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Summary of Day 1

We work in the category of C°° manifolds.
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Summary of Day 1

We work in the category of C°° manifolds.
Let G be a Lie group. A principal G-bundle is a fiber bundle 7: P — B

with fiber G endowed with a fiber-preserving action P .~ G that is free
and transitive on the fibers.
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Summary of Day 1

We work in the category of C°° manifolds.

Let G be a Lie group. A principal G-bundle is a fiber bundle 7: P — B
with fiber G endowed with a fiber-preserving action P .~ G that is free
and transitive on the fibers.

An example to keep in mind is the frame bundle FM — M of an
n-manifold M, whose fiber at p € M is the collection of bases for the
tangent space T,M. This is a principal GL,(R)-bundle, where the action
comes from changes-of-basis.
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Path lifting and parallel transport

Let 7 : E — B be any fiber bundle, and let 7y : [0,1] — B be a path in B.

Let x € 7~1(7(0)). In general, there exist many paths 7, : [0,1] — E with
mo~ =+ and 7(0) = x. When 7 : E — B is a covering space, there exists
only one such 7, but in every other case, there exist infinitely many choices
of 4.
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Path lifting and parallel transport

Let 7 : E — B be any fiber bundle, and let 7y : [0,1] — B be a path in B.
Let x € 7~1(7(0)). In general, there exist many paths 7y : [0,1] — E with
mo~ =+ and 7(0) = x. When 7 : E — B is a covering space, there exists
only one such 7, but in every other case, there exist infinitely many choices
of 4.

Suppose we have a way of assigning a unique 7y to each (v, x). We
understand the fibers of 7 as encoding some data attached to point b € B.
Then an assignment (7, x) — 7x gives a way of transporting an initial
piece of data x over (0) to a piece of data over a different point v(1).
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Path lifting and parallel transport

On every fiber of w: E — B, we have a canonical notion of vertical
direction: a tangent vector is vertical if it lies in ker(dm). Note that if
F = 7Y(b) is a fiber, then T,F = ker(dm,) for every p € F.

Bradley Zykoski Connections June 16, 2020 4 /18



Path lifting and parallel transport

On every fiber of w: E — B, we have a canonical notion of vertical
direction: a tangent vector is vertical if it lies in ker(dm). Note that if
F = 7Y(b) is a fiber, then T,F = ker(dm,) for every p € F.

Suppose m(x) = b. Every tangent vector v € T,B determines a unique
coset dm 1(v) = v + ker(dmy) C TxE. Suppose we are able to choose a
consistent-enough choice of representative v, and let v : [0,1] — B be a
path.
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Path lifting and parallel transport

On every fiber of w: E — B, we have a canonical notion of vertical
direction: a tangent vector is vertical if it lies in ker(dm). Note that if
F = 7Y(b) is a fiber, then T,F = ker(dm,) for every p € F.

Suppose m(x) = b. Every tangent vector v € T,B determines a unique
coset dm 1(v) = v + ker(dmy) C TxE. Suppose we are able to choose a
consistent-enough choice of representative v, and let v : [0,1] — B be a
path.

—_~—

Then we may lift the velocity vector field 7/(t) to a vector field 7/(t) on
771(7([0,1])). We then define 7, : [0,1] — E to be the integral curve of
this vector field with initial point x € 7=1(b).
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Connections

Definition

Let 7 : E — B be a fiber bundle. Let VE — E be the subbundle of
TE — E whose fiber at x € E is V,E = ker(dmy). A connection is a
choice of subbundle HE — E of TE whose fiber H,E at every x € E

satisfies

H.E & V\E = T,E.
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Connections

Definition

Let 7 : E — B be a fiber bundle. Let VE — E be the subbundle of
TE — E whose fiber at x € E is V,E = ker(dmy). A connection is a
choice of subbundle HE — E of TE whose fiber H,E at every x € E
satisfies

H.E & V\E = T,E.

One may understand this globally as a choice of left-splitting

w
> N dr

0 s VE s TE s 7™ TB —— 0.

where HE = ker w. )
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Connections

Definition

Let 7 : E — B be a fiber bundle. Let VE — E be the subbundle of
TE — E whose fiber at x € E is V,E = ker(dmy). A connection is a
choice of subbundle HE — E of TE whose fiber H,E at every x € E

satisfies
H.E & V,E = T, E.

