Principal Bundles Day 1: Introduction

Bradley Zykoski

June 15, 2020

Fiber bundles

Throughout this minicourse, we will work in the category of C^{∞} manifolds.

Definition (Fiber Bundle)

A surjection $\pi : E \rightarrow B$ is a fiber bundle with fiber F if, for every $b \in B$, there is an open neighborhood $U \ni b$ so that we have a diffeomorphism

 $\varphi:\pi^{-1}(U)\xrightarrow{\sim} U\times F$

that conjugates π to the first coordinate projection.

Fiber bundles

Throughout this minicourse, we will work in the category of C^{∞} manifolds.

Definition (Fiber Bundle)

A surjection $\pi : E \rightarrow B$ is a fiber bundle with fiber F if, for every $b \in B$, there is an open neighborhood $U \ni b$ so that we have a diffeomorphism

 $\varphi:\pi^{-1}(U)\xrightarrow{\sim} U\times F$

that conjugates π to the first coordinate projection.

If $B = \bigcup_{\alpha} U_{\alpha}$ is an open cover so that there are diffeomorphisms $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \xrightarrow{\sim} U_{\alpha} \times F$, we have functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \text{Diffeo}(F)$ given by

$$(\varphi_{eta}\circ \varphi_{lpha}^{-1})(b,f)=(b, \varphi_{lphaeta}(b)(f)) \quad ext{for } b\in U_{lpha}\cap U_{eta}.$$

$$B = \bigcup_{\alpha} U_{\alpha}, \quad \varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathsf{Diffeo}(F)$$

We can construct our original bundle from this data. We have $E \cong \coprod_{\alpha} (U_{\alpha} \times F) / \sim$, where $(b \in U_{\alpha}, f) \sim (b \in U_{\beta}, \varphi_{\alpha\beta}(b)(f))$ for every $b \in U_{\alpha} \cap U_{\beta}$. Then $\pi : E \twoheadrightarrow B$ is induced by the first coordinate projection.

$$B = \bigcup_{\alpha} U_{\alpha}, \quad \varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathsf{Diffeo}(F)$$

We can construct our original bundle from this data. We have $E \cong \coprod_{\alpha} (U_{\alpha} \times F) / \sim$, where $(b \in U_{\alpha}, f) \sim (b \in U_{\beta}, \varphi_{\alpha\beta}(b)(f))$ for every $b \in U_{\alpha} \cap U_{\beta}$. Then $\pi : E \twoheadrightarrow B$ is induced by the first coordinate projection.

It is often the case that the $\varphi_{\alpha\beta}$ all have image in some subgroup $G \subset \text{Diffeo}(F)$. Of course G acts on F, but it also acts on itself!

$$B = \bigcup_{\alpha} U_{\alpha}, \quad \varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathsf{Diffeo}(F)$$

We can construct our original bundle from this data. We have $E \cong \coprod_{\alpha} (U_{\alpha} \times F) / \sim$, where $(b \in U_{\alpha}, f) \sim (b \in U_{\beta}, \varphi_{\alpha\beta}(b)(f))$ for every $b \in U_{\alpha} \cap U_{\beta}$. Then $\pi : E \twoheadrightarrow B$ is induced by the first coordinate projection.

It is often the case that the $\varphi_{\alpha\beta}$ all have image in some subgroup $G \subset \text{Diffeo}(F)$. Of course G acts on F, but it also acts on itself!

We can construct $P = \coprod_{\alpha} (U_{\alpha} \times G) / \sim$, where $(b \in U_{\alpha}, g) \sim (b \in U_{\beta}, \varphi_{\alpha\beta}(b)g)$ for every $b \in U_{\alpha} \cap U_{\beta}$. We have a bundle $\overline{\pi} : P \twoheadrightarrow B$ induced by the first coordinate projection.

Definition (Principal Bundle)

A fiber bundle $\overline{\pi} : P \to B$ with fiber G is a *principal G-bundle* if there is a right action $P \curvearrowleft G$ that preserves the fibers of $\overline{\pi}$, and acts freely and transitively on each fiber.

Definition (Principal Bundle)

A fiber bundle $\overline{\pi} : P \to B$ with fiber G is a *principal G-bundle* if there is a right action $P \curvearrowleft G$ that preserves the fibers of $\overline{\pi}$, and acts freely and transitively on each fiber.

