehat{B}])=[\omega(\widehat{A}), \omega(\widehat{B})]$. Altogether, we get

$$
(d \omega)_{p}(X, Y)+\left[\omega_{p}(X), \omega_{p}(Y)\right]=-[\omega(\widehat{A}), \omega(\widehat{B})]+[\omega(\widehat{A}), \omega(\widehat{B})]=0
$$

On the other hand, since $X, Y \in V_{p} P$, we have $\Omega_{p}(X, Y)=0$, so the structure equation reduces to $0=0$.

We leave the final case $X \in H_{p} P, Y \in V_{p} P$ as an exercise. See Theorem II.5.2 of Kobayashi and Nomizu's text for the solution.

Cartan's structure equation

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}
$$

Observe that for the principal G-bundle $G \rightarrow\{*\}$, the only connection 1 -form is the Maurer-Cartan form $\theta(A)=A$ for $A \in \mathfrak{g}$. Since the base manifold is a point, Ω must vanish identically, and so we recover the Maurer-Cartan equation

$$
0=d \theta+\frac{1}{2}[\theta, \theta]_{\wedge} .
$$

Cartan's structure equation

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}
$$

Observe that for the principal G-bundle $G \rightarrow\{*\}$, the only connection 1 -form is the Maurer-Cartan form $\theta(A)=A$ for $A \in \mathfrak{g}$. Since the base manifold is a point, Ω must vanish identically, and so we recover the Maurer-Cartan equation

$$
0=d \theta+\frac{1}{2}[\theta, \theta]_{\wedge} .
$$

As consequences of Cartan's structure equation, we will derive the following two facts:

- $d_{\omega} \Omega=0$ (the Bianchi identity),
- HP $=$ ker ω is integrable if and only if $\Omega \equiv 0$.

The Bianchi identity

Theorem (Bianchi identity)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then

$$
d_{\omega} \Omega=0 .
$$

Proof.

By Cartan's structure equation, we have

The Bianchi identity

Theorem (Bianchi identity)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then

$$
d_{\omega} \Omega=0 .
$$

Proof.

By Cartan's structure equation, we have

$$
d_{\omega} \Omega=h^{*} d d \omega+h^{*} d\left(\frac{1}{2}[\omega, \omega]_{\wedge}\right)
$$

The Bianchi identity

Theorem (Bianchi identity)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then

$$
d_{\omega} \Omega=0 .
$$

Proof.

By Cartan's structure equation, we have

$$
\begin{aligned}
d_{\omega} \Omega & =h^{*} d d \omega+h^{*} d\left(\frac{1}{2}[\omega, \omega]_{\wedge}\right) \\
& =0+h^{*}[d \omega, \omega]_{\wedge}
\end{aligned}
$$

The Bianchi identity

Theorem (Bianchi identity)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then

$$
d_{\omega} \Omega=0
$$

Proof.

By Cartan's structure equation, we have

$$
\begin{aligned}
d_{\omega} \Omega & =h^{*} d d \omega+h^{*} d\left(\frac{1}{2}[\omega, \omega]_{\wedge}\right) \\
& =0+h^{*}[d \omega, \omega]_{\wedge} \\
& =\left[h^{*} d \omega, h^{*} \omega\right]_{\wedge}
\end{aligned}
$$

The Bianchi identity

Theorem (Bianchi identity)

Let $\pi: P \rightarrow B$ be a principal G-bundle with connection $\omega \in \Omega^{1}(P, \mathfrak{g})$. Then

$$
d_{\omega} \Omega=0
$$

Proof.

By Cartan's structure equation, we have

$$
\begin{aligned}
d_{\omega} \Omega & =h^{*} d d \omega+h^{*} d\left(\frac{1}{2}[\omega, \omega]_{\wedge}\right) \\
& =0+h^{*}[d \omega, \omega]_{\wedge} \\
& =\left[h^{*} d \omega, h^{*} \omega\right]_{\wedge} \\
& =0,
\end{aligned}
$$

where the final equality follows because $h^{*} \omega=\omega \circ h$ is a composition of two projections with complementary images.