One may understand this globally as a choice of left-splitting

w

L~ Sa
0 s VE s TE 9" m*TB — 0.

where HE = ker w.

v

Since HE = 7* TB, every v € T,B now has a unique lift v € HyE, and so

we obtain a notion of parallel transport as desired.
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Example: Levi-Civita connection

Recall that on a Riemannian manifold M, we have a notion of covariant
derivative V, and a vector field X over a curve v : [0,1] — M is parallel if
V()X = 0 for every t.
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Example: Levi-Civita connection

Recall that on a Riemannian manifold M, we have a notion of covariant
derivative V, and a vector field X over a curve v : [0,1] — M is parallel if
V()X = 0 for every t.

At every v € TM, define H,(TM) to be the set of all X’(0), where

X :[0,1] — TM is a parallel vector field over a curve 7 : [0,1] — M with
X(0) = v. Then H(TM) — TM is a connection on the fiber bundle

m: TM —» M.
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Vector-valued differential forms

Recall that a differential k-form w € QK(M) on a manifold M is a smooth
choice of alternating ®ff:1 TxM — R for every x e M
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Vector-valued differential forms

Recall that a differential k-form w € QK(M) on a manifold M is a smooth
choice of alternating ®ff:1 TxM — R for every x ¢ M

Definition

Let V be a vector space. Then a V-valued k-form w € QK(M, V) on a
manifold M is a smooth choice of alternating ®ff:1 TxM — V for every
x € M.
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Vector-valued differential forms

Recall that a differential k-form w € QK(M) on a manifold M is a smooth
choice of alternating ®ff:1 TxM — R for every x ¢ M

Definition

Let V be a vector space. Then a V-valued k-form w € QK(M, V) on a
manifold M is a smooth choice of alternating ®ff:1 TxM — V for every
x € M.

Recall that any w € Q%(M) can be understood as a section of /\ff:1 T*M.
Similarly, if F — M is the trivial vector bundle M x V, any w € Qk(M, V)

is a section of (/\f-;l T*I\/I) ® F.
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Vector-valued differential forms

Recall that a differential k-form w € QK(M) on a manifold M is a smooth
choice of alternating ®ff:1 TxM — R for every x ¢ M

Definition

Let V be a vector space. Then a V-valued k-form w € QK(M, V) on a
manifold M is a smooth choice of alternating ®ff:1 TxM — V for every
x € M.

Recall that any w € Q%(M) can be understood as a section of /\ff:1 T*M.
Similarly, if F — M is the trivial vector bundle M x V, any w € Qk(M, V)

is a section of (/\f-;l T*I\/I) ® F.

Letting F — M be any vector bundle, one also defines Q%(M, F) as the
space of sections of (/\f-‘:1 T*M) ® F.
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Connection 1-forms

OK(M,F) =T ((/\f.;l T*M) ® F)
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Connection 1-forms

O(M,F) =T ((/\f.;l T*M) ® F)

Let 7 : E — B be a fiber bundle, and consider the connection

L~ ~<
0 s VE TE " »»TB — 0.
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Connection 1-forms

k(M. F) =T (N T*M) 2 F)
Let w: E — B be a fiber bundle, and consider the connection

w

L N
0 s VE TE " »»TB — 0.

We now see that w is is a VE-valued 1-form w € QY(E, VE), which we call
the connection 1-form.
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Connection 1-forms

O(M,F) =T ((/\f;l T*M) ® F)

Let 7 : E — B be a fiber bundle, and consider the connection

N dr

L
0 » VE TE ™TB —— 0.

We now see that w is is a VE-valued 1-form w € QY(E, VE), which we call
the connection 1-form.

Conversely, given any VE-valued 1-form w on E so that w, is a projection
ToE — V,E for every p € E, we have a connection kerw = HE — E.
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Vertical bundles: The principal case

Let 7 : P — B be a principal G-bundle, and let g be the Lie algebra of G.
For every A € g, we have a vector field A on P given by

~

P ot

p. exp(tA) Vp e P.
t=0
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Vertical bundles: The principal case

Let 7 : P — B be a principal G-bundle, and let g be the Lie algebra of G.
For every A € g, we have a vector field A on P given by

~

P= o p. exp(tA) Vp e P.

t=0

-~

Since 7(p.g) = p for every g € G, we have dm(A) =0 for every A € g.
Therefore A is a section of VP.
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Vertical bundles: The principal case

Let 7 : P — B be a principal G-bundle, and let g be the Lie algebra of G.
For every A € g, we have a vector field A on P given by

~

P= o p. exp(tA) Vp e P.

t=0

-~

Since 7(p.g) = p for every g € G, we have dm(A) =0 for every A € g.
Therefore A is a section of VP.

