Principal Bundles
 Day 2: Connections

Bradley Zykoski

June 16, 2020

Summary of Day 1

We work in the category of C^{∞} manifolds.

Summary of Day 1

We work in the category of C^{∞} manifolds.
Let G be a Lie group. A principal G-bundle is a fiber bundle $\bar{\pi}: P \rightarrow B$ with fiber G endowed with a fiber-preserving action $P \curvearrowleft G$ that is free and transitive on the fibers.

Summary of Day 1

We work in the category of C^{∞} manifolds.
Let G be a Lie group. A principal G-bundle is a fiber bundle $\bar{\pi}: P \rightarrow B$ with fiber G endowed with a fiber-preserving action $P \curvearrowleft G$ that is free and transitive on the fibers.

An example to keep in mind is the frame bundle $F M \rightarrow M$ of an n-manifold M, whose fiber at $p \in M$ is the collection of bases for the tangent space $T_{p} M$. This is a principal $G L_{n}(\mathbb{R})$-bundle, where the action comes from changes-of-basis.

Path lifting and parallel transport

Let $\pi: E \rightarrow B$ be any fiber bundle, and let $\gamma:[0,1] \rightarrow B$ be a path in B. Let $x \in \pi^{-1}(\gamma(0))$. In general, there exist many paths $\widetilde{\gamma}_{x}:[0,1] \rightarrow E$ with $\pi \circ \widetilde{\gamma}=\gamma$ and $\widetilde{\gamma}(0)=x$. When $\pi: E \rightarrow B$ is a covering space, there exists only one such $\widetilde{\gamma}$, but in every other case, there exist infinitely many choices of $\widetilde{\gamma}$.

Path lifting and parallel transport

Let $\pi: E \rightarrow B$ be any fiber bundle, and let $\gamma:[0,1] \rightarrow B$ be a path in B. Let $x \in \pi^{-1}(\gamma(0))$. In general, there exist many paths $\widetilde{\gamma}_{x}:[0,1] \rightarrow E$ with $\pi \circ \widetilde{\gamma}=\gamma$ and $\widetilde{\gamma}(0)=x$. When $\pi: E \rightarrow B$ is a covering space, there exists only one such $\widetilde{\gamma}$, but in every other case, there exist infinitely many choices of $\widetilde{\gamma}$.

Suppose we have a way of assigning a unique $\widetilde{\gamma}_{x}$ to each (γ, x). We understand the fibers of π as encoding some data attached to point $b \in B$. Then an assignment $(\gamma, x) \mapsto \widetilde{\gamma}_{x}$ gives a way of transporting an initial piece of data x over $\gamma(0)$ to a piece of data over a different point $\gamma(1)$.

Path lifting and parallel transport

On every fiber of $\pi: E \rightarrow B$, we have a canonical notion of vertical direction: a tangent vector is vertical if it lies in $\operatorname{ker}(d \pi)$. Note that if $F=\pi^{-1}(b)$ is a fiber, then $T_{p} F=\operatorname{ker}\left(d \pi_{p}\right)$ for every $p \in F$.

Path lifting and parallel transport

On every fiber of $\pi: E \rightarrow B$, we have a canonical notion of vertical direction: a tangent vector is vertical if it lies in $\operatorname{ker}(d \pi)$. Note that if $F=\pi^{-1}(b)$ is a fiber, then $T_{p} F=\operatorname{ker}\left(d \pi_{p}\right)$ for every $p \in F$.

Suppose $\pi(x)=b$. Every tangent vector $v \in T_{b} B$ determines a unique coset $d \pi_{x}^{-1}(v)=\widetilde{v}+\operatorname{ker}\left(d \pi_{x}\right) \subset T_{x} E$. Suppose we are able to choose a consistent-enough choice of representative \widetilde{v}, and let $\gamma:[0,1] \rightarrow B$ be a path.

Path lifting and parallel transport

On every fiber of $\pi: E \rightarrow B$, we have a canonical notion of vertical direction: a tangent vector is vertical if it lies in $\operatorname{ker}(d \pi)$. Note that if $F=\pi^{-1}(b)$ is a fiber, then $T_{p} F=\operatorname{ker}\left(d \pi_{p}\right)$ for every $p \in F$.

