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Fiber bundles

Throughout this minicourse, we will work in the category of C°° manifolds.

Definition (Fiber Bundle)

A surjection 7 : E — B is a fiber bundle with fiber F if, for every b € B,
there is an open neighborhood U > b so that we have a diffeomorphism

e N U) S UxF

that conjugates 7 to the first coordinate projection.
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Fiber bundles

Throughout this minicourse, we will work in the category of C°° manifolds.

Definition (Fiber Bundle)

A surjection 7 : E — B is a fiber bundle with fiber F if, for every b € B,
there is an open neighborhood U > b so that we have a diffeomorphism

e N U) S UxF

that conjugates 7 to the first coordinate projection.

If B =, Ua is an open cover so that there are diffeomorphisms
Yo T H(Uys) = Uy x F, we have functions ¢qs : Uy N Ug — Diffeo(F)
given by

(50 ¢a )b, f) = (b, 0as(b)(F)) for b€ UaN Up.
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Fiber bundles

B=|JUs, @ap: UaN Us — Diffeo(F)
We can construct our original bundle from this data. We have
E=T1],(Usx F)/ ~, where (b€ Uy, )~ (be Us,pap(b)(f)) for every
bec UyNUg. Then m: E — B is induced by the first coordinate
projection.
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Fiber bundles

B=|JUs, @ap: UaN Us — Diffeo(F)
«
We can construct our original bundle from this data. We have

E=1],(Us % F)/ ~, where (b € Uy, f) ~ (b€ Us, pap(b)(f)) for every
bec UyNUg. Then m: E — B is induced by the first coordinate
projection.

It is often the case that the ¢, all have image in some subgroup
G C Diffeo(F). Of course G acts on F, but it also acts on itself!
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Fiber bundles

B=|JUs, @ap: UaN Us — Diffeo(F)

[0}

We can construct our original bundle from this data. We have
E=T1],(Usx F)/ ~, where (b€ Uy, )~ (be Us,pap(b)(f)) for every
bec UyNUg. Then m: E — B is induced by the first coordinate
projection.

It is often the case that the ¢, all have image in some subgroup
G C Diffeo(F). Of course G acts on F, but it also acts on itself!

We can construct P =[] (Us x G)/ ~, where

(b€ Uy, g) ~ (be Ug,pap(b)g) for every b € U, N Uz. We have a
bundle 7 : P — B induced by the first coordinate projection.
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Principal bundles

Definition (Principal Bundle)

A fiber bundle 7 : P — B with fiber G is a principal G-bundle if there is a
right action P v\ G that preserves the fibers of 7, and acts freely and

transitively on each fiber.
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Principal bundles

Definition (Principal Bundle)

A fiber bundle 7 : P — B with fiber G is a principal G-bundle if there is a
right action P v\ G that preserves the fibers of 7, and acts freely and
transitively on each fiber.

In our example, we have [ (Us x G)/ ~ G via (b, g).h = (b, gh),
giving a principal G-bundle.
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Principal bundles

Definition (Principal Bundle)

A fiber bundle 7 : P — B with fiber G is a principal G-bundle if there is a
right action P v\ G that preserves the fibers of 7, and acts freely and
transitively on each fiber.

In our example, we have [ (Us x G)/ ~ G via (b, g).h = (b, gh),
giving a principal G-bundle.

Every principal G-bundle can be constructed by such open-covering data.
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Example: The tangent and frame bundles

Let M be C* manifold. Then the tangent bundle 7 : TM — M is a fiber
bundle with fiber R". Given any open cover M =, U, with
diffeomorphisms ¢ : 771(U,) — U, x R", the functions

©ap : Ua N Ug — Diffeo(R") all have images contained in GL,(R).
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Example: The tangent and frame bundles

Let M be C* manifold. Then the tangent bundle 7 : TM — M is a fiber
bundle with fiber R". Given any open cover M =, U, with
diffeomorphisms ¢ : 771(U,) — U, x R", the functions

©ap : Ua N Ug — Diffeo(R") all have images contained in GL,(R).

We may then construct the frame bundle FM =[] (Uy % GL,(R))/ ~

with (b € Ua, A) ~ (b € Ug, pa(b)A). Again, the first coordinate
projection induces 7™ : FM — M.
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Example: The tangent and frame bundles

Let M be C* manifold. Then the tangent bundle 7 : TM — M is a fiber
bundle with fiber R". Given any open cover M =, U, with
diffeomorphisms ¢ : 771(U,) — U, x R", the functions

©ap : Ua N Ug — Diffeo(R") all have images contained in GL,(R).