Let Aj, A, ..., A, be any basis for g. Then 21,/32, . ,Zn are n linearly
independent sections of the rank n vector bundle VP. It follows that
VP = P x g. Therefore Q(P, VP) = QY(P,g).
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Vertical bundles: The principal case

Show that for Ry : P — P, Rg(p) = p.g, we have

~ —

dRg(A) = Ad; 1(A)  VAeg.
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Vertical bundles: The principal case

Exercise
Show that for Ry : P — P, Rg(p) = p.g, we have

~ —

dRy(A) = Ad; 1(A) VAeg.

Solution
Recall that if p; : M — M is a flow and X is the vector field
X(p) = %‘t:O ©t(p), then for any diffeomorphism ¢ : M — M, we have

dp(X)(p) = &|,_o ¥ o ot 0¥ ~1(p). Thus

0
ot
0
ot

o —

= Ad, 1(A).

|

Rg © Rexp(tA) © Rg—l(p)

t=0

Rg—l exp(tA)g(p)
t=0

v
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Principal connections

Definition

Let 7 : P — B be a principal G-bundle, and let Ry : P — P be given by
Rg(p) = p.g. We say a connection HP — P is principal if

dRe(HyP) = Hr (P ~ Vp€ P,g € G.

That is, dR, respects the direct-sum decomposition TP = HP © VP.
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Principal connections

Definition
Let 7 : P — B be a principal G-bundle, and let Ry : P — P be given by
Rg(p) = p.g. We say a connection HP — P is principal if

dRe(HyP) = Hr (P ~ Vp€ P,g € G.

That is, dR, respects the direct-sum decomposition TP = HP © VP.

Since w), is the projection onto V,P = g induced by this decomposition,
we have Rzwp(v) = 0 for horizontal vectors V/, and for vertical vectors A
we have

~ ~ —_—

(Rzw)p(A) = wr,(p)(dRg(A)) = wr,(p)(Adg-1(A)) = Adg-1(A).

Thus Rg.w = Adgfl ow.

Bradley Zykoski Connections June 16, 2020 11 /18



Intermission

| have tried to include a complete discussion for the sake of being
well-motivated, though this leaves us open to the danger of getting lost in
the weeds. We will take a short break to digest this material. The
following is a summary of what we have done so far.

Let G be a Lie group with Lie algebra g, and let 7 : P — B be a principal
G-bundle. A connection 1-form on 7 is a g-valued 1-form w € Q(P, g)

such that

w (%Rexp(m)) =A VA € g, (Projection to vertical)
Rew = Adg-1 0w Vg € G. (G-equivariance)

We call the subbundle HP = kerw C TP the horizontal subbundle of TP. )
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The covariant exterior derivative

Just as w is the vertical projection TP — VP with kernel HP, let us

consider the horizontal projection h: TP — HP with kernel VP. Let us
define h* : QK(P,g) — Qk(P, g) by

hn(Xe, X, ..., Xk) = n(ho(X1), ho(X2), . - -, hu(Xk)) ne QkP,g).

That is to say, h*n = n o h®.
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The covariant exterior derivative

Just as w is the vertical projection TP — VP with kernel HP, let us
consider the horizontal projection h: TP — HP with kernel VP. Let us
define h* : QK(P,g) — Qk(P, g) by

hn(Xe, X, ..., Xk) = n(ho(X1), ho(X2), . - -, hu(Xk)) ne QkP,g).

That is to say, h*n = n o h®.

Definition

Let 7 : P — B be a principal G-bundle with connection w. The covariant
exterior derivative d,, : QX(P, g) — QKT1(P, g) is given by

d,n = h*(dn).
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The covariant exterior derivative

Recall that the wedge product on Q2*(P,R) is defined by

YAI(Xe, . Xiere) =

1 .
Pl > sign(0)(Xoqr)s - Xo(h) - I Kokar)s - - - Xo(kr)):

0ESkye

where ¢ € QK(P,R), ¥ € QY(P,R).

Bradley Zykoski Connections June 16, 2020 14 /18



The covariant exterior derivative

Recall that the wedge product on Q2*(P,R) is defined by

YAI(Xe, . Xiere) =

1 .
Pl > sign(0)(Xoqr)s - Xo(h) - I Kokar)s - - - Xo(kr)):
" 0€Skye

where ¢ € QK(P,R), ¥ € QY(P,R).

