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Summary of Day 2

Given a principal bundle π : P → B, we would like to have a way of
uniquely lifting paths from B up to P. We do this by splitting
TP = HP ⊕VP so that every tangent vector in TB lifts to a unique vector
in HP. Succinctly, ωp is the projection TpP → VpP with kernel HpP.

Definition

Let G be a Lie group with Lie algebra g, and let π : P → B be a principal
G -bundle. A connection 1-form on π is a g-valued 1-form ω ∈ Ω1(P, g)
such that

ω
(
∂
∂tRexp(tA)

)
= A ∀A ∈ g, (Projection to vertical)

R∗gω = Adg−1 ◦ ω ∀g ∈ G . (G -equivariance)

On Day 2, we referred to the choice of splitting TP = HP ⊕ VP as the
connection. We will now succinctly refer to ω as the connection.
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The covariant exterior derivative

Recall that the horizontal projection h : TP � HP gives a covariant
exterior derivative dωη = (dη) ◦ h⊗k+1 for η ∈ Ωk(P, g). Further, recall
that Ω∗(P, g) is equipped with a bracket [η, κ]∧ defined as an alternating
sum of the g-brackets of η and κ evaluated on permutations of input
vectors.

On Day 2, we showed that for η ∈ Ωk
hor(P, g)G , we have the formulas

dωη = dη + [ω, η]∧

d2
ωη =

[
dω + 1

2 [ω, ω]∧, η
]
∧ .

Today, we will define Ω = dωω ∈ Ω2
hor(P, g)G and show that

Ω = dω + 1
2 [ω, ω]∧, so that the latter formula becomes

d2
ωη = [Ω, η]∧.
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Curvature

Definition

Let π : P → B be a principal G -bundle with connection ω. The curvature
of ω is the 2-form

Ω = dωω ∈ Ω2(P, g).

Observe that if X ∈ VpP, then for any Y ∈ TpP we have

Ωp(X ,Y ) = (dω)p(h(X ), h(Y )) = (dω)p(0, h(Y )) = 0.

Since ω is a principal connection, dRg respects the direct-sum
decomposition TP = HP ⊕ VP, i.e. R∗g ◦ h∗ = h∗ ◦ R∗g . Thus

R∗gΩ = R∗g (h∗(dω)) = h∗(d(R∗gω)) = h∗(d(Adg−1 ◦ ω)) = Adg−1 ◦ Ω.

We conclude Ω ∈ Ω2
hor(P, g)G .
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Cartan’s structure equation

Theorem (Cartan’s structure equation)

Let π : P → B be a principal G-bundle with connection ω ∈ Ω1(P, g).
Then Ω = dω + 1

2 [ω, ω]∧.

Proof.

From the definition of [·, ·]∧, one may check that
[ω, ω]∧(X ,Y ) = 2[ω(X ), ω(Y )]. Thus, we must show

Ω(X ,Y ) = dω(X ,Y ) + [ω(X ), ω(Y )]

for all vector fields X ,Y . If X ,Y are horizontal, then the above is just the
definition of Ω. If X ,Y ∈ VpP, there are A,B ∈ g with X = Âp, Y = B̂p.
Applying the coordinate-free expression for the exterior derivative, we have

dω(Â, B̂) = Â(ω(B̂))− B̂(ω(Â))− ω([Â, B̂]).
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Cartan’s structure equation

Ω = dω + 1
2 [ω, ω]∧

Proof (cont’d).

dω(Â, B̂) = Â(ω(B̂))− B̂(ω(Â))− ω([Â, B̂]).

Since ω(B̂) and ω(Â) are the constant functions p 7→ B,A, respectively,

the first two terms vanish.

It is an exercise to see that [Â, B̂] = [̂A,B], so
that ω([Â, B̂]) = [ω(Â), ω(B̂)]. Altogether, we get

(dω)p(X ,Y ) + [ωp(X ), ωp(Y )] = −[ω(Â), ω(B̂)] + [ω(Â), ω(B̂)] = 0.

On the other hand, since X ,Y ∈ VpP, we have Ωp(X ,Y ) = 0, so the
structure equation reduces to 0 = 0.

We leave the final case X ∈ HpP, Y ∈ VpP as an exercise. See Theorem
II.5.2 of Kobayashi and Nomizu’s text for the solution.
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Cartan’s structure equation

Ω = dω + 1
2 [ω, ω]∧

Observe that for the principal G -bundle G → {∗}, the only connection
1-form is the Maurer-Cartan form θ(A) = A for A ∈ g. Since the base
manifold is a point, Ω must vanish identically, and so we recover the
Maurer-Cartan equation

0 = dθ + 1
2 [θ, θ]∧.