In our example, we have $\coprod_{\alpha}(U_{\alpha} \times G) / \sim \bigcirc G$ via (b,g).h = (b,gh), giving a principal *G*-bundle.

Definition (Principal Bundle)

A fiber bundle $\overline{\pi} : P \to B$ with fiber G is a *principal G-bundle* if there is a right action $P \curvearrowleft G$ that preserves the fibers of $\overline{\pi}$, and acts freely and transitively on each fiber.

In our example, we have $\coprod_{\alpha}(U_{\alpha} \times G) / \sim \bigcirc G$ via (b,g).h = (b,gh), giving a principal *G*-bundle.

Every principal *G*-bundle can be constructed by such open-covering data.

Example: The tangent and frame bundles

Let M be C^{∞} manifold. Then the tangent bundle $\pi : TM \to M$ is a fiber bundle with fiber \mathbb{R}^n . Given any open cover $M = \bigcup_{\alpha} U_{\alpha}$ with diffeomorphisms $\varphi : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^n$, the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \text{Diffeo}(\mathbb{R}^n)$ all have images contained in $\text{GL}_n(\mathbb{R})$.

Example: The tangent and frame bundles

Let M be C^{∞} manifold. Then the tangent bundle $\pi : TM \to M$ is a fiber bundle with fiber \mathbb{R}^n . Given any open cover $M = \bigcup_{\alpha} U_{\alpha}$ with diffeomorphisms $\varphi : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^n$, the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \text{Diffeo}(\mathbb{R}^n)$ all have images contained in $\text{GL}_n(\mathbb{R})$.

We may then construct the frame bundle $FM = \coprod_{\alpha} (U_{\alpha} \times GL_n(\mathbb{R})) / \sim$ with $(b \in U_{\alpha}, A) \sim (b \in U_{\beta}, \varphi_{\alpha\beta}(b)A)$. Again, the first coordinate projection induces $\overline{\pi} : FM \twoheadrightarrow M$.

Example: The tangent and frame bundles

Let M be C^{∞} manifold. Then the tangent bundle $\pi : TM \to M$ is a fiber bundle with fiber \mathbb{R}^n . Given any open cover $M = \bigcup_{\alpha} U_{\alpha}$ with diffeomorphisms $\varphi : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^n$, the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \text{Diffeo}(\mathbb{R}^n)$ all have images contained in $\text{GL}_n(\mathbb{R})$.

We may then construct the frame bundle $FM = \coprod_{\alpha} (U_{\alpha} \times GL_n(\mathbb{R})) / \sim$ with $(b \in U_{\alpha}, A) \sim (b \in U_{\beta}, \varphi_{\alpha\beta}(b)A)$. Again, the first coordinate projection induces $\overline{\pi} : FM \twoheadrightarrow M$.

If we interpret the matrix A above as a list of linearly independent vectors $A = (v_1 \mid v_2 \mid \cdots \mid v_n)$ on which the matrix $\varphi_{\alpha\beta}(b)$ acts by change-of-coordinates $(\varphi_{\alpha\beta}(b)v_1 \mid \varphi_{\alpha\beta}(b)v_2 \mid \cdots \mid \varphi_{\alpha\beta}(b)v_n)$, we obtain

$$\overline{\pi}^{-1}(b) = \{(v_1, v_2, \dots, v_n) \in (T_b M)^n \mid (v_1, v_2, \dots, v_n) \text{ form a basis of } T_b M\}.$$

• It is a fiber bundle; its fibers are discrete pointsets of cardinality $\#\Delta$.

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\#\Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\overline{\pi}$.

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\#\Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\overline{\pi}$.
- The fiberwise action is free (no fixed points!) and transitive.

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\#\Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\overline{\pi}$.
- The fiberwise action is free (no fixed points!) and transitive.

In particular, the universal covering $\widetilde{Y} \twoheadrightarrow Y$ is a principal $\pi_1(Y)$ -bundle.

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\#\Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\overline{\pi}$.
- The fiberwise action is free (no fixed points!) and transitive.

In particular, the universal covering $\widetilde{Y} \twoheadrightarrow Y$ is a principal $\pi_1(Y)$ -bundle.

Nobody said we had to make natural constructions! The product space $Y \times \pi_1(Y)$ with right action $(y, \gamma) \cdot \gamma' = (y, \gamma \gamma')$ is also a principal $\pi_1(Y)$ -bundle.

We obtained principal bundles from more general fiber bundles, and we can go the other way as well.