Suppose $\pi(x)=b$. Every tangent vector $v \in T_{b} B$ determines a unique coset $d \pi_{x}^{-1}(v)=\widetilde{v}+\operatorname{ker}\left(d \pi_{x}\right) \subset T_{x} E$. Suppose we are able to choose a consistent-enough choice of representative \widetilde{v}, and let $\gamma:[0,1] \rightarrow B$ be a path.

Then we may lift the velocity vector field $\gamma^{\prime}(t)$ to a vector field $\widetilde{\gamma^{\prime}(t)}$ on $\pi^{-1}(\gamma([0,1]))$. We then define $\widetilde{\gamma}_{x}:[0,1] \rightarrow E$ to be the integral curve of this vector field with initial point $x \in \pi^{-1}(b)$.

Connections

Definition

Let $\pi: E \rightarrow B$ be a fiber bundle. Let $V E \rightarrow E$ be the subbundle of $T E \rightarrow E$ whose fiber at $x \in E$ is $V_{x} E=\operatorname{ker}\left(d \pi_{x}\right)$. A connection is a choice of subbundle $H E \rightarrow E$ of $T E$ whose fiber $H_{x} E$ at every $x \in E$ satisfies

$$
H_{x} E \oplus V_{x} E=T_{x} E
$$

Connections

Definition

Let $\pi: E \rightarrow B$ be a fiber bundle. Let $V E \rightarrow E$ be the subbundle of $T E \rightarrow E$ whose fiber at $x \in E$ is $V_{x} E=\operatorname{ker}\left(d \pi_{x}\right)$. A connection is a choice of subbundle $H E \rightarrow E$ of $T E$ whose fiber $H_{x} E$ at every $x \in E$ satisfies

$$
H_{x} E \oplus V_{x} E=T_{x} E
$$

One may understand this globally as a choice of left-splitting

$$
0 \longrightarrow V E \xrightarrow{\text { K- }-\cdots} T E \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0 .
$$

where $H E=\operatorname{ker} \omega$.

Connections

Definition

Let $\pi: E \rightarrow B$ be a fiber bundle. Let $V E \rightarrow E$ be the subbundle of $T E \rightarrow E$ whose fiber at $x \in E$ is $V_{x} E=\operatorname{ker}\left(d \pi_{x}\right)$. A connection is a choice of subbundle $H E \rightarrow E$ of $T E$ whose fiber $H_{x} E$ at every $x \in E$ satisfies

$$
H_{x} E \oplus V_{x} E=T_{x} E
$$

One may understand this globally as a choice of left-splitting

$$
0 \longrightarrow V E \xrightarrow{k^{-\omega}} T E \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0 .
$$

where $H E=\operatorname{ker} \omega$.
Since $H E \cong \pi^{*} T B$, every $v \in T_{x} B$ now has a unique lift $\widetilde{v} \in H_{x} E$, and so we obtain a notion of parallel transport as desired.

Example: Levi-Civita connection

Recall that on a Riemannian manifold M, we have a notion of covariant derivative ∇, and a vector field X over a curve $\gamma:[0,1] \rightarrow M$ is parallel if $\nabla_{\gamma^{\prime}(t)} X=0$ for every t.

Example: Levi-Civita connection

Recall that on a Riemannian manifold M, we have a notion of covariant derivative ∇, and a vector field X over a curve $\gamma:[0,1] \rightarrow M$ is parallel if $\nabla_{\gamma^{\prime}(t)} X=0$ for every t.

At every $v \in T M$, define $H_{v}(T M)$ to be the set of all $X^{\prime}(0)$, where $X:[0,1] \rightarrow T M$ is a parallel vector field over a curve $\gamma:[0,1] \rightarrow M$ with $X(0)=v$. Then $H(T M) \rightarrow T M$ is a connection on the fiber bundle $\pi: T M \rightarrow M$.