The Lie algebra g does not have a multiplication - as above, but it does
have a bracket [, ], and so we analogously define

[777 K’]/\(Xl, oo ’Xk+f) =

1 .
m Z Slgn(g)[n(xo(l)a s 7Xa'(k))7 K’(Xcr(kJrl)a s 7X0(k+€))]7

€Skt

where € QK(P, g), k € QY(P, g).
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The covariant exterior derivative

Forn € Qk_(P,g)®, we have d,n = dn + [w,n]x.

hor

v

If (X1,...,Xks+1) are horizontal vector fields, then h(X;) = X; and
w(Xj) = 0.

Ol

v
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The covariant exterior derivative

Forn € Qk_(P,g)®, we have d,n = dn + [w,n]x.

hor

If (X1,...,Xks+1) are horizontal vector fields, then h(X;) = X; and
w(Xj) = 0. From h(X;) = X; we have

dwn(Xla ‘e ,Xk+1) = dn(h(Xl), ey h(Xk+1)) = dn(Xl, cee ,Xk+1).

Ol

v
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The covariant exterior derivative

Theorem
Forn € Qk_(P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

If (X1,...,Xks+1) are horizontal vector fields, then h(X;) = X; and
w(Xj) = 0. From h(X;) = X; we have

| \

dwn(Xla ‘e ,Xk+1) = dn(h(Xl), ey h(Xk+1)) = dn(Xl, cee ,Xk+1).

From w(X;) = 0 we have

1
[wa 77]/\(X1’ 2909 7Xk+1) = ﬁ Zw(xa(i)) ’ 77(X(7(2)7 000 aXcr(k-‘rl)) =0.

Ol

v

Bradley Zykoski Connections June 16, 2020 15 / 18



The covariant exterior derivative

Forn € QF_(P,g)¢, we have d,n = dn + [w,n]x.

Proof

If (X1,...,Xks+1) are horizontal vector fields, then h(X;) = X; and
w(Xj) = 0. From h(X;) = X; we have

dwn(Xla ‘e ,Xk+1) = dn(h(Xl), ey h(Xk+1)) = dn(Xl, cee ,Xk+1).

From w(X;) = 0 we have
[, ma(Xe, - Xir1) = 5 Z ) - (Xo2)s - - - s Xo(kr1)) = 0.

Therefore the desired identity holds on horizontal vector fields. (Cont'd)
O

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion
operator, and recall Cartan’s magic formula Lx = ixd + dix.

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion
operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,

g _ 0 * _ 0 _
notice that L7 = E‘tzo Rexp(tA)n = ﬁ‘tzo Adeyp(—ta) o n = —[A, 7).

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion

operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,
. _ 0 * _ 0 _

notice that L7 = E‘tzo Rexp(tA)n = ﬁ‘tzo Adeyp(—ta) o n = —[A, 7).

Since izn =0, we have izdn = izdn+dizn=L;n.

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion

operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,
g _ 0 * _ 0 _

notice that L7 = E‘tzo Rexp(tA)n = ﬁ‘tzo Adeyp(—ta) o n = —[A, 7).

Since izn =0, we have izdn = izdn+ dizn= L;n. Then we have

iz(dn+[w,nla) = Lan + [izw,nla — [w, izn]A

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion

operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,
g _ 0 * _ 0 _

notice that L7 = E‘tzo Rexp(tA)n = ﬁ‘tzo Adeyp(—ta) o n = —[A, 7).

Since izn =0, we have izdn = izdn+ dizn= L;n. Then we have

iz(dn+[w,nla) = Lzn + lizw,n]a — [w, izn]a
= = [Aﬂl]

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion

operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,
g _ 0 * _ 0 _

notice that L7 = E‘tzo Rexp(tA)n = ﬁ‘tzo Adeyp(—ta) o n = —[A, 7).

Since izn =0, we have izdn = izdn+ dizn= L;n. Then we have

iz(dn+[w,nla) = Lzn + lizw,n]a — [w, izn]a
= = [A777] + [Aﬂ?]

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion

operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,
g _ 0 * _ 0 _

notice that L7 = E‘tzo Rexp(tA)n = ﬁ‘tzo Adeyp(—ta) o n = —[A, 7).