We may then construct the frame bundle FM =[] (Uy % GL,(R))/ ~
with (b € Ua, A) ~ (b € Ug, pa(b)A). Again, the first coordinate
projection induces 7™ : FM — M.

If we interpret the matrix A above as a list of linearly independent vectors
A= (vi| v | - - | vp) on which the matrix p,5(b) acts by
change-of-coordinates (¢ag(b)v1 | @as(b)va | -+ | @as(b)vn), we obtain

7 H(b) = {(v1, vy ..., Vi) € (ToM)"| (vi, va,...,v,) form a basis of T,M}.
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Example: Regular coverings

Let 7 : X — Y be a regular (i.e. normal, i.e. Galois) covering space with
deck group A. Then 7 : X — Y is a principal A-bundle:
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Example: Regular coverings

Let 7 : X — Y be a regular (i.e. normal, i.e. Galois) covering space with
deck group A. Then 7 : X — Y is a principal A-bundle:

@ It is a fiber bundle; its fibers are discrete pointsets of cardinality #A.
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Example: Regular coverings

Let 7 : X — Y be a regular (i.e. normal, i.e. Galois) covering space with
deck group A. Then 7 : X — Y is a principal A-bundle:
@ It is a fiber bundle; its fibers are discrete pointsets of cardinality #A.
@ There is a right action X\~ A by deck transformations, which
preserves the fibers of 7.
@ The fiberwise action is free (no fixed points!) and transitive.
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Example: Regular coverings

Let 7 : X — Y be a regular (i.e. normal, i.e. Galois) covering space with
deck group A. Then 7 : X — Y is a principal A-bundle:
@ It is a fiber bundle; its fibers are discrete pointsets of cardinality #A.
@ There is a right action X\~ A by deck transformations, which
preserves the fibers of 7.
@ The fiberwise action is free (no fixed points!) and transitive.
In particular, the universal covering Y > Yisa principal 71(Y)-bundle.
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Example: Regular coverings

Let 7 : X — Y be a regular (i.e. normal, i.e. Galois) covering space with
deck group A. Then 7 : X — Y is a principal A-bundle:

@ It is a fiber bundle; its fibers are discrete pointsets of cardinality #A.

@ There is a right action X\~ A by deck transformations, which
preserves the fibers of 7.

@ The fiberwise action is free (no fixed points!) and transitive.

In particular, the universal covering Y > Yisa principal 71(Y)-bundle.

Nobody said we had to make natural constructions! The product space
Y x m1(Y) with right action (y,v).7 = (y,~7') is also a principal
m1(Y)-bundle.
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Associated bundles

We obtained principal bundles from more general fiber bundles, and we
can go the other way as well.

Definition (Associated bundle)

Let ™ : P — B be a principal G-bundle and let F be a space with a left
G-action G ~ F. Then (P x F) .~ G via (p,f).g = (p.g,g~*.f). Then
the first coordinate projection induces an associated G-bundle

m: (P x F)/G — B with fiber F.
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Associated bundles

We obtained principal bundles from more general fiber bundles, and we
can go the other way as well.

Definition (Associated bundle)

Let ™ : P — B be a principal G-bundle and let F be a space with a left
G-action G ~ F. Then (P x F) .~ G via (p,f).g = (p.g,g~*.f). Then
the first coordinate projection induces an associated G-bundle

m: (P x F)/G — B with fiber F.

It is somewhat easier to see what is going on locally. For U x G — U, our
action is (U x G x F) ~ G via (b, h,f).g = (b, hg,g*.f). Every G-orbit
of (b, h,f) has a unique representative of the form (b, 1¢, f'), namely

(b, h, f).h~1. Thus the middle factor is superfluous, so we have

(Ux G x F)/G=Ux F. Hence (P x F)/G has fiber F.
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Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S:
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Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S:
o Eyiy = S'IIS! — S where S 11 S' ~ Z/27 by swapping the two
components