Vector-valued differential forms

Recall that a differential k-form $\omega \in \Omega^{k}(M)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^{k} T_{x} M \rightarrow \mathbb{R}$ for every $x \in M$

Vector-valued differential forms

Recall that a differential k-form $\omega \in \Omega^{k}(M)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^{k} T_{x} M \rightarrow \mathbb{R}$ for every $x \in M$

Definition

Let V be a vector space. Then a V-valued k-form $\omega \in \Omega^{k}(M, V)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^{k} T_{x} M \rightarrow V$ for every $x \in M$.

Vector-valued differential forms

Recall that a differential k-form $\omega \in \Omega^{k}(M)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^{k} T_{x} M \rightarrow \mathbb{R}$ for every $x \in M$

Definition

Let V be a vector space. Then a V-valued k-form $\omega \in \Omega^{k}(M, V)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^{k} T_{x} M \rightarrow V$ for every $x \in M$.

Recall that any $\omega \in \Omega^{k}(M)$ can be understood as a section of $\bigwedge_{i=1}^{k} T^{*} M$. Similarly, if $F \rightarrow M$ is the trivial vector bundle $M \times V$, any $\omega \in \Omega^{k}(M, V)$ is a section of $\left(\bigwedge_{i=1}^{k} T^{*} M\right) \otimes F$.

Vector-valued differential forms

Recall that a differential k-form $\omega \in \Omega^{k}(M)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^{k} T_{x} M \rightarrow \mathbb{R}$ for every $x \in M$

Definition

Let V be a vector space. Then a V-valued k-form $\omega \in \Omega^{k}(M, V)$ on a manifold M is a smooth choice of alternating $\bigotimes_{i=1}^{k} T_{x} M \rightarrow V$ for every $x \in M$.

Recall that any $\omega \in \Omega^{k}(M)$ can be understood as a section of $\bigwedge_{i=1}^{k} T^{*} M$. Similarly, if $F \rightarrow M$ is the trivial vector bundle $M \times V$, any $\omega \in \Omega^{k}(M, V)$ is a section of $\left(\bigwedge_{i=1}^{k} T^{*} M\right) \otimes F$.

Letting $F \rightarrow M$ be any vector bundle, one also defines $\Omega^{k}(M, F)$ as the space of sections of $\left(\bigwedge_{i=1}^{k} T^{*} M\right) \otimes F$.

Connection 1-forms

$$
\Omega^{k}(M, F)=\Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*} M\right) \otimes F\right)
$$

Connection 1-forms

$$
\Omega^{k}(M, F)=\Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*} M\right) \otimes F\right)
$$

Let $\pi: E \rightarrow B$ be a fiber bundle, and consider the connection

$$
0 \longrightarrow V E \xrightarrow{k^{\omega}-\ldots} T E \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0 .
$$

Connection 1-forms

$$
\Omega^{k}(M, F)=\Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*} M\right) \otimes F\right)
$$

Let $\pi: E \rightarrow B$ be a fiber bundle, and consider the connection

$$
0 \longrightarrow V E \xrightarrow{k_{-}^{\omega}} T E \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0 .
$$

We now see that ω is is a $V E$-valued 1-form $\omega \in \Omega^{1}(E, V E)$, which we call the connection 1-form.

Connection 1-forms

$$
\Omega^{k}(M, F)=\Gamma\left(\left(\bigwedge_{i=1}^{k} T^{*} M\right) \otimes F\right)
$$

Let $\pi: E \rightarrow B$ be a fiber bundle, and consider the connection

$$
0 \longrightarrow V E \xrightarrow{k_{-}^{\omega}} T E \xrightarrow{d \pi} \pi^{*} T B \longrightarrow 0 .
$$

We now see that ω is is a $V E$-valued 1-form $\omega \in \Omega^{1}(E, V E)$, which we call the connection 1-form.

Conversely, given any $V E$-valued 1-form ω on E so that ω_{p} is a projection $T_{p} E \rightarrow V_{p} E$ for every $p \in E$, we have a connection $\operatorname{ker} \omega=H E \rightarrow E$.

