Principal Bundles Day 2: Connections

Bradley Zykoski

June 16, 2020

We work in the category of C^{∞} manifolds.

We work in the category of C^{∞} manifolds.

Let G be a Lie group. A principal G-bundle is a fiber bundle $\overline{\pi} : P \twoheadrightarrow B$ with fiber G endowed with a fiber-preserving action $P \curvearrowleft G$ that is free and transitive on the fibers.

We work in the category of C^{∞} manifolds.

Let G be a Lie group. A principal G-bundle is a fiber bundle $\overline{\pi} : P \twoheadrightarrow B$ with fiber G endowed with a fiber-preserving action $P \curvearrowleft G$ that is free and transitive on the fibers.

An example to keep in mind is the frame bundle $FM \rightarrow M$ of an *n*-manifold M, whose fiber at $p \in M$ is the collection of bases for the tangent space T_pM . This is a principal $GL_n(\mathbb{R})$ -bundle, where the action comes from changes-of-basis.

Let $\pi: E \twoheadrightarrow B$ be any fiber bundle, and let $\gamma: [0,1] \to B$ be a path in B. Let $x \in \pi^{-1}(\gamma(0))$. In general, there exist many paths $\tilde{\gamma}_x: [0,1] \to E$ with $\pi \circ \tilde{\gamma} = \gamma$ and $\tilde{\gamma}(0) = x$. When $\pi: E \twoheadrightarrow B$ is a covering space, there exists only one such $\tilde{\gamma}$, but in every other case, there exist infinitely many choices of $\tilde{\gamma}$. Let $\pi: E \twoheadrightarrow B$ be any fiber bundle, and let $\gamma: [0,1] \to B$ be a path in B. Let $x \in \pi^{-1}(\gamma(0))$. In general, there exist many paths $\tilde{\gamma}_x: [0,1] \to E$ with $\pi \circ \tilde{\gamma} = \gamma$ and $\tilde{\gamma}(0) = x$. When $\pi: E \twoheadrightarrow B$ is a covering space, there exists only one such $\tilde{\gamma}$, but in every other case, there exist infinitely many choices of $\tilde{\gamma}$.

Suppose we have a way of assigning a unique $\tilde{\gamma}_x$ to each (γ, x) . We understand the fibers of π as encoding some data attached to point $b \in B$. Then an assignment $(\gamma, x) \mapsto \tilde{\gamma}_x$ gives a way of transporting an initial piece of data x over $\gamma(0)$ to a piece of data over a different point $\gamma(1)$. On every fiber of $\pi : E \twoheadrightarrow B$, we have a canonical notion of vertical direction: a tangent vector is vertical if it lies in ker $(d\pi)$. Note that if $F = \pi^{-1}(b)$ is a fiber, then $T_pF = \text{ker}(d\pi_p)$ for every $p \in F$.

On every fiber of $\pi : E \to B$, we have a canonical notion of vertical direction: a tangent vector is vertical if it lies in ker $(d\pi)$. Note that if $F = \pi^{-1}(b)$ is a fiber, then $T_pF = \text{ker}(d\pi_p)$ for every $p \in F$.

Suppose $\pi(x) = b$. Every tangent vector $v \in T_b B$ determines a unique coset $d\pi_x^{-1}(v) = \tilde{v} + \ker(d\pi_x) \subset T_x E$. Suppose we are able to choose a consistent-enough choice of representative \tilde{v} , and let $\gamma : [0, 1] \to B$ be a path.

On every fiber of $\pi : E \to B$, we have a canonical notion of vertical direction: a tangent vector is vertical if it lies in ker $(d\pi)$. Note that if $F = \pi^{-1}(b)$ is a fiber, then $T_pF = \text{ker}(d\pi_p)$ for every $p \in F$.

Suppose $\pi(x) = b$. Every tangent vector $v \in T_b B$ determines a unique coset $d\pi_x^{-1}(v) = \tilde{v} + \ker(d\pi_x) \subset T_x E$. Suppose we are able to choose a consistent-enough choice of representative \tilde{v} , and let $\gamma : [0, 1] \to B$ be a path.