Flatness

Let M be an n-dimensional manifold. Recall that a rank r subbundle $E \subset T M$ is integrable if for every $x_{0} \in M$, there is an open neighborhood $U \ni x_{0}$ and a coordinate chart $\varphi:\left(V \subset \mathbb{R}^{n}\right) \rightarrow U$ so that

$$
E_{x}=d \varphi\left(\operatorname{span}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{r}}\right)\right) \quad \forall x \in U
$$

Flatness

Let M be an n-dimensional manifold. Recall that a rank r subbundle $E \subset T M$ is integrable if for every $x_{0} \in M$, there is an open neighborhood $U \ni x_{0}$ and a coordinate chart $\varphi:\left(V \subset \mathbb{R}^{n}\right) \rightarrow U$ so that

$$
E_{x}=d \varphi\left(\operatorname{span}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{r}}\right)\right) \quad \forall x \in U
$$

Theorem (Frobenius' integrability theorem)

A subbundle $F \subset T M$ is integrable if and only if $[X, Y]_{X} \in E_{X}$ for every $x \in M$ whenever X and Y are vector fields with $X_{x}, Y_{x} \in E_{X}$ for every $x \in M$.

Flatness

Let M be an n-dimensional manifold. Recall that a rank r subbundle $E \subset T M$ is integrable if for every $x_{0} \in M$, there is an open neighborhood $U \ni x_{0}$ and a coordinate chart $\varphi:\left(V \subset \mathbb{R}^{n}\right) \rightarrow U$ so that

$$
E_{x}=d \varphi\left(\operatorname{span}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{r}}\right)\right) \quad \forall x \in U
$$

Theorem (Frobenius' integrability theorem)

A subbundle $F \subset T M$ is integrable if and only if $[X, Y]_{X} \in E_{X}$ for every $x \in M$ whenever X and Y are vector fields with $X_{x}, Y_{x} \in E_{X}$ for every $x \in M$.

Theorem

We say that a connection ω is flat if $H P=\operatorname{ker} \omega \subset$ TP is integrable. We have that ω is flat if and only if $\Omega \equiv 0$.

Flatness

Theorem
 A connection ω is flat if and only if $\Omega \equiv 0$.

Proof.

For vector fields X, Y with $\omega(X)=\omega(Y)=0$, we have

Flatness

Theorem

A connection ω is flat if and only if $\Omega \equiv 0$.

Proof.

For vector fields X, Y with $\omega(X)=\omega(Y)=0$, we have

$$
\left.\Omega(X, Y)=d \omega(X, Y)+\frac{1}{2}[\omega(X), \omega(Y)]_{\wedge} \quad \text { (Cartan }\right)
$$

Flatness

Theorem

A connection ω is flat if and only if $\Omega \equiv 0$.

Proof.

For vector fields X, Y with $\omega(X)=\omega(Y)=0$, we have

$$
\begin{aligned}
\Omega(X, Y) & =d \omega(X, Y)+\frac{1}{2}[\omega(X), \omega(Y)]_{\wedge} \quad \text { (Cartan) } \\
& =X(\omega(Y))-Y(\omega(X))-\omega([X, Y])+0
\end{aligned}
$$

Flatness

Theorem

A connection ω is flat if and only if $\Omega \equiv 0$.

Proof.

For vector fields X, Y with $\omega(X)=\omega(Y)=0$, we have

$$
\begin{aligned}
\Omega(X, Y) & =d \omega(X, Y)+\frac{1}{2}[\omega(X), \omega(Y)]_{\wedge} \quad \text { (Cartan) } \\
& =X(\omega(Y))-Y(\omega(X))-\omega([X, Y])+0 \\
& =0-0-\omega([X, Y])
\end{aligned}
$$

Flatness

Theorem

A connection ω is flat if and only if $\Omega \equiv 0$.

Proof.

For vector fields X, Y with $\omega(X)=\omega(Y)=0$, we have

$$
\begin{aligned}
\Omega(X, Y) & =d \omega(X, Y)+\frac{1}{2}[\omega(X), \omega(Y)]_{\wedge} \quad \text { (Cartan) } \\
& =X(\omega(Y))-Y(\omega(X))-\omega([X, Y])+0 \\
& =0-0-\omega([X, Y]) \\
& =-\omega([X, Y])
\end{aligned}
$$

Thus $[X, Y] \in$ ker ω if and only if $\Omega(X, Y)=0$. By Frobenius' integrability theorem, we are done.

Moving down to the base manifold

Let $\pi: P \rightarrow B$ be a principal G-bundle with a connection ω. On neighborhoods $U \subset B$, we always have $F_{U} \in \Omega^{2}(U, \mathfrak{g})$ so that $\left.\Omega\right|_{\pi^{-1}(U)}=\pi^{*} F_{U}$.