Vertical bundles: The principal case

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle, and let \mathfrak{g} be the Lie algebra of G. For every $A \in \mathfrak{g}$, we have a vector field \widehat{A} on P given by

$$
\widehat{A}_{p}=\left.\frac{\partial}{\partial t}\right|_{t=0} p \cdot \exp (t A) \quad \forall p \in P
$$

Vertical bundles: The principal case

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle, and let \mathfrak{g} be the Lie algebra of G. For every $A \in \mathfrak{g}$, we have a vector field \widehat{A} on P given by

$$
\widehat{A}_{p}=\left.\frac{\partial}{\partial t}\right|_{t=0} p \cdot \exp (t A) \quad \forall p \in P
$$

Since $\bar{\pi}(p . g)=p$ for every $g \in G$, we have $d \pi(\widehat{A})=0$ for every $A \in \mathfrak{g}$. Therefore \hat{A} is a section of $V P$.

Vertical bundles: The principal case

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle, and let \mathfrak{g} be the Lie algebra of G. For every $A \in \mathfrak{g}$, we have a vector field \widehat{A} on P given by

$$
\widehat{A}_{p}=\left.\frac{\partial}{\partial t}\right|_{t=0} p \cdot \exp (t A) \quad \forall p \in P
$$

Since $\bar{\pi}(p . g)=p$ for every $g \in G$, we have $d \pi(\widehat{A})=0$ for every $A \in \mathfrak{g}$. Therefore \hat{A} is a section of $V P$.

Let $A_{1}, A_{2}, \ldots, A_{n}$ be any basis for \mathfrak{g}. Then $\widehat{A}_{1}, \widehat{A}_{2}, \ldots, \widehat{A}_{n}$ are n linearly independent sections of the rank n vector bundle $V P$. It follows that $V P \cong P \times \mathfrak{g}$. Therefore $\Omega^{1}(P, V P)=\Omega^{1}(P, \mathfrak{g})$.

Vertical bundles: The principal case

Exercise

Show that for $R_{g}: P \rightarrow P, R_{g}(p)=p . g$, we have

$$
d R_{g}(\widehat{A})=\widehat{\operatorname{dd}_{g^{-1}}(A)} \quad \forall A \in \mathfrak{g}
$$

Vertical bundles: The principal case

Exercise

Show that for $R_{g}: P \rightarrow P, R_{g}(p)=p . g$, we have

$$
d R_{g}(\widehat{A})=\widehat{\operatorname{Ad}_{g^{-1}(}(A)} \quad \forall A \in \mathfrak{g}
$$

Solution

Recall that if $\varphi_{t}: M \rightarrow M$ is a flow and X is the vector field $X(p)=\left.\frac{\partial}{\partial t}\right|_{t=0} \varphi_{t}(p)$, then for any diffeomorphism $\psi: M \rightarrow M$, we have $d \psi(X)(p)=\left.\frac{\partial}{\partial t}\right|_{t=0} \psi \circ \varphi_{t} \circ \psi^{-1}(p)$. Thus

$$
\begin{aligned}
d R_{g}(\widehat{A}) & =\left.\frac{\partial}{\partial t}\right|_{t=0} R_{g} \circ R_{\exp (t A)} \circ R_{g^{-1}}(p) \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0} R_{g^{-1} \exp (t A) g}(p) \\
& =\operatorname{Ad}_{g^{-1}(A)}
\end{aligned}
$$

Principal connections

Definition

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle, and let $R_{g}: P \rightarrow P$ be given by $R_{g}(p)=p . g$. We say a connection $H P \rightarrow P$ is principal if

$$
d R_{g}\left(H_{p} P\right)=H_{R_{g}(p)} P \quad \forall p \in P, g \in G
$$

That is, $d R_{g}$ respects the direct-sum decomposition $T P=H P \oplus V P$.

Principal connections

Definition

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle, and let $R_{g}: P \rightarrow P$ be given by $R_{g}(p)=p . g$. We say a connection $H P \rightarrow P$ is principal if

$$
d R_{g}\left(H_{p} P\right)=H_{R_{g}(p)} P \quad \forall p \in P, g \in G
$$

That is, $d R_{g}$ respects the direct-sum decomposition $T P=H P \oplus V P$.
Since ω_{p} is the projection onto $V_{p} P \cong \mathfrak{g}$ induced by this decomposition, we have $R_{g}^{*} \omega_{p}(v)=0$ for horizontal vectors V, and for vertical vectors \widehat{A} we have

$$
\left(R_{g}^{*} \omega\right)_{p}(\widehat{A})=\omega_{R_{g}(p)}\left(d R_{g}(\widehat{A})\right)=\omega_{R_{g}(p)}\left(\widehat{\left.\operatorname{dd_{g^{-1}}(A}\right)}\right)=\operatorname{Ad}_{g^{-1}}(A)
$$

Thus $R_{g}^{*} \omega=\mathrm{Ad}_{g_{-1}} \circ \omega$.