Then we may lift the velocity vector field $\gamma'(t)$ to a vector field $\overline{\gamma'(t)}$ on $\pi^{-1}(\gamma([0,1]))$. We then define $\widetilde{\gamma}_x : [0,1] \to E$ to be the integral curve of this vector field with initial point $x \in \pi^{-1}(b)$.

Let $\pi : E \twoheadrightarrow B$ be a fiber bundle. Let $VE \twoheadrightarrow E$ be the subbundle of $TE \twoheadrightarrow E$ whose fiber at $x \in E$ is $V_x E = \ker(d\pi_x)$. A connection is a choice of subbundle $HE \twoheadrightarrow E$ of TE whose fiber $H_x E$ at every $x \in E$ satisfies

 $H_x E \oplus V_x E = T_x E.$

Let $\pi : E \twoheadrightarrow B$ be a fiber bundle. Let $VE \twoheadrightarrow E$ be the subbundle of $TE \twoheadrightarrow E$ whose fiber at $x \in E$ is $V_x E = \ker(d\pi_x)$. A connection is a choice of subbundle $HE \twoheadrightarrow E$ of TE whose fiber $H_x E$ at every $x \in E$ satisfies

$$H_x E \oplus V_x E = T_x E.$$

One may understand this globally as a choice of left-splitting

$$0 \longrightarrow VE \xrightarrow{\downarrow^{- - - -}} TE \xrightarrow{d\pi} \pi^* TB \longrightarrow 0.$$

where $HE = \ker \omega$.

Let $\pi : E \twoheadrightarrow B$ be a fiber bundle. Let $VE \twoheadrightarrow E$ be the subbundle of $TE \twoheadrightarrow E$ whose fiber at $x \in E$ is $V_x E = \ker(d\pi_x)$. A connection is a choice of subbundle $HE \twoheadrightarrow E$ of TE whose fiber $H_x E$ at every $x \in E$ satisfies

$$H_x E \oplus V_x E = T_x E.$$

One may understand this globally as a choice of left-splitting

$$0 \longrightarrow VE \xrightarrow{k^{---}} TE \xrightarrow{d\pi} \pi^* TB \longrightarrow 0.$$

where $HE = \ker \omega$.

Since $HE \cong \pi^* TB$, every $v \in T_x B$ now has a unique lift $\tilde{v} \in H_x E$, and so we obtain a notion of parallel transport as desired.

Recall that on a Riemannian manifold M, we have a notion of covariant derivative ∇ , and a vector field X over a curve $\gamma : [0,1] \to M$ is parallel if $\nabla_{\gamma'(t)}X = 0$ for every t.

Recall that on a Riemannian manifold M, we have a notion of covariant derivative ∇ , and a vector field X over a curve $\gamma : [0,1] \to M$ is parallel if $\nabla_{\gamma'(t)}X = 0$ for every t.

At every $v \in TM$, define $H_v(TM)$ to be the set of all X'(0), where $X : [0,1] \to TM$ is a parallel vector field over a curve $\gamma : [0,1] \to M$ with X(0) = v. Then $H(TM) \twoheadrightarrow TM$ is a connection on the fiber bundle $\pi : TM \twoheadrightarrow M$.

Definition

Let V be a vector space. Then a V-valued k-form $\omega \in \Omega^k(M, V)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^k T_x M \to V$ for every $x \in M$.

Definition

Let V be a vector space. Then a V-valued k-form $\omega \in \Omega^k(M, V)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^k T_x M \to V$ for every $x \in M$.

Recall that any $\omega \in \Omega^k(M)$ can be understood as a section of $\bigwedge_{i=1}^k T^*M$. Similarly, if $F \twoheadrightarrow M$ is the trivial vector bundle $M \times V$, any $\omega \in \Omega^k(M, V)$ is a section of $\left(\bigwedge_{i=1}^k T^*M\right) \otimes F$.

Definition

Let V be a vector space. Then a V-valued k-form $\omega \in \Omega^k(M, V)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^k T_x M \to V$ for every $x \in M$.