Moving down to the base manifold

Let $\pi: P \rightarrow B$ be a principal G-bundle with a connection ω. On neighborhoods $U \subset B$, we always have $F_{U} \in \Omega^{2}(U, \mathfrak{g})$ so that $\left.\Omega\right|_{\pi^{-1}(U)}=\pi^{*} F_{U}$. We will discuss this fact more tomorrow in the special case $G=U(1)$.

Moving down to the base manifold

Let $\pi: P \rightarrow B$ be a principal G-bundle with a connection ω. On neighborhoods $U \subset B$, we always have $F_{U} \in \Omega^{2}(U, \mathfrak{g})$ so that $\left.\Omega\right|_{\pi^{-1}(U)}=\pi^{*} F_{U}$. We will discuss this fact more tomorrow in the special case $G=\mathrm{U}(1)$.

If one keeps track of the coordinate transitions that these F_{U} must obey, one obtains a vector bundle \mathfrak{g}_{P} over B and a form $F \in \Omega^{2}\left(B, \mathfrak{g}_{P}\right)$ so that $\left.F\right|_{U}=F_{U}$.

Moving down to the base manifold

Let $\pi: P \rightarrow B$ be a principal G-bundle with a connection ω. On neighborhoods $U \subset B$, we always have $F_{U} \in \Omega^{2}(U, \mathfrak{g})$ so that $\left.\Omega\right|_{\pi^{-1}(U)}=\pi^{*} F_{U}$. We will discuss this fact more tomorrow in the special case $G=U(1)$.

If one keeps track of the coordinate transitions that these F_{U} must obey, one obtains a vector bundle \mathfrak{g}_{P} over B and a form $F \in \Omega^{2}\left(B, \mathfrak{g}_{P}\right)$ so that $\left.F\right|_{u}=F_{U}$.

Definition

Let $\pi: P \rightarrow B$ be a principal G-bundle, and let $G \curvearrowright \mathfrak{g}$ via the adjoint action. Then the adjoint bundle associated to P is

$$
\mathfrak{g}_{P}=(P \times \mathfrak{g}) / G .
$$

Moving down to the base manifold

Let $\pi: P \rightarrow B$ be a principal G-bundle with a connection ω. On neighborhoods $U \subset B$, we always have $F_{U} \in \Omega^{2}(U, \mathfrak{g})$ so that $\left.\Omega\right|_{\pi^{-1}(U)}=\pi^{*} F_{U}$. We will discuss this fact more tomorrow in the special case $G=U(1)$.

If one keeps track of the coordinate transitions that these F_{U} must obey, one obtains a vector bundle \mathfrak{g}_{P} over B and a form $F \in \Omega^{2}\left(B, \mathfrak{g}_{P}\right)$ so that $\left.F\right|_{U}=F_{U}$.

Definition

Let $\pi: P \rightarrow B$ be a principal G-bundle, and let $G \curvearrowright \mathfrak{g}$ via the adjoint action. Then the adjoint bundle associated to P is

$$
\mathfrak{g}_{P}=(P \times \mathfrak{g}) / G .
$$

It is an exercise to see that we have an isomorphism $\pi^{*}: \Omega^{*}\left(B, \mathfrak{g}_{P}\right) \xrightarrow{\sim} \Omega_{\text {hor }}^{*}(P, \mathfrak{g})^{G}$. Therefore, d_{ω} acts on $\Omega^{*}\left(B, \mathfrak{g}_{P}\right)$.

Maxwell's equations

It was determined by physical experiment that we may model electromagnetism with the following equations, where $E(t)$ and $B(t)$ are time-dependent vector fields in \mathbb{R}^{3}, called respectively the electric and magnetic fields.

Maxwell's equations

It was determined by physical experiment that we may model electromagnetism with the following equations, where $E(t)$ and $B(t)$ are time-dependent vector fields in \mathbb{R}^{3}, called respectively the electric and magnetic fields.

$$
\begin{aligned}
\nabla \cdot B & =0 & & \text { (Gauss' law for magnetism) } \\
\nabla \times E & =-\frac{\partial}{\partial t} B & & \text { (Faraday's law of induction) }
\end{aligned}
$$

Maxwell's equations

It was determined by physical experiment that we may model electromagnetism with the following equations, where $E(t)$ and $B(t)$ are time-dependent vector fields in \mathbb{R}^{3}, called respectively the electric and magnetic fields.

$$
\begin{aligned}
\nabla \cdot B & =0 & & \text { (Gauss' law for magnetism) } \\
\nabla \times E & =-\frac{\partial}{\partial t} B & & \text { (Faraday's law of induction) }
\end{aligned}
$$

These are called the homogeneous equations, and they relate $E(t)$ and $B(t)$ to each other. There are also two inhomogenous equations, which relation $E(t)$ and $B(t)$ to each other and to:

- a function $\rho(t): \mathbb{R}^{3} \rightarrow \mathbb{R}$ for each time t (electric charge density),
- a time-dependent vector field $J(t)$ on \mathbb{R}^{3} (electric current).