Since izn =0, we have izdn = izdn+ dizn= L;n. Then we have

"E(dn + [w,n]A) = 5,2\‘77 I [’.,3"%77]/\ — [w, ’ZU]A
= = [A777] + [Avn] +0

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion
operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,

notice that L3 = 2,_, R ()] = 2|, Adexp(—ta) 01 = —[A, 7).
Since izn =0, we have izdn = izdn+ dizn= L;n. Then we have

iz(dn+[w,nla) = Lzn + lizw,n]a — [w, izn]a
= = [A777] + [Avn] +0=0.

0J

v
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The covariant exterior derivative

Forn € QFf (P,g)®, we have d,n = dn + [w,n]x.

hor

Proof.

For a vector field X, let ix : Q*(P,g) — Q*"1(P, g) be the insertion

operator, and recall Cartan’s magic formula Lx = ixd + dix. For A € g,
g _ 0 * _ 0 _

notice that L7 = E‘tzo Rexp(tA)n = E‘tzo Adeyp(—ta) o n = —[A, 7).

Since izn =0, we have izdn = izdn+dizn = Lzn. Then we have

iz(dn+[w,nla) = Lzn + lizw,n]a — [w, izn]a
= = [A777] + [Avn] +0=0.

Finally, iz dun = ih(Z)d” = 0. We conclude that the desired equation holds
on any combination of horizontal and vertical vectors, and hence holds
identically, as desired. O

v
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&1(P, g)C.

hor
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous
theorem, we have for all n € Qf_ (P, g)°

hor

dn = d(dn+ [w,nla) + [w, dn + [w,n]A]n
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous

theorem, we have for all n € Qf_ (P, g)°

d2n = d(dn + [w,n]n) + [w, dn + [w,7]A]n
= dd77 =+ d[w, 77]/\ + [wv dn]/\ + [w> [Wﬂ?]]/\
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous

theorem, we have for all n € Qf_ (P, g)°

dn = d(dn+ [w,nla) + [w, dn + [w,n]A]n
= ddn + d[w,n]s + [w, dn]a + [w, [w, 7]l
—0

Bradley Zykoski Connections June 16, 2020 17 / 18



The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous

theorem, we have for all n € Qf_ (P, g)°

d2n = d(dn + [w,n]n) + [w, dn + [w, n]A]A
= dd77 + d[w, 7]]/\ + [OJ, d??]/\ + [w7 [Wﬂl]]/\
=0+ [dw,n]r — [w, dn]A
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous

theorem, we have for all n € Qf_ (P, g)°

d2n = d(dn + [w,n]n) + [w, dn + [w, n]A]A
= dd77 —+ d[w,n]/\ + [W7 dn]/\ + [w7 [Wﬂl]]/\
=0+ [dw,n]/\ — [W7 d’l’]]/\ + [Wv dU]A
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous
theorem, we have for all n € Qf_ (P, g)°

hor

d2n = d(dn+ [w,n]n) + [w, dn + [w, 1Al
= ddn + d[w,n]s + [w, dn]n + [w, [w, ]|
=0+ [dw777]/\ - [wv dn]/\ + [wv dﬁ]/\ + %[[wvw]/\v 77]/\
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous
theorem, we have for all n € Qf_ (P, g)°

hor
d2n = d(dn + [w,n]a) + [w, dn + [w, 7] A]A
= ddn + dlw, ] + [w, dn]s + [w, [w, 7]
=0+ [dw,n]n — [w, dn]a + [w, dn]s + %[[w,w]/\,n]/\
=0
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous
theorem, we have for all n € Qf_ (P, g)°

hor
d2n = d(dn + [w,n]n) + [w, dn + [w, nlAlA
= dd77 + d[w7 77]/\ + [O.), d77]/\ + [w7 [U.), 77]]/\
=0+ [dW»U]A - [wv d77]/\ + [wv dﬁ]/\ + %[[wvw]/\v 77]/\
=0+ [dw+ %[w,w]/\,n]/\.
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The covariant exterior derivative

Observe that d,, (f,,(P,9)¢) € Q&F1(P, g)¢. From the previous
theorem, we have for all n € Qf_ (P, g)°

hor

d2n = d(dn + [w,n]n) + [w, dn + [w, nlAlA
= ddn + d[w, n]s + [w, dn]s + [w, [w, 7]]A
=0+ [dw, n]n — [w, dn]a + [w, dn]a + 2{[w, w]A, 1]A
=0+ [dw + %[w,w]A,n]A.

Therefore

QNP ) s Ol (Pg)® B QSN (PLg) -

hor hor hor

is a cochain complex if dw + 3[w,w]x vanishes. Tomorrow we will see that
dw + 3w, w] is equal to the curvature Q = d,w.
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