Intermission

I have tried to include a complete discussion for the sake of being well-motivated, though this leaves us open to the danger of getting lost in the weeds. We will take a short break to digest this material. The following is a summary of what we have done so far.

Definition

Let G be a Lie group with Lie algebra \mathfrak{g}, and let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle. A connection 1-form on $\bar{\pi}$ is a \mathfrak{g}-valued 1-form $\omega \in \Omega^{1}(P, \mathfrak{g})$ such that

$$
\begin{aligned}
\omega\left(\frac{\partial}{\partial t} R_{\exp (t A)}\right) & =A & & \forall A \in \mathfrak{g}, \text { (Projection to vertical) } \\
R_{g}^{*} \omega & =\operatorname{Ad}_{g^{-1}} \circ \omega & & \forall g \in G . \text { (G-equivariance) }
\end{aligned}
$$

We call the subbundle $H P=\operatorname{ker} \omega \subset T P$ the horizontal subbundle of $T P$.

The covariant exterior derivative

Just as ω is the vertical projection $T P \rightarrow V P$ with kernel $H P$, let us consider the horizontal projection $h: T P \rightarrow H P$ with kernel $V P$. Let us define $h^{*}: \Omega^{k}(P, \mathfrak{g}) \rightarrow \Omega^{k}(P, \mathfrak{g})$ by

$$
h_{\omega}^{*} \eta\left(X_{1}, X_{2}, \ldots, X_{k}\right)=\eta\left(h_{\omega}\left(X_{1}\right), h_{\omega}\left(X_{2}\right), \ldots, h_{\omega}\left(X_{k}\right)\right) \quad \eta \in \Omega^{k}(P, \mathfrak{g})
$$

That is to say, $h^{*} \eta=\eta \circ h^{\otimes k}$.

The covariant exterior derivative

Just as ω is the vertical projection $T P \rightarrow V P$ with kernel $H P$, let us consider the horizontal projection $h: T P \rightarrow H P$ with kernel $V P$. Let us define $h^{*}: \Omega^{k}(P, \mathfrak{g}) \rightarrow \Omega^{k}(P, \mathfrak{g})$ by

$$
h_{\omega}^{*} \eta\left(X_{1}, X_{2}, \ldots, X_{k}\right)=\eta\left(h_{\omega}\left(X_{1}\right), h_{\omega}\left(X_{2}\right), \ldots, h_{\omega}\left(X_{k}\right)\right) \quad \eta \in \Omega^{k}(P, \mathfrak{g})
$$

That is to say, $h^{*} \eta=\eta \circ h^{\otimes k}$.

Definition

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle with connection ω. The covariant exterior derivative $d_{\omega}: \Omega^{k}(P, \mathfrak{g}) \rightarrow \Omega^{k+1}(P, \mathfrak{g})$ is given by

$$
d_{\omega} \eta=h^{*}(d \eta)
$$

The covariant exterior derivative

Recall that the wedge product on $\Omega^{*}(P, \mathbb{R})$ is defined by

$$
\begin{aligned}
& \qquad \psi \wedge \vartheta\left(X_{1}, \ldots, X_{k+\ell}\right)= \\
& \quad \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma) \psi\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right) \cdot \vartheta\left(X_{\sigma(k+1)}, \ldots, X_{\sigma(k+\ell)}\right), \\
& \text { where } \psi \in \Omega^{k}(P, \mathbb{R}), \vartheta \in \Omega^{\ell}(P, \mathbb{R})
\end{aligned}
$$