Definition (Associated bundle)

Let $\overline{\pi}: P \twoheadrightarrow B$ be a principal *G*-bundle and let *F* be a space with a left *G*-action $G \curvearrowright F$. Then $(P \times F) \curvearrowleft G$ via $(p, f).g = (p.g, g^{-1}.f)$. Then the first coordinate projection induces an *associated G-bundle* $\pi: (P \times F)/G \twoheadrightarrow B$ with fiber *F*.

We obtained principal bundles from more general fiber bundles, and we can go the other way as well.

Definition (Associated bundle)

Let $\overline{\pi}: P \twoheadrightarrow B$ be a principal *G*-bundle and let *F* be a space with a left *G*-action $G \curvearrowright F$. Then $(P \times F) \curvearrowleft G$ via $(p, f).g = (p.g, g^{-1}.f)$. Then the first coordinate projection induces an *associated G-bundle* $\pi: (P \times F)/G \twoheadrightarrow B$ with fiber *F*.

It is somewhat easier to see what is going on locally. For $U \times G \twoheadrightarrow U$, our action is $(U \times G \times F) \curvearrowleft G$ via $(b, h, f).g = (b, hg, g^{-1}.f)$. Every *G*-orbit of (b, h, f) has a unique representative of the form $(b, 1_G, f')$, namely $(b, h, f).h^{-1}$. Thus the middle factor is superfluous, so we have $(U \times G \times F)/G \cong U \times F$. Hence $(P \times F)/G$ has fiber *F*.

• $E_{triv} = S^1 \amalg S^1 \twoheadrightarrow S^1$ where $S^1 \amalg S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ by swapping the two components

- $E_{\text{triv}} = S^1 \amalg S^1 \twoheadrightarrow S^1$ where $S^1 \amalg S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ by swapping the two components
- $E_{\text{nontriv}} = S^1 \twoheadrightarrow S^1$, $e^{i\theta} \mapsto e^{2i\theta}$, where $S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ via $e^{i\theta}.1 = e^{i(\theta + \pi)}$

- $E_{\text{triv}} = S^1 \amalg S^1 \twoheadrightarrow S^1$ where $S^1 \amalg S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ by swapping the two components
- $E_{\text{nontriv}} = S^1 \twoheadrightarrow S^1$, $e^{i\theta} \mapsto e^{2i\theta}$, where $S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ via $e^{i\theta} \cdot 1 = e^{i(\theta + \pi)}$ Consider the actions $\mathbb{Z}/2\mathbb{Z} \curvearrowright S^1$ via $1 \cdot e^{i\theta} = e^{-i\theta}$ and $\mathbb{Z}/2\mathbb{Z} \curvearrowright (0,1)$ via $1 \cdot x = 1 - x$. Then:

- $E_{triv} = S^1 \amalg S^1 \twoheadrightarrow S^1$ where $S^1 \amalg S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ by swapping the two components
- $E_{\text{nontriv}} = S^1 \twoheadrightarrow S^1$, $e^{i\theta} \mapsto e^{2i\theta}$, where $S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ via $e^{i\theta} \cdot 1 = e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z}/2\mathbb{Z} \curvearrowright S^1$ via $1 \cdot e^{i\theta} = e^{-i\theta}$ and $\mathbb{Z}/2\mathbb{Z} \curvearrowright (0,1)$ via $1 \cdot x = 1 - x$. Then:
 - $(E_{\mathsf{triv}} imes S^1)/(\mathbb{Z}/2\mathbb{Z})$ is a torus

- $E_{\text{triv}} = S^1 \amalg S^1 \twoheadrightarrow S^1$ where $S^1 \amalg S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ by swapping the two components
- $E_{\text{nontriv}} = S^1 \twoheadrightarrow S^1$, $e^{i\theta} \mapsto e^{2i\theta}$, where $S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ via $e^{i\theta} \cdot 1 = e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z}/2\mathbb{Z} \curvearrowright S^1$ via $1 \cdot e^{i\theta} = e^{-i\theta}$ and $\mathbb{Z}/2\mathbb{Z} \curvearrowright (0,1)$ via $1 \cdot x = 1 - x$. Then:
 - $(E_{
 m triv} imes S^1)/(\mathbb{Z}/2\mathbb{Z})$ is a torus
 - $(E_{\text{nontriv}} imes S^1)/(\mathbb{Z}/2\mathbb{Z})$ is a Klein bottle