Bradley Zykoski Introduction June 15, 2020 8 /17



Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S:
o Eyiy = S'IIS! — S where S 11 S' ~ Z/27 by swapping the two
components
0 Enontriv = St — S1, e s €2 where S A Z/27Z via e?.1 = ¢/(0+7)
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Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S:

o Eyiy = S'IIS! — S where S 11 S' ~ Z/27 by swapping the two
components

0 Enontriv = St — S1, e s €2 where S A Z/27Z via e?.1 = ¢/(0+7)

Consider the actions Z/27 ~ S via 1. = e~/ and Z/2Z ~ (0, 1) via
1.x=1—x. Then:
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Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S:

o Eyiy = S'IIS! — S where S 11 S' ~ Z/27 by swapping the two
components

0 Enontriv = St — S1, e s €2 where S A Z/27Z via e?.1 = ¢/(0+7)

Consider the actions Z/27 ~ S via 1. = e~/ and Z/2Z ~ (0, 1) via
1.x=1—x. Then:

o (Euiv x SY)/(Z/27) is a torus
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Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S:

o Eyiy = S'IIS! — S where S 11 S' ~ Z/27 by swapping the two
components

0 Enontriv = St — S1, e s €2 where S A Z/27Z via e?.1 = ¢/(0+7)

Consider the actions Z/27 ~ S via 1. = e~/ and Z/2Z ~ (0, 1) via
1.x=1—x. Then:

o (Euiv x SY)/(Z/27) is a torus
o (Enontriv X SY)/(Z/27) is a Klein bottle
o (Ewiv X (0,1))/(Z/2Z) is a cylinder
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Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S:

o Eyiy = S'IIS! — S where S 11 S' ~ Z/27 by swapping the two
components

0 Enontriv = St — S1, e s €2 where S A Z/27Z via e?.1 = ¢/(0+7)

Consider the actions Z/27 ~ S via 1. = e~/ and Z/2Z ~ (0, 1) via
1.x=1—x. Then:

o (Euiv x SY)/(Z/27) is a torus

(Enontriv X SY)/(Z/27) is a Klein bottle

o (Ewiv X (0,1))/(Z/2Z) is a cylinder

@ (Enontriv X (0,1))/(Z/2Z) is a Mdbius strip
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Reduction of structure group

Notice that, with some of these constructions, we did not use the group to
its full potential!
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its full potential!

@ A torus is just S x S. There is no meaningful sense in which we
need Z/27.
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Reduction of structure group

Notice that, with some of these constructions, we did not use the group to
its full potential!

@ A torus is just S x S. There is no meaningful sense in which we
need Z/27.

@ Indeed, if a bundle 7 : E — B is isomorphic to a Cartesian product
E = B x F, then the diffeomorphisms ¢, : 77 1(U,) — U, x F can
all be chosen so that the functions 5 : Uy N Uz — Diffeo(F) all
have images in {1} C Diffeo(F).
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Reduction of structure group

Notice that, with some of these constructions, we did not use the group to
its full potential!

@ A torus is just S x S. There is no meaningful sense in which we
need Z/27.

@ Indeed, if a bundle 7 : E — B is isomorphic to a Cartesian product
E = B x F, then the diffeomorphisms ¢, : 77 1(U,) — U, x F can
all be chosen so that the functions 5 : Uy N Uz — Diffeo(F) all
have images in {1} C Diffeo(F).

@ For the tangent bundle TM — M, we said the functions
©ap — Diffeo(R") all have images in GL,(R), but it we choose a
Riemannian metric on M and compatible diffeomorphisms ¢, then
the functions ¢, will all have images in O(n) C GL,(R).

Bradley Zykoski Introduction June 15, 2020 9 /17



Reduction of structure group

Definition (Reduction of structure group)

Let G be a group and H < G a subgroup. If we have a principal G-bundle
P — B and a principal H-bundle @ — B, then a fiber-preserving
embedding ¥ : Q@ < P is a reduction of structure group if 1 is
H-equivariant:

U(q.h) =4(q).h Vge @, heH.
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Reduction of structure group

Definition (Reduction of structure group)

Let G be a group and H < G a subgroup. If we have a principal G-bundle
P — B and a principal H-bundle @ — B, then a fiber-preserving
embedding ¥ : Q@ < P is a reduction of structure group if 1 is
H-equivariant:

¥(g.h) =v(q).h VgeQ, heH.

A principal G-bundle P —» B admits a reduction of structure group

Y : Q — P if and only if B admits an open covering B =, U, so that
there are functions ¢,g : Uy N Ug — H such that P =[] (Uy x G)/ ~,
where (b € Uy, g) ~ (b € Us, pas(b)g) for every b € U, N Up
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Reduction of structure group

We have a reduction of structure group v : @ < P if and only if the
functions pap : Uy N Ug — G can be taken with image lying in H.
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Reduction of structure group

Lemma

We have a reduction of structure group v : @ < P if and only if the
functions pap : Uy N Ug — G can be taken with image lying in H.