As consequences of Cartan’s structure equation, we will derive the
following two facts:

dωΩ = 0 (the Bianchi identity),

HP = kerω is integrable if and only if Ω ≡ 0.
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The Bianchi identity

Theorem (Bianchi identity)

Let π : P → B be a principal G-bundle with connection ω ∈ Ω1(P, g).
Then

dωΩ = 0.

Proof.

By Cartan’s structure equation, we have

dωΩ = h∗ddω + h∗d(12 [ω, ω]∧)

= 0 + h∗[dω, ω]∧

= [h∗dω, h∗ω]∧

= 0,

where the final equality follows because h∗ω = ω ◦ h is a composition of
two projections with complementary images.
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Flatness

Let M be an n-dimensional manifold. Recall that a rank r subbundle
E ⊂ TM is integrable if for every x0 ∈ M, there is an open neighborhood
U 3 x0 and a coordinate chart ϕ : (V ⊂ Rn)→ U so that

Ex = dϕ

(
span

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xr

))
∀x ∈ U.

Theorem (Frobenius’ integrability theorem)

A subbundle F ⊂ TM is integrable if and only if [X ,Y ]x ∈ Ex for every
x ∈ M whenever X and Y are vector fields with Xx ,Yx ∈ Ex for every
x ∈ M.

Theorem

We say that a connection ω is flat if HP = kerω ⊂ TP is integrable. We
have that ω is flat if and only if Ω ≡ 0.
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Flatness

Theorem

A connection ω is flat if and only if Ω ≡ 0.

Proof.

For vector fields X ,Y with ω(X ) = ω(Y ) = 0, we have

Ω(X ,Y ) = dω(X ,Y ) + 1
2 [ω(X ), ω(Y )]∧ (Cartan)

= X (ω(Y ))− Y (ω(X ))− ω([X ,Y ]) + 0

= 0− 0− ω([X ,Y ])

= −ω([X ,Y ]).

Thus [X ,Y ] ∈ kerω if and only if Ω(X ,Y ) = 0. By Frobenius’
integrability theorem, we are done.
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Moving down to the base manifold

Let π : P → B be a principal G -bundle with a connection ω. On
neighborhoods U ⊂ B, we always have FU ∈ Ω2(U, g) so that
Ω|π−1(U) = π∗FU .

We will discuss this fact more tomorrow in the special
case G = U(1).

If one keeps track of the coordinate transitions that these FU must obey,
one obtains a vector bundle gP over B and a form F ∈ Ω2(B, gP) so that
F |U = FU .

Definition

Let π : P → B be a principal G -bundle, and let G y g via the adjoint
action. Then the adjoint bundle associated to P is

gP = (P × g)/G .

It is an exercise to see that we have an isomorphism
π∗ : Ω∗(B, gP)

∼−→ Ω∗hor(P, g)G . Therefore, dω acts on Ω∗(B, gP).
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Maxwell’s equations

It was determined by physical experiment that we may model
electromagnetism with the following equations, where E (t) and B(t) are
time-dependent vector fields in R3, called respectively the electric and
magnetic fields.

∇ · B = 0 (Gauss’ law for magnetism)

∇× E = − ∂

∂t
B (Faraday’s law of induction)

These are called the homogeneous equations, and they relate E (t) and
B(t) to each other. There are also two inhomogenous equations, which
relation E (t) and B(t) to each other and to:

a function ρ(t) : R3 → R for each time t (electric charge density),

a time-dependent vector field J(t) on R3 (electric current).
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Maxwell’s equations

∇ · B = 0 (Gauss’ law for magnetism)

∇× E +
∂

∂t
B = 0 (Faraday’s law of induction)

∇ · E = ρ (Gauss’ law)

∇× B − ∂

∂t
E = J (Ampère’s law with Maxwell’s addition)

Notice the formal similarity of the first pair and the second pair, especially
when ρ and J are 0.
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Maxwell’s equations

The previous equations are the more classical expressions of Maxwell’s
laws. We will now stop treating t as an auxiliary parameter and think of it
as a coordinate on R4. In this setting (general relativity), physicists tell us
that we ought to endow R4 with the Lorentzian metric

g(v ,w) = −dt(v)dt(w) +
3∑

i=1

dxi (v)dxi (w).

This Lorentzian metric induces a natural pairing 〈·, ·〉 on differential forms,
and so we may define a Hodge star ? :

∧k
i=1 T

∗
pR4 →

∧4−k
i=1 T ∗pR4 via

α ∧ ?β = 〈α, β〉volg α, β ∈
k∧

i=1

T ∗pR4.

where volg is the volume form determined by the metric g .
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Maxwell’s equations

Let Ei denote the ∂
∂xi

-component of E , and similarly for B and J. Then
define

η = E1dx1 + E2dx2 + E3dx3 ∈ Ω1(R4),

β = B1dx2 ∧ dx3 + B2dx3 ∧ dx1 + B3dx1 ∧ dx3 ∈ Ω2(R4),

J = −ρdt + J1dx1 + J2dx2 + J3dx3 ∈ Ω1(R4).