Maxwell's equations

$$
\begin{aligned}
\nabla \cdot B & =0 & & \text { (Gauss' law for magnetism) } \\
\nabla \times E+\frac{\partial}{\partial t} B & =0 & & \text { (Faraday's law of induction) } \\
\nabla \cdot E & =\rho & & \text { (Gauss' law) } \\
\nabla \times B-\frac{\partial}{\partial t} E & =J & & \text { (Ampère's law with Maxwell's addition) }
\end{aligned}
$$

Maxwell's equations

$$
\begin{aligned}
\nabla \cdot B & =0 & & \text { (Gauss' law for magnetism) } \\
\nabla \times E+\frac{\partial}{\partial t} B & =0 & & \text { (Faraday's law of induction) } \\
\nabla \cdot E & =\rho & & \text { (Gauss' law) } \\
\nabla \times B-\frac{\partial}{\partial t} E & =J & & \text { (Ampère's law with Maxwell's addition) }
\end{aligned}
$$

Notice the formal similarity of the first pair and the second pair, especially when ρ and J are 0 .

Maxwell's equations

The previous equations are the more classical expressions of Maxwell's laws. We will now stop treating t as an auxiliary parameter and think of it as a coordinate on \mathbb{R}^{4}. In this setting (general relativity), physicists tell us that we ought to endow \mathbb{R}^{4} with the Lorentzian metric

$$
g(v, w)=-d t(v) d t(w)+\sum_{i=1}^{3} d x_{i}(v) d x_{i}(w)
$$

Maxwell's equations

The previous equations are the more classical expressions of Maxwell's laws. We will now stop treating t as an auxiliary parameter and think of it as a coordinate on \mathbb{R}^{4}. In this setting (general relativity), physicists tell us that we ought to endow \mathbb{R}^{4} with the Lorentzian metric

$$
g(v, w)=-d t(v) d t(w)+\sum_{i=1}^{3} d x_{i}(v) d x_{i}(w)
$$

This Lorentzian metric induces a natural pairing $\langle\cdot, \cdot\rangle$ on differential forms, and so we may define a Hodge star $\star: \bigwedge_{i=1}^{k} T_{p}^{*} \mathbb{R}^{4} \rightarrow \bigwedge_{i=1}^{4-k} T_{p}^{*} \mathbb{R}^{4}$ via

$$
\alpha \wedge \star \beta=\langle\alpha, \beta\rangle \operatorname{vol}_{g} \quad \alpha, \beta \in \bigwedge_{i=1}^{k} T_{p}^{*} \mathbb{R}^{4} .
$$

where vol_{g} is the volume form determined by the metric g.

Maxwell's equations

Let E_{i} denote the $\frac{\partial}{\partial x_{i}}$-component of E, and similarly for B and J. Then define

$$
\begin{aligned}
& \eta=E_{1} d x_{1}+E_{2} d x_{2}+E_{3} d x_{3} \in \Omega^{1}\left(\mathbb{R}^{4}\right) \\
& \beta=B_{1} d x_{2} \wedge d x_{3}+B_{2} d x_{3} \wedge d x_{1}+B_{3} d x_{1} \wedge d x_{3} \in \Omega^{2}\left(\mathbb{R}^{4}\right), \\
& \mathcal{J}=-\rho d t+J_{1} d x_{1}+J_{2} d x_{2}+J_{3} d x_{3} \in \Omega^{1}\left(\mathbb{R}^{4}\right)
\end{aligned}
$$

Maxwell's equations

Let E_{i} denote the $\frac{\partial}{\partial x_{i}}$-component of E, and similarly for B and J. Then define

$$
\begin{aligned}
& \eta=E_{1} d x_{1}+E_{2} d x_{2}+E_{3} d x_{3} \in \Omega^{1}\left(\mathbb{R}^{4}\right) \\
& \beta=B_{1} d x_{2} \wedge d x_{3}+B_{2} d x_{3} \wedge d x_{1}+B_{3} d x_{1} \wedge d x_{3} \in \Omega^{2}\left(\mathbb{R}^{4}\right), \\
& \mathcal{J}=-\rho d t+J_{1} d x_{1}+J_{2} d x_{2}+J_{3} d x_{3} \in \Omega^{1}\left(\mathbb{R}^{4}\right)
\end{aligned}
$$