- $E_{\text{triv}} = S^1 \amalg S^1 \twoheadrightarrow S^1$ where $S^1 \amalg S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ by swapping the two components
- $E_{\text{nontriv}} = S^1 \twoheadrightarrow S^1$, $e^{i\theta} \mapsto e^{2i\theta}$, where $S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ via $e^{i\theta} \cdot 1 = e^{i(\theta + \pi)}$ Consider the actions $\mathbb{Z}/2\mathbb{Z} \curvearrowright S^1$ via $1 \cdot e^{i\theta} = e^{-i\theta}$ and $\mathbb{Z}/2\mathbb{Z} \curvearrowright (0,1)$ via $1 \cdot x = 1 - x$. Then:
 - $(E_{ ext{triv}} imes S^1)/(\mathbb{Z}/2\mathbb{Z})$ is a torus
 - $(E_{ ext{nontriv}} imes S^1)/(\mathbb{Z}/2\mathbb{Z})$ is a Klein bottle
 - $(E_{\mathsf{triv}} imes (0,1))/(\mathbb{Z}/2\mathbb{Z})$ is a cylinder

- $E_{\text{triv}} = S^1 \amalg S^1 \twoheadrightarrow S^1$ where $S^1 \amalg S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ by swapping the two components
- $E_{\text{nontriv}} = S^1 \twoheadrightarrow S^1$, $e^{i\theta} \mapsto e^{2i\theta}$, where $S^1 \curvearrowleft \mathbb{Z}/2\mathbb{Z}$ via $e^{i\theta} \cdot 1 = e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z}/2\mathbb{Z} \curvearrowright S^1$ via $1 \cdot e^{i\theta} = e^{-i\theta}$ and $\mathbb{Z}/2\mathbb{Z} \curvearrowright (0,1)$ via $1 \cdot x = 1 - x$. Then:
 - $(E_{ ext{triv}} imes S^1)/(\mathbb{Z}/2\mathbb{Z})$ is a torus
 - $(E_{
 m nontriv} imes S^1)/(\mathbb{Z}/2\mathbb{Z})$ is a Klein bottle
 - $(E_{\mathsf{triv}} imes (0,1))/(\mathbb{Z}/2\mathbb{Z})$ is a cylinder
 - $(E_{\text{nontriv}} imes (0,1))/(\mathbb{Z}/2\mathbb{Z})$ is a Möbius strip

A torus is just S¹ × S¹. There is no meaningful sense in which we need ℤ/2ℤ.

- A torus is just S¹ × S¹. There is no meaningful sense in which we need ℤ/2ℤ.
- Indeed, if a bundle $\pi : E \to B$ is isomorphic to a Cartesian product $E \cong B \times F$, then the diffeomorphisms $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F$ can all be chosen so that the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \text{Diffeo}(F)$ all have images in $\{1\} \subset \text{Diffeo}(F)$.

- A torus is just S¹ × S¹. There is no meaningful sense in which we need ℤ/2ℤ.
- Indeed, if a bundle $\pi : E \to B$ is isomorphic to a Cartesian product $E \cong B \times F$, then the diffeomorphisms $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F$ can all be chosen so that the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \text{Diffeo}(F)$ all have images in $\{1\} \subset \text{Diffeo}(F)$.
- For the tangent bundle *TM* → *M*, we said the functions *φ*_{αβ} → Diffeo(ℝⁿ) all have images in GL_n(ℝ), but it we choose a Riemannian metric on *M* and compatible diffeomorphisms *φ*_α, then the functions *φ*_{αβ} will all have images in O(n) ⊂ GL_n(ℝ).

Definition (Reduction of structure group)

Let G be a group and $H \leq G$ a subgroup. If we have a principal G-bundle $P \twoheadrightarrow B$ and a principal H-bundle $Q \twoheadrightarrow B$, then a fiber-preserving embedding $\psi : Q \hookrightarrow P$ is a *reduction of structure group* if ψ is H-equivariant:

$$\psi(q.h) = \psi(q).h \quad \forall q \in Q, h \in H.$$

Definition (Reduction of structure group)

