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Summary of Day 1

We work in the category of C∞ manifolds.

Let G be a Lie group. A principal G -bundle is a fiber bundle π : P � B
with fiber G endowed with a fiber-preserving action P x G that is free
and transitive on the fibers.

An example to keep in mind is the frame bundle FM � M of an
n-manifold M, whose fiber at p ∈ M is the collection of bases for the
tangent space TpM. This is a principal GLn(R)-bundle, where the action
comes from changes-of-basis.
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Path lifting and parallel transport

Let π : E � B be any fiber bundle, and let γ : [0, 1]→ B be a path in B.
Let x ∈ π−1(γ(0)). In general, there exist many paths γ̃x : [0, 1]→ E with
π ◦ γ̃ = γ and γ̃(0) = x . When π : E � B is a covering space, there exists
only one such γ̃, but in every other case, there exist infinitely many choices
of γ̃.

Suppose we have a way of assigning a unique γ̃x to each (γ, x). We
understand the fibers of π as encoding some data attached to point b ∈ B.
Then an assignment (γ, x) 7→ γ̃x gives a way of transporting an initial
piece of data x over γ(0) to a piece of data over a different point γ(1).
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Path lifting and parallel transport

On every fiber of π : E � B, we have a canonical notion of vertical
direction: a tangent vector is vertical if it lies in ker(dπ). Note that if
F = π−1(b) is a fiber, then TpF = ker(dπp) for every p ∈ F .

Suppose π(x) = b. Every tangent vector v ∈ TbB determines a unique
coset dπ−1x (v) = ṽ + ker(dπx) ⊂ TxE . Suppose we are able to choose a
consistent-enough choice of representative ṽ , and let γ : [0, 1]→ B be a
path.

Then we may lift the velocity vector field γ′(t) to a vector field γ̃′(t) on
π−1(γ([0, 1])). We then define γ̃x : [0, 1]→ E to be the integral curve of
this vector field with initial point x ∈ π−1(b).
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Connections

Definition

Let π : E � B be a fiber bundle. Let VE � E be the subbundle of
TE � E whose fiber at x ∈ E is VxE = ker(dπx). A connection is a
choice of subbundle HE � E of TE whose fiber HxE at every x ∈ E
satisfies

HxE ⊕ VxE = TxE .

One may understand this globally as a choice of left-splitting

0 VE TE π∗TB 0.dπ

ω

where HE = kerω.

Since HE ∼= π∗TB, every v ∈ TxB now has a unique lift ṽ ∈ HxE , and so
we obtain a notion of parallel transport as desired.
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Example: Levi-Civita connection

Recall that on a Riemannian manifold M, we have a notion of covariant
derivative ∇, and a vector field X over a curve γ : [0, 1]→ M is parallel if
∇γ′(t)X = 0 for every t.

At every v ∈ TM, define Hv (TM) to be the set of all X ′(0), where
X : [0, 1]→ TM is a parallel vector field over a curve γ : [0, 1]→ M with
X (0) = v . Then H(TM) � TM is a connection on the fiber bundle
π : TM � M.
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Vector-valued differential forms

Recall that a differential k-form ω ∈ Ωk(M) on a manifold M is a smooth
choice of alternating

⊗k
i=1 TxM → R for every x ∈ M

Definition

Let V be a vector space. Then a V -valued k-form ω ∈ Ωk(M,V ) on a
manifold M is a smooth choice of alternating

⊗k
i=1 TxM → V for every

x ∈ M.

Recall that any ω ∈ Ωk(M) can be understood as a section of
∧k

i=1 T
∗M.

Similarly, if F � M is the trivial vector bundle M × V , any ω ∈ Ωk(M,V )

is a section of
(∧k

i=1 T
∗M
)
⊗ F .

Letting F � M be any vector bundle, one also defines Ωk(M,F ) as the

space of sections of
(∧k

i=1 T
∗M
)
⊗ F .
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Connection 1-forms

Ωk(M,F ) = Γ
((∧k

i=1 T
∗M
)
⊗ F

)

Let π : E � B be a fiber bundle, and consider the connection

0 VE TE π∗TB 0.dπ

ω

We now see that ω is is a VE -valued 1-form ω ∈ Ω1(E ,VE ), which we call
the connection 1-form.

Conversely, given any VE -valued 1-form ω on E so that ωp is a projection
TpE → VpE for every p ∈ E , we have a connection kerω = HE � E .
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Vertical bundles: The principal case

Let π : P � B be a principal G -bundle, and let g be the Lie algebra of G .
For every A ∈ g, we have a vector field Â on P given by

Âp =
∂

∂t

∣∣∣∣
t=0

p. exp(tA) ∀p ∈ P.

Since π(p.g) = p for every g ∈ G , we have dπ(Â) = 0 for every A ∈ g.
Therefore Â is a section of VP.

Let A1,A2, . . . ,An be any basis for g. Then Â1, Â2, . . . , Ân are n linearly
independent sections of the rank n vector bundle VP. It follows that
VP ∼= P × g. Therefore Ω1(P,VP) = Ω1(P, g).
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Vertical bundles: The principal case

Exercise

Show that for Rg : P → P, Rg (p) = p.g , we have

dRg (Â) = ̂Adg−1(A) ∀A ∈ g.

Solution

Recall that if ϕt : M → M is a flow and X is the vector field
X (p) = ∂

∂t

∣∣
t=0

ϕt(p), then for any diffeomorphism ψ : M → M, we have

dψ(X )(p) = ∂
∂t

∣∣
t=0

ψ ◦ ϕt ◦ ψ−1(p). Thus

dRg (Â) =
∂

∂t

∣∣∣∣
t=0

Rg ◦ Rexp(tA) ◦ Rg−1(p)

=
∂

∂t

∣∣∣∣
t=0

Rg−1 exp(tA)g (p)

= ̂Adg−1(A).
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Principal connections

Definition

Let π : P � B be a principal G -bundle, and let Rg : P → P be given by
Rg (p) = p.g . We say a connection HP � P is principal if

dRg (HpP) = HRg (p)P ∀p ∈ P, g ∈ G .

That is, dRg respects the direct-sum decomposition TP = HP ⊕ VP.

Since ωp is the projection onto VpP ∼= g induced by this decomposition,

we have R∗gωp(v) = 0 for horizontal vectors V , and for vertical vectors Â
we have

(R∗gω)p(Â) = ωRg (p)(dRg (Â)) = ωRg (p)(
̂Adg−1(A)) = Adg−1(A).

Thus R∗gω = Adg−1 ◦ ω.

Bradley Zykoski Connections June 16, 2020 11 / 18



Principal connections

Definition

Let π : P � B be a principal G -bundle, and let Rg : P → P be given by
Rg (p) = p.g . We say a connection HP � P is principal if

dRg (HpP) = HRg (p)P ∀p ∈ P, g ∈ G .

That is, dRg respects the direct-sum decomposition TP = HP ⊕ VP.

Since ωp is the projection onto VpP ∼= g induced by this decomposition,

we have R∗gωp(v) = 0 for horizontal vectors V , and for vertical vectors Â
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Intermission

I have tried to include a complete discussion for the sake of being
well-motivated, though this leaves us open to the danger of getting lost in
the weeds. We will take a short break to digest this material. The
following is a summary of what we have done so far.

Definition

Let G be a Lie group with Lie algebra g, and let π : P � B be a principal
G -bundle. A connection 1-form on π is a g-valued 1-form ω ∈ Ω1(P, g)
such that

ω
(
∂
∂tRexp(tA)

)
= A ∀A ∈ g, (Projection to vertical)

R∗gω = Adg−1 ◦ ω ∀g ∈ G . (G -equivariance)

We call the subbundle HP = kerω ⊂ TP the horizontal subbundle of TP.
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The covariant exterior derivative

Just as ω is the vertical projection TP → VP with kernel HP, let us
consider the horizontal projection h : TP → HP with kernel VP. Let us
define h∗ : Ωk(P, g)→ Ωk(P, g) by

h∗ωη(X1,X2, . . . ,Xk) = η(hω(X1), hω(X2), . . . , hω(Xk)) η ∈ Ωk(P, g).

That is to say, h∗η = η ◦ h⊗k .

Definition

Let π : P � B be a principal G -bundle with connection ω. The covariant
exterior derivative dω : Ωk(P, g)→ Ωk+1(P, g) is given by

dωη = h∗(dη).
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The covariant exterior derivative

Recall that the wedge product on Ω∗(P,R) is defined by

ψ ∧ ϑ(X1, . . . ,Xk+`) =

1

k!`!

∑
σ∈Sk+`

sign(σ)ψ(Xσ(1), . . . ,Xσ(k)) · ϑ(Xσ(k+1), . . . ,Xσ(k+`)),

where ψ ∈ Ωk(P,R), ϑ ∈ Ω`(P,R).

The Lie algebra g does not have a multiplication · as above, but it does
have a bracket [·, ·], and so we analogously define

[η, κ]∧(X1, . . . ,Xk+`) =

1

k!`!

∑
σ∈Sk+`

sign(σ)[η(Xσ(1), . . . ,Xσ(k)), κ(Xσ(k+1), . . . ,Xσ(k+`))],

where η ∈ Ωk(P, g), κ ∈ Ω`(P, g).
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The covariant exterior derivative

Theorem

For η ∈ Ωk
hor(P, g)G , we have dωη = dη + [ω, η]∧.

Proof.

If (X1, . . . ,Xk+1) are horizontal vector fields, then h(Xi ) = Xi and
ω(Xi ) = 0.

From h(Xi ) = Xi we have

dωη(X1, . . . ,Xk+1) = dη(h(X1), . . . , h(Xk+1)) = dη(X1, . . . ,Xk+1).

From ω(Xi ) = 0 we have

[ω, η]∧(X1, . . . ,Xk+1) =
1

k!

∑
σ

ω(Xσ(i)) · η(Xσ(2), . . . ,Xσ(k+1)) = 0.

Therefore the desired identity holds on horizontal vector fields. (Cont’d)
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Proof.

For a vector field X , let iX : Ω∗(P, g)→ Ω∗−1(P, g) be the insertion
operator, and recall Cartan’s magic formula LX = iXd + diX .

For A ∈ g,
notice that L

Â
η = ∂

∂t

∣∣
t=0

R∗exp(tA)η = ∂
∂t

∣∣
t=0

Adexp(−tA) ◦ η = −[A, η].
Since i

Â
η = 0, we have i

Â
dη = i

Â
dη + di

Â
η = L

Â
η. Then we have

i
Â

(dη + [ω, η]∧) = L
Â
η + [i

Â
ω, η]∧ − [ω, i

Â
η]∧

= − [A, η] + [A, η] + 0 = 0.

Finally, i
Â
dωη = i

h(Â)
dη = 0. We conclude that the desired equation holds

on any combination of horizontal and vertical vectors, and hence holds
identically, as desired.
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Â
η = ∂

∂t

∣∣
t=0

R∗exp(tA)η = ∂
∂t

∣∣
t=0

Adexp(−tA) ◦ η = −[A, η].

Since i
Â
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Â
η = L

Â
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Â

(dη + [ω, η]∧) = L
Â
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Â
dωη = i

h(Â)
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Â
η = 0, we have i

Â
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Â

(dη + [ω, η]∧) = L
Â
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Â

(dη + [ω, η]∧) = L
Â
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The covariant exterior derivative

Observe that dω
(
Ωk
hor(P, g)G

)
⊆ Ωk+1

hor (P, g)G .

From the previous
theorem, we have for all η ∈ Ωk

hor(P, g)G

d2
ωη = d(dη + [ω, η]∧) + [ω, dη + [ω, η]∧]∧

= ddη + d [ω, η]∧ + [ω, dη]∧ + [ω, [ω, η]]∧

= 0 + [dω, η]∧ − [ω, dη]∧ + [ω, dη]∧ + 1
2 [[ω, ω]∧, η]∧

= 0 + [dω + 1
2 [ω, ω]∧, η]∧.

Therefore

· · · dω−→ Ωk−1
hor (P, g)G

dω−→ Ωk
hor(P, g)G

dω−→ Ωk+1
hor (P, g)G

dω−→ · · ·

is a cochain complex if dω + 1
2 [ω, ω]∧ vanishes. Tomorrow we will see that

dω + 1
2 [ω, ω]∧ is equal to the curvature Ω = dωω.
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