Proof sketch.

If pap has image in H, then Q =[], (Us x H)/((b, h) ~ (b, pas(b)h)) is
a principal H-bundle, and v can be defined on every U, x H by
¢|Ua><H(b, h) = (b, h) € U, x G.

| \

Ol

v

Bradley Zykoski Introduction June 15, 2020 11 /17



Reduction of structure group

Lemma

We have a reduction of structure group v : @ < P if and only if the
functions pap : Uy N Ug — G can be taken with image lying in H.

Proof sketch.

If pap has image in H, then Q =[], (Us x H)/((b, h) ~ (b, pas(b)h)) is
a principal H-bundle, and v can be defined on every U, x H by
¢|Ua><H(b, h) = (b, h) € U, x G.

If we start with a reduction ¢ : Q@ — P, then P is isomorphic to the
associated H-bundle (Q x G)/H via the map

| \

V:(QxG)/H—P
(g,g) mod H > 7(q).g

It is left as an exercise to check that VW is a well-defined isomorphism. [
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Special cases of reduction of structure group

Let ™ : P — B be a principal G-bundle.
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Special cases of reduction of structure group

Let ™ : P — B be a principal G-bundle.

A reduction to the trivial subgroup {1} C G is a fiber-preserving
{1}-equivariant map ¢ : B = B x {1} < P. Equivariance here is vacuous,
and fiber-preserving reduces to the condition T oy = Idg. Thus a
reduction to {1} is the same thing as a section of 7 : P — B. We conclude
that P is a trivial bundle P = B x G if and only if T has a section.
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Special cases of reduction of structure group

Let ™ : P — B be a principal G-bundle.

A reduction to the trivial subgroup {1} C G is a fiber-preserving
{1}-equivariant map ¢ : B = B x {1} < P. Equivariance here is vacuous,
and fiber-preserving reduces to the condition T oy = Idg. Thus a
reduction to {1} is the same thing as a section of 7 : P — B. We conclude
that P is a trivial bundle P = B x G if and only if T has a section.

A reduction to G = G is a fiber-preserving G-equivariant diffeomorphism
¥ : P =5 P. We call such maps gauge transformations of P. A gauge
transformation induces an automorphism of any associated bundle
(P x F)/G via

(p, )6 = (¥(p). f)/c
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Example: Tensorial structures reduce the frame bundle

Let T : FM — M be the frame bundle of M. Recall that FM is a principal
GL,(R)-bundle whose fiber at b € M is the set of bases of T,M.
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Example: Tensorial structures reduce the frame bundle

Let T : FM — M be the frame bundle of M. Recall that FM is a principal
GL,(R)-bundle whose fiber at b € M is the set of bases of T,M.

If M admits a volume form, let SM — M be the principal SL,(R)-bundle
whose fiber at b € M is the set of bases of T,M with volume 1. The
inclusion SM — FM is a reduction of structure group to SL,(R).
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Example: Tensorial structures reduce the frame bundle

Let T : FM — M be the frame bundle of M. Recall that FM is a principal
GL,(R)-bundle whose fiber at b € M is the set of bases of T,M.

If M admits a volume form, let SM — M be the principal SL,(R)-bundle
whose fiber at b € M is the set of bases of T,M with volume 1. The
inclusion SM — FM is a reduction of structure group to SL,(R).

If M admits a Riemannian metric, let OM — M be the principal
O(n)-bundle whose fiber at b € M is the set of orthonormal bases of T, M.
The inclusion OM — FM is a reduction of structure group to O(n).
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Example: Tensorial structures reduce the frame bundle

Let T : FM — M be the frame bundle of M. Recall that FM is a principal
GL,(R)-bundle whose fiber at b € M is the set of bases of T,M.

If M admits a volume form, let SM — M be the principal SL,(R)-bundle
whose fiber at b € M is the set of bases of T,M with volume 1. The
inclusion SM — FM is a reduction of structure group to SL,(R).

If M admits a Riemannian metric, let OM — M be the principal
O(n)-bundle whose fiber at b € M is the set of orthonormal bases of T, M.
The inclusion OM — FM is a reduction of structure group to O(n).