The covariant exterior derivative

Recall that the wedge product on $\Omega^{*}(P, \mathbb{R})$ is defined by

$$
\begin{aligned}
& \psi \wedge \vartheta\left(X_{1}, \ldots, X_{k+\ell}\right)= \\
& \quad \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma) \psi\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right) \cdot \vartheta\left(X_{\sigma(k+1)}, \ldots, X_{\sigma(k+\ell)}\right)
\end{aligned}
$$

where $\psi \in \Omega^{k}(P, \mathbb{R}), \vartheta \in \Omega^{\ell}(P, \mathbb{R})$.
The Lie algebra \mathfrak{g} does not have a multiplication • as above, but it does have a bracket $[\cdot, \cdot]$, and so we analogously define

$$
\begin{aligned}
& {[\eta, \kappa]_{\wedge}\left(X_{1}, \ldots, X_{k+\ell}\right)=} \\
& \quad \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma)\left[\eta\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right), \kappa\left(X_{\sigma(k+1)}, \ldots, X_{\sigma(k+\ell)}\right)\right]
\end{aligned}
$$

where $\eta \in \Omega^{k}(P, \mathfrak{g}), \kappa \in \Omega^{\ell}(P, \mathfrak{g})$.

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

If $\left(X_{1}, \ldots, X_{k+1}\right)$ are horizontal vector fields, then $h\left(X_{i}\right)=X_{i}$ and $\omega\left(X_{i}\right)=0$.

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

If $\left(X_{1}, \ldots, X_{k+1}\right)$ are horizontal vector fields, then $h\left(X_{i}\right)=X_{i}$ and $\omega\left(X_{i}\right)=0$. From $h\left(X_{i}\right)=X_{i}$ we have

$$
d_{\omega} \eta\left(X_{1}, \ldots, X_{k+1}\right)=d \eta\left(h\left(X_{1}\right), \ldots, h\left(X_{k+1}\right)\right)=d \eta\left(X_{1}, \ldots, X_{k+1}\right)
$$

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

If $\left(X_{1}, \ldots, X_{k+1}\right)$ are horizontal vector fields, then $h\left(X_{i}\right)=X_{i}$ and $\omega\left(X_{i}\right)=0$. From $h\left(X_{i}\right)=X_{i}$ we have

$$
d_{\omega} \eta\left(X_{1}, \ldots, X_{k+1}\right)=d \eta\left(h\left(X_{1}\right), \ldots, h\left(X_{k+1}\right)\right)=d \eta\left(X_{1}, \ldots, X_{k+1}\right)
$$

From $\omega\left(X_{i}\right)=0$ we have

$$
[\omega, \eta]_{\wedge}\left(X_{1}, \ldots, X_{k+1}\right)=\frac{1}{k!} \sum_{\sigma} \omega\left(X_{\sigma(i)}\right) \cdot \eta\left(X_{\sigma(2)}, \ldots, X_{\sigma(k+1)}\right)=0
$$

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

If $\left(X_{1}, \ldots, X_{k+1}\right)$ are horizontal vector fields, then $h\left(X_{i}\right)=X_{i}$ and $\omega\left(X_{i}\right)=0$. From $h\left(X_{i}\right)=X_{i}$ we have

$$
d_{\omega} \eta\left(X_{1}, \ldots, X_{k+1}\right)=d \eta\left(h\left(X_{1}\right), \ldots, h\left(X_{k+1}\right)\right)=d \eta\left(X_{1}, \ldots, X_{k+1}\right)
$$

From $\omega\left(X_{i}\right)=0$ we have

$$
[\omega, \eta]_{\wedge}\left(X_{1}, \ldots, X_{k+1}\right)=\frac{1}{k!} \sum_{\sigma} \omega\left(X_{\sigma(i)}\right) \cdot \eta\left(X_{\sigma(2)}, \ldots, X_{\sigma(k+1)}\right)=0
$$

Therefore the desired identity holds on horizontal vector fields. (Cont'd)

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+d_{\text {ix }}$.

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+d_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$.

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+d_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$. Since $i_{\widehat{A}} \eta=0$, we have $i_{\widehat{A}} d \eta=i_{\widehat{A}} d \eta+d i_{\widehat{A}} \eta=\mathcal{L}_{\widehat{A}} \eta$.