Recall that any $\omega \in \Omega^k(M)$ can be understood as a section of $\bigwedge_{i=1}^k T^*M$. Similarly, if $F \twoheadrightarrow M$ is the trivial vector bundle $M \times V$, any $\omega \in \Omega^k(M, V)$ is a section of $\left(\bigwedge_{i=1}^k T^*M\right) \otimes F$.

Letting $F \to M$ be any vector bundle, one also defines $\Omega^k(M, F)$ as the space of sections of $\left(\bigwedge_{i=1}^k T^*M\right) \otimes F$.

Connection 1-forms

$$\Omega^{k}(M,F) = \Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*}M\right) \otimes F\right)$$

$$\Omega^{k}(M,F) = \Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*}M\right) \otimes F\right)$$

Let $\pi: E \twoheadrightarrow B$ be a fiber bundle, and consider the connection

$$0 \longrightarrow VE \xrightarrow{k^{---}} TE \xrightarrow{d\pi} \pi^* TB \longrightarrow 0.$$

$$\Omega^{k}(M,F) = \Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*}M\right) \otimes F\right)$$

Let $\pi: E \twoheadrightarrow B$ be a fiber bundle, and consider the connection

$$0 \longrightarrow VE \xrightarrow{\downarrow \frown \frown \frown} TE \xrightarrow{d\pi} \pi^* TB \longrightarrow 0.$$

We now see that ω is is a VE-valued 1-form $\omega \in \Omega^1(E, VE)$, which we call the connection 1-form.

$$\Omega^{k}(M,F) = \Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*}M\right) \otimes F\right)$$

Let $\pi: E \twoheadrightarrow B$ be a fiber bundle, and consider the connection

$$0 \longrightarrow VE \xrightarrow{\downarrow \frown \frown \frown} TE \xrightarrow{d\pi} \pi^* TB \longrightarrow 0.$$

We now see that ω is a VE-valued 1-form $\omega \in \Omega^1(E, VE)$, which we call the connection 1-form.

Conversely, given any VE-valued 1-form ω on E so that ω_p is a projection $T_pE \rightarrow V_pE$ for every $p \in E$, we have a connection ker $\omega = HE \rightarrow E$.

Let $\overline{\pi} : P \twoheadrightarrow B$ be a principal *G*-bundle, and let \mathfrak{g} be the Lie algebra of *G*. For every $A \in \mathfrak{g}$, we have a vector field \widehat{A} on *P* given by

$$\widehat{A}_{p} = \left. \frac{\partial}{\partial t} \right|_{t=0} p. \exp(tA) \qquad \forall p \in P.$$

Let $\overline{\pi} : P \twoheadrightarrow B$ be a principal *G*-bundle, and let \mathfrak{g} be the Lie algebra of *G*. For every $A \in \mathfrak{g}$, we have a vector field \widehat{A} on *P* given by

$$\widehat{A}_p = \left. \frac{\partial}{\partial t} \right|_{t=0} p. \exp(tA) \qquad \forall p \in P.$$

Since $\overline{\pi}(p.g) = p$ for every $g \in G$, we have $d\pi(\widehat{A}) = 0$ for every $A \in \mathfrak{g}$. Therefore \widehat{A} is a section of VP. Let $\overline{\pi} : P \twoheadrightarrow B$ be a principal *G*-bundle, and let \mathfrak{g} be the Lie algebra of *G*. For every $A \in \mathfrak{g}$, we have a vector field \widehat{A} on *P* given by

$$\widehat{A}_p = \left. \frac{\partial}{\partial t} \right|_{t=0} p. \exp(tA) \qquad \forall p \in P.$$

Since $\overline{\pi}(p.g) = p$ for every $g \in G$, we have $d\pi(\widehat{A}) = 0$ for every $A \in \mathfrak{g}$. Therefore \widehat{A} is a section of VP.

Let A_1, A_2, \ldots, A_n be any basis for \mathfrak{g} . Then $\widehat{A}_1, \widehat{A}_2, \ldots, \widehat{A}_n$ are *n* linearly independent sections of the rank *n* vector bundle *VP*. It follows that $VP \cong P \times \mathfrak{g}$. Therefore $\Omega^1(P, VP) = \Omega^1(P, \mathfrak{g})$.

Vertical bundles: The principal case

Exercise

Show that for $R_g: P \rightarrow P$, $R_g(p) = p.g$, we have

$$dR_g(\widehat{A}) = A\widehat{d_{g^{-1}}(A)} \quad \forall A \in \mathfrak{g}.$$

Vertical bundles: The principal case

Exercise

Show that for $R_g: P \rightarrow P$, $R_g(p) = p.g$, we have

$$dR_g(\widehat{A}) = A\widehat{d_{g^{-1}}(A)} \quad \forall A \in \mathfrak{g}.$$

Solution

Recall that if $\varphi_t : M \to M$ is a flow and X is the vector field $X(p) = \frac{\partial}{\partial t}\Big|_{t=0} \varphi_t(p)$, then for any diffeomorphism $\psi : M \to M$, we have $d\psi(X)(p) = \frac{\partial}{\partial t}\Big|_{t=0} \psi \circ \varphi_t \circ \psi^{-1}(p)$. Thus

$$dR_{g}(\widehat{A}) = \frac{\partial}{\partial t} \bigg|_{t=0} R_{g} \circ R_{\exp(tA)} \circ R_{g^{-1}}(p)$$
$$= \frac{\partial}{\partial t} \bigg|_{t=0} R_{g^{-1}\exp(tA)g}(p)$$
$$= \widehat{\operatorname{Ad}_{g^{-1}}(A)}.$$

Let $\overline{\pi}: P \twoheadrightarrow B$ be a principal *G*-bundle, and let $R_g: P \to P$ be given by $R_g(p) = p.g$. We say a connection $HP \twoheadrightarrow P$ is principal if

$$dR_g(H_pP) = H_{R_g(p)}P \qquad \forall p \in P, g \in G.$$

That is, dR_g respects the direct-sum decomposition $TP = HP \oplus VP$.

Let $\overline{\pi}: P \twoheadrightarrow B$ be a principal *G*-bundle, and let $R_g: P \to P$ be given by $R_g(p) = p.g$. We say a connection $HP \twoheadrightarrow P$ is principal if

$$dR_g(H_pP) = H_{R_g(p)}P \qquad \forall p \in P, g \in G.$$

That is, dR_g respects the direct-sum decomposition $TP = HP \oplus VP$.

Since ω_p is the projection onto $V_p P \cong \mathfrak{g}$ induced by this decomposition, we have $R_g^* \omega_p(v) = 0$ for horizontal vectors V, and for vertical vectors \widehat{A} we have

$$(R_g^*\omega)_p(\widehat{A}) = \omega_{R_g(p)}(dR_g(\widehat{A})) = \omega_{R_g(p)}(\widehat{\operatorname{Ad}_{g^{-1}}(A)}) = \operatorname{Ad}_{g^{-1}}(A).$$

Thus $R_g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$.

I have tried to include a complete discussion for the sake of being well-motivated, though this leaves us open to the danger of getting lost in the weeds. We will take a short break to digest this material. The following is a summary of what we have done so far.

Definition

Let G be a Lie group with Lie algebra \mathfrak{g} , and let $\overline{\pi} : P \twoheadrightarrow B$ be a principal G-bundle. A connection 1-form on $\overline{\pi}$ is a \mathfrak{g} -valued 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ such that

$$\begin{split} \omega\left(\frac{\partial}{\partial t}R_{\exp(tA)}\right) &= A & \forall A \in \mathfrak{g}, \text{ (Projection to vertical)} \\ R_g^* \omega &= \operatorname{Ad}_{g^{-1}} \circ \omega & \forall g \in G. \text{ (}G\text{-equivariance)} \end{split}$$

We call the subbundle $HP = \ker \omega \subset TP$ the horizontal subbundle of TP.

Just as ω is the vertical projection $TP \to VP$ with kernel HP, let us consider the horizontal projection $h: TP \to HP$ with kernel VP. Let us define $h^*: \Omega^k(P, \mathfrak{g}) \to \Omega^k(P, \mathfrak{g})$ by

$$h_\omega^*\eta(X_1,X_2,\ldots,X_k)=\eta(h_\omega(X_1),h_\omega(X_2),\ldots,h_\omega(X_k))\qquad\eta\in\Omega^k(P,\mathfrak{g}).$$

That is to say, $h^*\eta = \eta \circ h^{\otimes k}$.