When n is even, an almost-complex structure is a bundle isomorphism

J: TM = TM with (J|7,m)? = —Id,m for every b € M. Let CM — M
be the principal GL,/»(C)-bundle whose fiber at b € M is the set of bases
{vi}_; of TpM with Jvo) = voi4q for every k. The inclusion CM — M is
a reduction of structure group to GL,>(C).
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Another perspective on Riemannian metrics
Every C*° manifold M admits a Riemannian metric g. I

Bradley Zykoski Introduction June 15, 2020 14 /17



Another perspective on Riemannian metrics

Every C*° manifold M admits a Riemannian metric g.

Standard proof.

By the Whitney embedding theorem, there exists some N € N so that
there is a smooth embedding M < RN. Let gg, denote the standard
Euclidean metric on RV, Setting g := gguc|m, we are done. O

Bradley Zykoski Introduction June 15, 2020 14 /17



Another perspective on Riemannian metrics

Every C*° manifold M admits a Riemannian metric g.

Standard proof.

By the Whitney embedding theorem, there exists some N € N so that
there is a smooth embedding M < RN. Let gg, denote the standard
Euclidean metric on RV, Setting g := gguc|m, we are done. O

This is a nice proof, but it would be satisfying to know if there was also a
nice proof that does not rely on the Whitney embedding theorem.
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Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle w : E — B with fiber F has a
section.

O

v
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Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle w : E — B with fiber F has a
section.

| A\

Proof.
Let B have a CW-structure such that every k-cell lies in a neighborhood
U C B over which the bundle can be trivialized 7=(U) = U x F. Then a
section over a k-cell ¢, is equivalent to a map ¢, — F. Let B(K) denote
the k-skeleton of B. We define a section ¢ : B — E by induction on k.

O

v
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Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle w : E — B with fiber F has a
section.

Proof.
Let B have a CW-structure such that every k-cell lies in a neighborhood
U C B over which the bundle can be trivialized 7=(U) = U x F. Then a
section over a k-cell ¢, is equivalent to a map ¢, — F. Let B(K) denote
the k-skeleton of B. We define a section ¢ : B — E by induction on k.

| A\

For each b € B(®), we may pick any point in the fiber over b, thereby
defining o) : B(©) — E. Now suppose we have already defined 0| gk-1)
for k > 0, and let ¢, be any k-cell of B. We already have

dck(=2 S¥1) = F, and since 7 (F) = 0, this extends to a map ¢, — F.
These maps ¢k — F define o|gw. By induction, we have a section defined
on all of B. 0
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Another perspective on Riemannian metrics

Let P,(R) denote the space of symmetric positive-definite n x n matrices
over R, and let w : TM — M be the tangent bundle. Given a trivialization
Yo : T H(Us) = Uy x R™ over an open subset U, C M, a Riemannian
metric over U, is just a choice of section g, : Uy — U, x Py(R).
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Another perspective on Riemannian metrics

Let P,(R) denote the space of symmetric positive-definite n x n matrices
over R, and let w : TM — M be the tangent bundle. Given a trivialization
Yo : T H(Us) = Uy x R™ over an open subset U, C M, a Riemannian
metric over U, is just a choice of section g, : Uy — U, x Py(R).

Let @ @ Uy N Ug — GLA(R) be a transition function for TM. A
Riemannian metric over U, U Ug is a pair of g,, gg with

g5(P) = vas(P)8a(P)pas(p)". Therefore a Riemannian metric on M is a
section of the associated GL,(R)-bundle E =[] (Us x Ps(R))/ ~ with
fiber Po(R).
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Another perspective on Riemannian metrics

Let P,(R) denote the space of symmetric positive-definite n x n matrices
over R, and let w : TM — M be the tangent bundle. Given a trivialization
Yo : T H(Us) = Uy x R™ over an open subset U, C M, a Riemannian
metric over U, is just a choice of section g, : Uy — U, x Py(R).

Let @ @ Uy N Ug — GLA(R) be a transition function for TM. A
Riemannian metric over U, U Ug is a pair of g,, gg with

g5(P) = vas(P)8a(P)pas(p)". Therefore a Riemannian metric on M is a
section of the associated GL,(R)-bundle E =[] (Us x Ps(R))/ ~ with
fiber Po(R).

By the polar decomposition for real matrices, we have

Pn(R) = GL,(R)/O(n). By the Gram-Schmidt procedure, GL,(R)/O(n) is
contractible. Therefore, by the previous lemma, E has a section. That is,
there exists a Riemannian metric on M.
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