Then for F = β + η ∧ dt (the electromagnetic field), Maxwell’s equations
are

dF = 0 (Homogeneous equations)

?d ? F = J (Inhomogeneous equations)
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Dirac’s magnetic monopole

The equation ∇ · B = 0 tells us that we cannot have any magnetic
monopoles, but we can still model the idea of a magnetic monopole by
setting X = R3 r (0, 0, 0) and considering Maxwell’s equations on X × R,
where the R factor represents time.

Indeed, one may verify that if we set η = 0 and

β =
(
x21 + x22 + x23

)−3
2 (x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx3),

then F = β + η ∧ dt ∈ Ω2(X ×R) satisfies Maxwell’s equations for J = 0.
Since F is not an exact form, it does not admit an antiderivative on X ×R.

Let G be one of U(1), R, so that g = R. We would like to postulate a
principal G -bundle π : P → X × R with a connection ω so that
π∗F = Ω = dωω. In this situation, we call ω the electromagnetic
potential, and it serves as the next best thing to an antiderivative for F .
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Reformulating Maxwell’s equations

Let’s check that the equation π∗F = Ω makes sense. Recall that we must
have F ∈ Ω2(X ×R, gP) in order for π∗F = Ω. Since g = R is abelian, the
adjoint action G y g is trivial, and so gP = (X × R)× g. Thus
F ∈ Ω2(X × R, g) = Ω2(X × R, gP).

Again because g is abelian, we have dω(·) = d(·) + [ω, ·]∧ = d(·).
Therefore, the conditions dF = 0, ?d ? F = J become dωF = 0 (Bianchi),
?dω ? F = J . We have now written Maxwell’s equations in the language
of principal connections!

So far, we have no reason to choose G = U(1) or G = R. A further
feature of the physical theory is that the set Hom(G ,U(1)) should be in
1-1 correspondence with the set C of possible values of a particle’s electric
charge. Since it has been determined by physical experiment that electric
charge is quantized (i.e. C is discrete), we must take G = U(1).
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The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell’s
equations, i.e. the case where J = 0.

Let G be a Lie group (typically non-abelian) and π : P → B a principal
G -bundle with connection ω, where B is equipped with a Hodge star ?.
Let F ∈ Ω2(B, gP) satisfy Ω = π∗F .

The Yang-Mills equations are then

dωF = 0 (Bianchi)

?dω ? F = 0.

Bradley Zykoski Curvature June 17, 2020 18 / 19



The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell’s
equations, i.e. the case where J = 0.

Let G be a Lie group (typically non-abelian) and π : P → B a principal
G -bundle with connection ω, where B is equipped with a Hodge star ?.
Let F ∈ Ω2(B, gP) satisfy Ω = π∗F .

The Yang-Mills equations are then

dωF = 0 (Bianchi)

?dω ? F = 0.

Bradley Zykoski Curvature June 17, 2020 18 / 19



The Yang-Mills equations

The Yang-Mills equations are the general version of the vacuum Maxwell’s
equations, i.e. the case where J = 0.

Let G be a Lie group (typically non-abelian) and π : P → B a principal
G -bundle with connection ω, where B is equipped with a Hodge star ?.
Let F ∈ Ω2(B, gP) satisfy Ω = π∗F .

The Yang-Mills equations are then

dωF = 0 (Bianchi)

?dω ? F = 0.

Bradley Zykoski Curvature June 17, 2020 18 / 19



References

J. Baez and J. Munian, Gauge Fields, Knots, and Gravity

J. Figueroa-O’Farrill, Notes on gauge theory, https:
//empg.maths.ed.ac.uk/Activities/EKC/GaugeTheory.pdf

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,
Vol. 1

P. Michor, Topics in Differential Geometry

G. Naber, Topology, Geometry, and Gauge Fields: Interactions

K. Uhlenbeck, notes by L. Fredrickson, Lectures on the equations of
gauge theory, https://web.stanford.edu/~ljfred4/
Attachments/TempleLectures.pdf

T. Walpuski, Notes on the geometry of manifolds, https:
//math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf

Bradley Zykoski Curvature June 17, 2020 19 / 19

https://empg.maths.ed.ac.uk/Activities/EKC/GaugeTheory.pdf
https://empg.maths.ed.ac.uk/Activities/EKC/GaugeTheory.pdf
https://web.stanford.edu/~ljfred4/Attachments/TempleLectures.pdf
https://web.stanford.edu/~ljfred4/Attachments/TempleLectures.pdf
https://math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf
https://math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf