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+\operatorname{dix}_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$. Since $i_{\widehat{A}} \eta=0$, we have $i_{\widehat{A}} d \eta=i_{\widehat{A}} d \eta+d i_{\widehat{A}} \eta=\mathcal{L}_{\widehat{A}} \eta$. Then we have

$$
i_{\widehat{A}}\left(d \eta+[\omega, \eta]_{\wedge}\right)=\mathcal{L}_{\widehat{A}} \eta+\left[i_{\widehat{A}} \omega, \eta\right]_{\wedge}-\left[\omega, i_{\widehat{A}} \eta\right]_{\wedge}
$$

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+\operatorname{dix}_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$. Since $i_{\widehat{A}} \eta=0$, we have $i_{\widehat{A}} d \eta=i_{\widehat{A}} d \eta+d i_{\widehat{A}} \eta=\mathcal{L}_{\widehat{A}} \eta$. Then we have

$$
\begin{aligned}
i_{\widehat{A}}\left(d \eta+[\omega, \eta]_{\wedge}\right) & =\mathcal{L}_{\widehat{A}} \eta+\left[i_{\widehat{A}} \omega, \eta\right]_{\wedge}-\left[\omega, i_{\widehat{A}} \eta\right]_{\wedge} \\
& =-[A, \eta]
\end{aligned}
$$

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+\operatorname{dix}_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$. Since $i_{\widehat{A}} \eta=0$, we have $i_{\widehat{A}} d \eta=i_{\widehat{A}} d \eta+d i_{\widehat{A}} \eta=\mathcal{L}_{\widehat{A}} \eta$. Then we have

$$
\begin{aligned}
i_{\widehat{A}}\left(d \eta+[\omega, \eta]_{\wedge}\right) & =\mathcal{L}_{\widehat{A}} \eta+\left[i_{\widehat{A}} \omega, \eta\right]_{\wedge}-\left[\omega, i_{\widehat{A}} \eta\right]_{\wedge} \\
& =-[A, \eta]+[A, \eta]
\end{aligned}
$$

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+d_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$. Since $i_{\widehat{A}} \eta=0$, we have $i_{\widehat{A}} d \eta=i_{\widehat{A}} d \eta+d i_{\widehat{A}} \eta=\mathcal{L}_{\widehat{A}} \eta$. Then we have

$$
\begin{aligned}
i_{\widehat{A}}\left(d \eta+[\omega, \eta]_{\wedge}\right) & =\mathcal{L}_{\widehat{A}} \eta+\left[i_{\widehat{A}} \omega, \eta\right]_{\wedge}-\left[\omega, i_{\widehat{A}} \eta\right]_{\wedge} \\
& =-[A, \eta]+[A, \eta]+0
\end{aligned}
$$

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+\operatorname{dix}_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$. Since $i_{\widehat{A}} \eta=0$, we have $i_{\widehat{A}} d \eta=i_{\widehat{A}} d \eta+d i_{\widehat{A}} \eta=\mathcal{L}_{\widehat{A}} \eta$. Then we have

$$
\begin{aligned}
i_{\widehat{A}}\left(d \eta+[\omega, \eta]_{\wedge}\right) & =\mathcal{L}_{\widehat{A}} \eta+\left[i_{\widehat{A}} \omega, \eta\right]_{\wedge}-\left[\omega, i_{\widehat{A}} \eta\right]_{\wedge} \\
& =-[A, \eta]+[A, \eta]+0=0 .
\end{aligned}
$$

The covariant exterior derivative

Theorem

For $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$, we have $d_{\omega} \eta=d \eta+[\omega, \eta]_{\wedge}$.

Proof.

For a vector field X, let $i_{X}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*-1}(P, \mathfrak{g})$ be the insertion operator, and recall Cartan's magic formula $\mathcal{L}_{X}=i_{X} d+\operatorname{dix}_{X}$. For $A \in \mathfrak{g}$, notice that $\mathcal{L}_{\widehat{A}} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} R_{\exp (t A)}^{*} \eta=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\exp (-t A)} \circ \eta=-[A, \eta]$. Since $i_{\widehat{A}} \eta=0$, we have $i_{\widehat{A}} d \eta=i_{\widehat{A}} d \eta+d i_{\widehat{A}} \eta=\mathcal{L}_{\widehat{A}} \eta$. Then we have

$$
\begin{aligned}
i_{\widehat{A}}\left(d \eta+[\omega, \eta]_{\wedge}\right) & =\mathcal{L}_{\widehat{A}} \eta+\left[i_{\widehat{A}} \omega, \eta\right]_{\wedge}-\left[\omega, i_{\widehat{A}} \eta\right]_{\wedge} \\
& =-[A, \eta]+[A, \eta]+0=0 .
\end{aligned}
$$