Let G be a group and $H \leq G$ a subgroup. If we have a principal G-bundle $P \twoheadrightarrow B$ and a principal H-bundle $Q \twoheadrightarrow B$, then a fiber-preserving embedding $\psi : Q \hookrightarrow P$ is a *reduction of structure group* if ψ is H-equivariant:

$$\psi(q.h) = \psi(q).h \quad \forall q \in Q, h \in H.$$

A principal *G*-bundle $P \twoheadrightarrow B$ admits a reduction of structure group $\psi: Q \hookrightarrow P$ if and only if *B* admits an open covering $B = \bigcup_{\alpha} U_{\alpha}$ so that there are functions $\varphi_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to H$ such that $P \cong \coprod_{\alpha} (U_{\alpha} \times G) / \sim$, where $(b \in U_{\alpha}, g) \sim (b \in U_{\beta}, \varphi_{\alpha\beta}(b)g)$ for every $b \in U_{\alpha} \cap U_{\beta}$

We have a reduction of structure group $\psi : Q \hookrightarrow P$ if and only if the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ can be taken with image lying in H.

We have a reduction of structure group $\psi : Q \hookrightarrow P$ if and only if the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ can be taken with image lying in H.

Proof sketch.

If $\varphi_{\alpha\beta}$ has image in H, then $Q = \coprod_{\alpha} (U_{\alpha} \times H) / ((b, h) \sim (b, \varphi_{\alpha\beta}(b)h))$ is a principal H-bundle, and ψ can be defined on every $U_{\alpha} \times H$ by $\psi|_{U_{\alpha} \times H}(b, h) = (b, h) \in U_{\alpha} \times G$.

We have a reduction of structure group $\psi : Q \hookrightarrow P$ if and only if the functions $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ can be taken with image lying in H.

Proof sketch.

If $\varphi_{\alpha\beta}$ has image in H, then $Q = \coprod_{\alpha} (U_{\alpha} \times H)/((b, h) \sim (b, \varphi_{\alpha\beta}(b)h))$ is a principal H-bundle, and ψ can be defined on every $U_{\alpha} \times H$ by $\psi|_{U_{\alpha} \times H}(b, h) = (b, h) \in U_{\alpha} \times G$.

If we start with a reduction $\psi : Q \hookrightarrow P$, then P is isomorphic to the associated H-bundle $(Q \times G)/H$ via the map

 $\Psi: (Q imes G)/H o P$ $(q,g) \mod H \mapsto \psi(q).g$

It is left as an exercise to check that $\boldsymbol{\Psi}$ is a well-defined isomorphism.

Special cases of reduction of structure group

Let $\overline{\pi} : P \twoheadrightarrow B$ be a principal *G*-bundle.

Let $\overline{\pi} : P \twoheadrightarrow B$ be a principal *G*-bundle.

A reduction to the trivial subgroup $\{1\} \subset G$ is a fiber-preserving $\{1\}$ -equivariant map $\psi : B \cong B \times \{1\} \hookrightarrow P$. Equivariance here is vacuous, and fiber-preserving reduces to the condition $\overline{\pi} \circ \psi = \text{Id}_B$. Thus a reduction to $\{1\}$ is the same thing as a section of $\overline{\pi} : P \twoheadrightarrow B$. We conclude that P is a trivial bundle $P \cong B \times G$ if and only if $\overline{\pi}$ has a section.

Let $\overline{\pi} : P \twoheadrightarrow B$ be a principal *G*-bundle.

A reduction to the trivial subgroup $\{1\} \subset G$ is a fiber-preserving $\{1\}$ -equivariant map $\psi : B \cong B \times \{1\} \hookrightarrow P$. Equivariance here is vacuous, and fiber-preserving reduces to the condition $\overline{\pi} \circ \psi = \text{Id}_B$. Thus a reduction to $\{1\}$ is the same thing as a section of $\overline{\pi} : P \twoheadrightarrow B$. We conclude that P is a trivial bundle $P \cong B \times G$ if and only if $\overline{\pi}$ has a section.

A reduction to G = G is a fiber-preserving *G*-equivariant diffeomorphism $\psi: P \xrightarrow{\sim} P$. We call such maps *gauge transformations* of *P*. A gauge transformation induces an automorphism of any associated bundle $(P \times F)/G$ via

$$(p,f)_{/G}\mapsto (\psi(p),f)_{/G}$$

Let $\overline{\pi} : FM \to M$ be the frame bundle of M. Recall that FM is a principal $GL_n(\mathbb{R})$ -bundle whose fiber at $b \in M$ is the set of bases of T_bM .