Just as ω is the vertical projection $TP \to VP$ with kernel HP, let us consider the horizontal projection $h: TP \to HP$ with kernel VP. Let us define $h^*: \Omega^k(P, \mathfrak{g}) \to \Omega^k(P, \mathfrak{g})$ by

$$h_{\omega}^*\eta(X_1,X_2,\ldots,X_k)=\eta(h_{\omega}(X_1),h_{\omega}(X_2),\ldots,h_{\omega}(X_k))\qquad \eta\in\Omega^k(P,\mathfrak{g}).$$

That is to say, $h^*\eta = \eta \circ h^{\otimes k}$.

Definition

Let $\overline{\pi}: P \twoheadrightarrow B$ be a principal *G*-bundle with connection ω . The covariant exterior derivative $d_{\omega}: \Omega^k(P, \mathfrak{g}) \to \Omega^{k+1}(P, \mathfrak{g})$ is given by

$$d_\omega \eta = h^*(d\eta).$$

Recall that the wedge product on $\Omega^*(P,\mathbb{R})$ is defined by

$$\psi \wedge \vartheta(X_1, \dots, X_{k+\ell}) = \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma) \psi(X_{\sigma(1)}, \dots, X_{\sigma(k)}) \cdot \vartheta(X_{\sigma(k+1)}, \dots, X_{\sigma(k+\ell)}),$$

where $\psi \in \Omega^k(P, \mathbb{R})$, $\vartheta \in \Omega^\ell(P, \mathbb{R})$.

Recall that the wedge product on $\Omega^*(P,\mathbb{R})$ is defined by

$$\psi \wedge \vartheta(X_1, \dots, X_{k+\ell}) = \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma) \psi(X_{\sigma(1)}, \dots, X_{\sigma(k)}) \cdot \vartheta(X_{\sigma(k+1)}, \dots, X_{\sigma(k+\ell)}),$$

where $\psi \in \Omega^k(\mathcal{P}, \mathbb{R})$, $\vartheta \in \Omega^\ell(\mathcal{P}, \mathbb{R})$.

The Lie algebra $\mathfrak g$ does not have a multiplication \cdot as above, but it does have a bracket $[\cdot,\cdot]$, and so we analogously define

$$[\eta, \kappa]_{\wedge}(X_1, \dots, X_{k+\ell}) = \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma)[\eta(X_{\sigma(1)}, \dots, X_{\sigma(k)}), \kappa(X_{\sigma(k+1)}, \dots, X_{\sigma(k+\ell)})],$$

where $\eta \in \Omega^k(\mathcal{P}, \mathfrak{g})$, $\kappa \in \Omega^\ell(\mathcal{P}, \mathfrak{g})$.

Theorem

For
$$\eta \in \Omega^k_{hor}(\mathsf{P},\mathfrak{g})^{\mathsf{G}}$$
, we have $d_\omega \eta = d\eta + [\omega,\eta]_\wedge$.

Proof.

If (X_1, \ldots, X_{k+1}) are horizontal vector fields, then $h(X_i) = X_i$ and $\omega(X_i) = 0$.

Theorem

For
$$\eta \in \Omega^k_{hor}(\mathsf{P},\mathfrak{g})^{\mathsf{G}}$$
, we have $d_\omega \eta = d\eta + [\omega,\eta]_\wedge$.

Proof.

If (X_1, \ldots, X_{k+1}) are horizontal vector fields, then $h(X_i) = X_i$ and $\omega(X_i) = 0$. From $h(X_i) = X_i$ we have

 $d_{\omega}\eta(X_1,\ldots,X_{k+1}) = d\eta(h(X_1),\ldots,h(X_{k+1})) = d\eta(X_1,\ldots,X_{k+1}).$

Theorem

For
$$\eta \in \Omega^k_{hor}(\mathsf{P},\mathfrak{g})^{\mathsf{G}}$$
, we have $d_\omega \eta = d\eta + [\omega,\eta]_\wedge$.