Then for $F=\beta+\eta \wedge d t$ (the electromagnetic field), Maxwell's equations are

$$
\begin{aligned}
d F & =0 & & \text { (Homogeneous equations) } \\
\star d \star F & =\mathcal{J} & & \text { (Inhomogeneous equations) }
\end{aligned}
$$

Dirac's magnetic monopole

The equation $\nabla \cdot B=0$ tells us that we cannot have any magnetic monopoles, but we can still model the idea of a magnetic monopole by setting $X=\mathbb{R}^{3} \backslash(0,0,0)$ and considering Maxwell's equations on $X \times \mathbb{R}$, where the \mathbb{R} factor represents time.

Dirac's magnetic monopole

The equation $\nabla \cdot B=0$ tells us that we cannot have any magnetic monopoles, but we can still model the idea of a magnetic monopole by setting $X=\mathbb{R}^{3} \backslash(0,0,0)$ and considering Maxwell's equations on $X \times \mathbb{R}$, where the \mathbb{R} factor represents time.

Indeed, one may verify that if we set $\eta=0$ and

$$
\beta=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{-\frac{3}{2}}\left(x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{3}\right)
$$

then $F=\beta+\eta \wedge d t \in \Omega^{2}(X \times \mathbb{R})$ satisfies Maxwell's equations for $\mathcal{J}=0$. Since F is not an exact form, it does not admit an antiderivative on $X \times \mathbb{R}$.

Dirac's magnetic monopole

The equation $\nabla \cdot B=0$ tells us that we cannot have any magnetic monopoles, but we can still model the idea of a magnetic monopole by setting $X=\mathbb{R}^{3} \backslash(0,0,0)$ and considering Maxwell's equations on $X \times \mathbb{R}$, where the \mathbb{R} factor represents time.

Indeed, one may verify that if we set $\eta=0$ and

$$
\beta=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{-\frac{3}{2}}\left(x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{3}\right)
$$

then $F=\beta+\eta \wedge d t \in \Omega^{2}(X \times \mathbb{R})$ satisfies Maxwell's equations for $\mathcal{J}=0$. Since F is not an exact form, it does not admit an antiderivative on $X \times \mathbb{R}$.

Let G be one of $U(1), \mathbb{R}$, so that $\mathfrak{g}=\mathbb{R}$. We would like to postulate a principal G-bundle $\pi: P \rightarrow X \times \mathbb{R}$ with a connection ω so that $\pi^{*} F=\Omega=d_{\omega} \omega$. In this situation, we call ω the electromagnetic potential, and it serves as the next best thing to an antiderivative for F.

Reformulating Maxwell's equations

Let's check that the equation $\pi^{*} F=\Omega$ makes sense. Recall that we must have $F \in \Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$ in order for $\pi^{*} F=\Omega$. Since $\mathfrak{g}=\mathbb{R}$ is abelian, the adjoint action $G \curvearrowright \mathfrak{g}$ is trivial, and so $\mathfrak{g}_{P}=(X \times \mathbb{R}) \times \mathfrak{g}$. Thus $F \in \Omega^{2}(X \times \mathbb{R}, \mathfrak{g})=\Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$.

Reformulating Maxwell's equations

Let's check that the equation $\pi^{*} F=\Omega$ makes sense. Recall that we must have $F \in \Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$ in order for $\pi^{*} F=\Omega$. Since $\mathfrak{g}=\mathbb{R}$ is abelian, the adjoint action $G \curvearrowright \mathfrak{g}$ is trivial, and so $\mathfrak{g}_{P}=(X \times \mathbb{R}) \times \mathfrak{g}$. Thus $F \in \Omega^{2}(X \times \mathbb{R}, \mathfrak{g})=\Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$.

Again because \mathfrak{g} is abelian, we have $d_{\omega}(\cdot)=d(\cdot)+[\omega, \cdot]_{\wedge}=d(\cdot)$. Therefore, the conditions $d F=0, \star d \star F=\mathcal{J}$ become $d_{\omega} F=0$ (Bianchi), $\star d_{\omega} \star F=\mathcal{J}$. We have now written Maxwell's equations in the language of principal connections!