Finally, $i_{\widehat{A}} d_{\omega} \eta=i_{h(\widehat{A})} d \eta=0$. We conclude that the desired equation holds on any combination of horizontal and vertical vectors, and hence holds identically, as desired.

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$.

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
d_{\omega}^{2} \eta=d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+[\omega,[\omega, \eta]]_{\wedge}
\end{aligned}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+[\omega,[\omega, \eta]]_{\wedge} \\
& =0
\end{aligned}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+[\omega,[\omega, \eta]]_{\wedge} \\
& =0+[d \omega, \eta]_{\wedge}-[\omega, d \eta]_{\wedge}
\end{aligned}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+[\omega,[\omega, \eta]]_{\wedge} \\
& =0+[d \omega, \eta]_{\wedge}-[\omega, d \eta]_{\wedge}+[\omega, d \eta]_{\wedge}
\end{aligned}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+[\omega,[\omega, \eta]]_{\wedge} \\
& =0+[d \omega, \eta]_{\wedge}-[\omega, d \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+\frac{1}{2}\left[[\omega, \omega]_{\wedge}, \eta\right]_{\wedge}
\end{aligned}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+[\omega,[\omega, \eta]]_{\wedge} \\
& =0+[d \omega, \eta]_{\wedge}-[\omega, d \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+\frac{1}{2}\left[[\omega, \omega]_{\wedge}, \eta\right]_{\wedge} \\
& =0
\end{aligned}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+[\omega,[\omega, \eta]]_{\wedge} \\
& =0+[d \omega, \eta]_{\wedge}-[\omega, d \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+\frac{1}{2}\left[[\omega, \omega]_{\wedge}, \eta\right]_{\wedge} \\
& =0+\left[d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}, \eta\right]_{\wedge}
\end{aligned}
$$

The covariant exterior derivative

Observe that $d_{\omega}\left(\Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}\right) \subseteq \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G}$. From the previous theorem, we have for all $\eta \in \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G}$

$$
\begin{aligned}
d_{\omega}^{2} \eta & =d\left(d \eta+[\omega, \eta]_{\wedge}\right)+\left[\omega, d \eta+[\omega, \eta]_{\wedge}\right]_{\wedge} \\
& =d d \eta+d[\omega, \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+\left[\omega,[\omega, \eta]_{\wedge}\right. \\
& =0+[d \omega, \eta]_{\wedge}-[\omega, d \eta]_{\wedge}+[\omega, d \eta]_{\wedge}+\frac{1}{2}\left[[\omega, \omega]_{\wedge}, \eta\right]_{\wedge} \\
& =0+\left[d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}, \eta\right]_{\wedge} .
\end{aligned}
$$

Therefore

$$
\cdots \xrightarrow{d_{\omega}} \Omega_{\text {hor }}^{k-1}(P, \mathfrak{g})^{G} \xrightarrow{d_{\omega}} \Omega_{\text {hor }}^{k}(P, \mathfrak{g})^{G} \xrightarrow{d_{\omega}} \Omega_{\text {hor }}^{k+1}(P, \mathfrak{g})^{G} \xrightarrow{d_{\omega}} \cdots
$$

is a cochain complex if $d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$ vanishes. Tomorrow we will see that $d \omega+\frac{1}{2}[\omega, \omega]_{\wedge}$ is equal to the curvature $\Omega=d_{\omega} \omega$.

References

- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1
- T. Walpuski, Notes on the geometry of manifolds, https: //math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf
- P. Michor, Topics in Differential Geometry
- J. Figueroa-O'Farrill, Notes on gauge theory, https: //empg.maths.ed.ac.uk/Activities/EKC/GaugeTheory.pdf