Proof.

If (X_1, \ldots, X_{k+1}) are horizontal vector fields, then $h(X_i) = X_i$ and $\omega(X_i) = 0$. From $h(X_i) = X_i$ we have

$$d_{\omega}\eta(X_1,\ldots,X_{k+1}) = d\eta(h(X_1),\ldots,h(X_{k+1})) = d\eta(X_1,\ldots,X_{k+1})$$

From $\omega(X_i) = 0$ we have

$$[\omega,\eta]_{\wedge}(X_1,\ldots,X_{k+1})=\frac{1}{k!}\sum_{\sigma}\omega(X_{\sigma(i)})\cdot\eta(X_{\sigma(2)},\ldots,X_{\sigma(k+1)})=0.$$

Theorem

For
$$\eta \in \Omega^k_{hor}(\mathsf{P},\mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega,\eta]_{\wedge}$.

Proof.

If (X_1, \ldots, X_{k+1}) are horizontal vector fields, then $h(X_i) = X_i$ and $\omega(X_i) = 0$. From $h(X_i) = X_i$ we have

$$d_{\omega}\eta(X_1,\ldots,X_{k+1}) = d\eta(h(X_1),\ldots,h(X_{k+1})) = d\eta(X_1,\ldots,X_{k+1})$$

From $\omega(X_i) = 0$ we have

$$[\omega,\eta]_{\wedge}(X_1,\ldots,X_{k+1})=\frac{1}{k!}\sum_{\sigma}\omega(X_{\sigma(i)})\cdot\eta(X_{\sigma(2)},\ldots,X_{\sigma(k+1)})=0.$$

Therefore the desired identity holds on horizontal vector fields. (Cont'd)

Theorem

For
$$\eta \in \Omega^k_{\mathsf{hor}}(\mathsf{P},\mathfrak{g})^{\mathsf{G}}$$
, we have $d_\omega \eta = d\eta + [\omega,\eta]_\wedge$.

Proof.

For a vector field X, let $i_X : \Omega^*(P, \mathfrak{g}) \to \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_X = i_X d + di_X$.

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_X : \Omega^*(P, \mathfrak{g}) \to \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_X = i_X d + di_X$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta = \frac{\partial}{\partial t}\Big|_{t=0} R^*_{\exp(tA)} \eta = \frac{\partial}{\partial t}\Big|_{t=0} \operatorname{Ad}_{\exp(-tA)} \circ \eta = -[A, \eta]$.

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

$$i_{\widehat{A}}(d\eta + [\omega,\eta]_{\wedge}) = \mathcal{L}_{\widehat{A}}\eta + [i_{\widehat{A}}\omega,\eta]_{\wedge} - [\omega,i_{\widehat{A}}\eta]_{\wedge}$$

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

$$\begin{split} i_{\widehat{A}}(d\eta + [\omega, \eta]_{\wedge}) &= \mathcal{L}_{\widehat{A}}\eta + [i_{\widehat{A}}\omega, \eta]_{\wedge} - [\omega, i_{\widehat{A}}\eta]_{\wedge} \\ &= - [A, \eta] \end{split}$$

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

$$\begin{split} i_{\widehat{A}}(d\eta + [\omega, \eta]_{\wedge}) &= \mathcal{L}_{\widehat{A}}\eta + [i_{\widehat{A}}\omega, \eta]_{\wedge} - [\omega, i_{\widehat{A}}\eta]_{\wedge} \\ &= - [A, \eta] + [A, \eta] \end{split}$$

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

$$\begin{split} i_{\widehat{A}}(d\eta + [\omega, \eta]_{\wedge}) &= \mathcal{L}_{\widehat{A}}\eta + [i_{\widehat{A}}\omega, \eta]_{\wedge} - [\omega, i_{\widehat{A}}\eta]_{\wedge} \\ &= - [A, \eta] + [A, \eta] + \mathbf{0} \end{split}$$