Reformulating Maxwell's equations

Let's check that the equation $\pi^{*} F=\Omega$ makes sense. Recall that we must have $F \in \Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$ in order for $\pi^{*} F=\Omega$. Since $\mathfrak{g}=\mathbb{R}$ is abelian, the adjoint action $G \curvearrowright \mathfrak{g}$ is trivial, and so $\mathfrak{g}_{P}=(X \times \mathbb{R}) \times \mathfrak{g}$. Thus $F \in \Omega^{2}(X \times \mathbb{R}, \mathfrak{g})=\Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$.

Again because \mathfrak{g} is abelian, we have $d_{\omega}(\cdot)=d(\cdot)+[\omega, \cdot]_{\wedge}=d(\cdot)$.
Therefore, the conditions $d F=0, \star d \star F=\mathcal{J}$ become $d_{\omega} F=0$ (Bianchi), $\star d_{\omega} \star F=\mathcal{J}$. We have now written Maxwell's equations in the language of principal connections!

So far, we have no reason to choose $G=U(1)$ or $G=\mathbb{R}$. A further feature of the physical theory is that the set $\operatorname{Hom}(G, U(1))$ should be in 1-1 correspondence with the set \mathcal{C} of possible values of a particle's electric charge.

Reformulating Maxwell's equations

Let's check that the equation $\pi^{*} F=\Omega$ makes sense. Recall that we must have $F \in \Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$ in order for $\pi^{*} F=\Omega$. Since $\mathfrak{g}=\mathbb{R}$ is abelian, the adjoint action $G \curvearrowright \mathfrak{g}$ is trivial, and so $\mathfrak{g}_{P}=(X \times \mathbb{R}) \times \mathfrak{g}$. Thus $F \in \Omega^{2}(X \times \mathbb{R}, \mathfrak{g})=\Omega^{2}\left(X \times \mathbb{R}, \mathfrak{g}_{P}\right)$.

Again because \mathfrak{g} is abelian, we have $d_{\omega}(\cdot)=d(\cdot)+[\omega, \cdot]_{\wedge}=d(\cdot)$.
Therefore, the conditions $d F=0, \star d \star F=\mathcal{J}$ become $d_{\omega} F=0$ (Bianchi), $\star d_{\omega} \star F=\mathcal{J}$. We have now written Maxwell's equations in the language of principal connections!

So far, we have no reason to choose $G=U(1)$ or $G=\mathbb{R}$. A further feature of the physical theory is that the set $\operatorname{Hom}(G, U(1))$ should be in 1-1 correspondence with the set \mathcal{C} of possible values of a particle's electric charge. Since it has been determined by physical experiment that electric charge is quantized (i.e. \mathcal{C} is discrete), we must take $G=U(1)$.

The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell's equations, i.e. the case where $\mathcal{J}=0$.

The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell's equations, i.e. the case where $\mathcal{J}=0$.

Let G be a Lie group (typically non-abelian) and $\pi: P \rightarrow B$ a principal G-bundle with connection ω, where B is equipped with a Hodge star \star. Let $F \in \Omega^{2}\left(B, \mathfrak{g}_{P}\right)$ satisfy $\Omega=\pi^{*} F$.

The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell's equations, i.e. the case where $\mathcal{J}=0$.

Let G be a Lie group (typically non-abelian) and $\pi: P \rightarrow B$ a principal G-bundle with connection ω, where B is equipped with a Hodge star \star. Let $F \in \Omega^{2}\left(B, \mathfrak{g}_{P}\right)$ satisfy $\Omega=\pi^{*} F$.

The Yang-Mills equations are then

$$
\begin{aligned}
d_{\omega} F & =0 \quad \text { (Bianchi) } \\
\star d_{\omega} \star F & =0 .
\end{aligned}
$$

References

- J. Baez and J. Munian, Gauge Fields, Knots, and Gravity
- J. Figueroa-O'Farrill, Notes on gauge theory, https: //empg.maths.ed.ac.uk/Activities/EKC/GaugeTheory.pdf
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1
- P. Michor, Topics in Differential Geometry
- G. Naber, Topology, Geometry, and Gauge Fields: Interactions
- K. Uhlenbeck, notes by L. Fredrickson, Lectures on the equations of gauge theory, https://web.stanford.edu/~ljfred4/ Attachments/TempleLectures.pdf
- T. Walpuski, Notes on the geometry of manifolds, https: //math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf