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

$$egin{aligned} &i_{\widehat{A}}\left(d\eta+[\omega,\eta]_{\wedge}
ight)=\mathcal{L}_{\widehat{A}}\eta+[i_{\widehat{A}}\,\omega,\eta]_{\wedge}-[\omega,i_{\widehat{A}}\,\eta]_{\wedge}\ &=-[A,\eta]+[A,\eta]+0=0. \end{aligned}$$

For
$$\eta \in \Omega^k_{hor}(P, \mathfrak{g})^{\mathsf{G}}$$
, we have $d_{\omega}\eta = d\eta + [\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_X : \Omega^*(P, \mathfrak{g}) \to \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_X = i_X d + di_X$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta = \frac{\partial}{\partial t}\Big|_{t=0} R^*_{\exp(tA)} \eta = \frac{\partial}{\partial t}\Big|_{t=0} \operatorname{Ad}_{\exp(-tA)} \circ \eta = -[A, \eta]$. Since $i_{\widehat{A}} \eta = 0$, we have $i_{\widehat{A}} d\eta = i_{\widehat{A}} d\eta + di_{\widehat{A}} \eta = \mathcal{L}_{\widehat{A}} \eta$. Then we have

$$egin{aligned} &i_{\widehat{A}}\left(d\eta+[\omega,\eta]_{\wedge}
ight)=\mathcal{L}_{\widehat{A}}\eta+[i_{\widehat{A}}\,\omega,\eta]_{\wedge}-[\omega,i_{\widehat{A}}\,\eta]_{\wedge}\ &=-[A,\eta]+[A,\eta]+0=oldsymbol{0}. \end{aligned}$$

Finally, $i_{\widehat{A}} d_{\omega} \eta = i_{h(\widehat{A})} d\eta = 0$. We conclude that the desired equation holds on any combination of horizontal and vertical vectors, and hence holds identically, as desired.

Observe that $d_{\omega}\left(\Omega_{\mathsf{hor}}^{k}(P,\mathfrak{g})^{\mathcal{G}}\right)\subseteq\Omega_{\mathsf{hor}}^{k+1}(P,\mathfrak{g})^{\mathcal{G}}.$

$$d_{\omega}^2\eta=d(d\eta+[\omega,\eta]_{\wedge})+[\omega,d\eta+[\omega,\eta]_{\wedge}]_{\wedge}$$

$$egin{aligned} d_{\omega}^2\eta &= d(d\eta + [\omega,\eta]_{\wedge}) + [\omega,d\eta + [\omega,\eta]_{\wedge}]_{\wedge} \ &= dd\eta + d[\omega,\eta]_{\wedge} + [\omega,d\eta]_{\wedge} + [\omega,[\omega,\eta]]_{\wedge} \end{aligned}$$

$$\begin{aligned} d_{\omega}^2 \eta &= d(d\eta + [\omega, \eta]_{\wedge}) + [\omega, d\eta + [\omega, \eta]_{\wedge}]_{\wedge} \\ &= dd\eta + d[\omega, \eta]_{\wedge} + [\omega, d\eta]_{\wedge} + [\omega, [\omega, \eta]]_{\wedge} \\ &= 0 \end{aligned}$$

$$\begin{aligned} d_{\omega}^2\eta &= d(d\eta + [\omega, \eta]_{\wedge}) + [\omega, d\eta + [\omega, \eta]_{\wedge}]_{\wedge} \\ &= dd\eta + d[\omega, \eta]_{\wedge} + [\omega, d\eta]_{\wedge} + [\omega, [\omega, \eta]]_{\wedge} \\ &= 0 + [d\omega, \eta]_{\wedge} - [\omega, d\eta]_{\wedge} \end{aligned}$$

$$egin{aligned} &d_{\omega}^2\eta = d(d\eta + [\omega,\eta]_{\wedge}) + [\omega,d\eta + [\omega,\eta]_{\wedge}]_{\wedge} \ &= dd\eta + d[\omega,\eta]_{\wedge} + [\omega,d\eta]_{\wedge} + [\omega,[\omega,\eta]]_{\wedge} \ &= 0 + [d\omega,\eta]_{\wedge} - [\omega,d\eta]_{\wedge} + [\omega,d\eta]_{\wedge} \end{aligned}$$

$$\begin{split} d_{\omega}^2\eta &= d(d\eta + [\omega,\eta]_{\wedge}) + [\omega,d\eta + [\omega,\eta]_{\wedge}]_{\wedge} \\ &= dd\eta + d[\omega,\eta]_{\wedge} + [\omega,d\eta]_{\wedge} + [\omega,[\omega,\eta]]_{\wedge} \\ &= 0 + [d\omega,\eta]_{\wedge} - [\omega,d\eta]_{\wedge} + [\omega,d\eta]_{\wedge} + \frac{1}{2}[[\omega,\omega]_{\wedge},\eta]_{\wedge} \end{split}$$

$$\begin{aligned} d_{\omega}^{2}\eta &= d(d\eta + [\omega, \eta]_{\wedge}) + [\omega, d\eta + [\omega, \eta]_{\wedge}]_{\wedge} \\ &= dd\eta + d[\omega, \eta]_{\wedge} + [\omega, d\eta]_{\wedge} + [\omega, [\omega, \eta]]_{\wedge} \\ &= 0 + [d\omega, \eta]_{\wedge} - [\omega, d\eta]_{\wedge} + [\omega, d\eta]_{\wedge} + \frac{1}{2}[[\omega, \omega]_{\wedge}, \eta]_{\wedge} \\ &= 0 \end{aligned}$$

$$\begin{split} d_{\omega}^2 \eta &= d(d\eta + [\omega, \eta]_{\wedge}) + [\omega, d\eta + [\omega, \eta]_{\wedge}]_{\wedge} \\ &= dd\eta + d[\omega, \eta]_{\wedge} + [\omega, d\eta]_{\wedge} + [\omega, [\omega, \eta]]_{\wedge} \\ &= 0 + [d\omega, \eta]_{\wedge} - [\omega, d\eta]_{\wedge} + [\omega, d\eta]_{\wedge} + \frac{1}{2}[[\omega, \omega]_{\wedge}, \eta]_{\wedge} \\ &= 0 + [d\omega + \frac{1}{2}[\omega, \omega]_{\wedge}, \eta]_{\wedge}. \end{split}$$

$$egin{aligned} &d_{\omega}^2\eta = d(d\eta + [\omega,\eta]_{\wedge}) + [\omega,d\eta + [\omega,\eta]_{\wedge}]_{\wedge} \ &= dd\eta + d[\omega,\eta]_{\wedge} + [\omega,d\eta]_{\wedge} + [\omega,[\omega,\eta]]_{\wedge} \ &= 0 + [d\omega,\eta]_{\wedge} - [\omega,d\eta]_{\wedge} + [\omega,d\eta]_{\wedge} + rac{1}{2}[[\omega,\omega]_{\wedge},\eta]_{\wedge} \ &= 0 + [d\omega + rac{1}{2}[\omega,\omega]_{\wedge},\eta]_{\wedge}. \end{aligned}$$

Therefore

$$\cdots \xrightarrow{d_{\omega}} \Omega^{k-1}_{\mathsf{hor}}(P,\mathfrak{g})^G \xrightarrow{d_{\omega}} \Omega^k_{\mathsf{hor}}(P,\mathfrak{g})^G \xrightarrow{d_{\omega}} \Omega^{k+1}_{\mathsf{hor}}(P,\mathfrak{g})^G \xrightarrow{d_{\omega}} \cdots$$

is a cochain complex if $d\omega + \frac{1}{2}[\omega, \omega]_{\wedge}$ vanishes. Tomorrow we will see that $d\omega + \frac{1}{2}[\omega, \omega]_{\wedge}$ is equal to the curvature $\Omega = d_{\omega}\omega$.

- S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, Vol. 1
- T. Walpuski, Notes on the geometry of manifolds, https: //math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf
- P. Michor, Topics in Differential Geometry
- J. Figueroa-O'Farrill, Notes on gauge theory, https: //empg.maths.ed.ac.uk/Activities/EKC/GaugeTheory.pdf