Let $\overline{\pi} : FM \to M$ be the frame bundle of M. Recall that FM is a principal $GL_n(\mathbb{R})$ -bundle whose fiber at $b \in M$ is the set of bases of T_bM .

If M admits a volume form, let $SM \to M$ be the principal $SL_n(\mathbb{R})$ -bundle whose fiber at $b \in M$ is the set of bases of T_bM with volume 1. The inclusion $SM \hookrightarrow FM$ is a reduction of structure group to $SL_n(\mathbb{R})$.

Let $\overline{\pi} : FM \to M$ be the frame bundle of M. Recall that FM is a principal $GL_n(\mathbb{R})$ -bundle whose fiber at $b \in M$ is the set of bases of T_bM .

If M admits a volume form, let $SM \to M$ be the principal $SL_n(\mathbb{R})$ -bundle whose fiber at $b \in M$ is the set of bases of T_bM with volume 1. The inclusion $SM \hookrightarrow FM$ is a reduction of structure group to $SL_n(\mathbb{R})$.

If *M* admits a Riemannian metric, let $OM \rightarrow M$ be the principal O(n)-bundle whose fiber at $b \in M$ is the set of orthonormal bases of T_bM . The inclusion $OM \hookrightarrow FM$ is a reduction of structure group to O(n).

Let $\overline{\pi} : FM \to M$ be the frame bundle of M. Recall that FM is a principal $GL_n(\mathbb{R})$ -bundle whose fiber at $b \in M$ is the set of bases of T_bM .

If M admits a volume form, let $SM \to M$ be the principal $SL_n(\mathbb{R})$ -bundle whose fiber at $b \in M$ is the set of bases of T_bM with volume 1. The inclusion $SM \hookrightarrow FM$ is a reduction of structure group to $SL_n(\mathbb{R})$.

If M admits a Riemannian metric, let $OM \rightarrow M$ be the principal O(n)-bundle whose fiber at $b \in M$ is the set of orthonormal bases of T_bM . The inclusion $OM \hookrightarrow FM$ is a reduction of structure group to O(n).

When *n* is even, an *almost-complex* structure is a bundle isomorphism $J: TM \xrightarrow{\sim} TM$ with $(J|_{T_bM})^2 = -\operatorname{Id}_{T_bM}$ for every $b \in M$. Let $CM \twoheadrightarrow M$ be the principal $\operatorname{GL}_{n/2}(\mathbb{C})$ -bundle whose fiber at $b \in M$ is the set of bases $\{v_i\}_{i=1}^n$ of T_bM with $Jv_{2k} = v_{2k+1}$ for every *k*. The inclusion $CM \hookrightarrow M$ is a reduction of structure group to $\operatorname{GL}_{n/2}(\mathbb{C})$.

Theorem

Every C^{∞} manifold M admits a Riemannian metric g.

Theorem

Every C^{∞} manifold M admits a Riemannian metric g.

Standard proof.

By the Whitney embedding theorem, there exists some $N \in \mathbb{N}$ so that there is a smooth embedding $M \hookrightarrow \mathbb{R}^N$. Let g_{Euc} denote the standard Euclidean metric on \mathbb{R}^N . Setting $g := g_{\text{Euc}}|_M$, we are done.

Theorem

Every C^{∞} manifold M admits a Riemannian metric g.

Standard proof.

By the Whitney embedding theorem, there exists some $N \in \mathbb{N}$ so that there is a smooth embedding $M \hookrightarrow \mathbb{R}^N$. Let g_{Euc} denote the standard Euclidean metric on \mathbb{R}^N . Setting $g := g_{\text{Euc}}|_M$, we are done.

This is a nice proof, but it would be satisfying to know if there was also a nice proof that does not rely on the Whitney embedding theorem.

Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle $\pi : E \to B$ with fiber F has a section.

Proof.

If F is contractible, then every fiber bundle $\pi : E \to B$ with fiber F has a section.

Proof.

Let *B* have a CW-structure such that every *k*-cell lies in a neighborhood $U \subset B$ over which the bundle can be trivialized $\pi^{-1}(U) \cong U \times F$. Then a section over a *k*-cell c_k is equivalent to a map $c_k \to F$. Let $B^{(k)}$ denote the *k*-skeleton of *B*. We define a section $\sigma : B \to E$ by induction on *k*.

If F is contractible, then every fiber bundle $\pi : E \to B$ with fiber F has a section.

Proof.

Let B have a CW-structure such that every k-cell lies in a neighborhood $U \subset B$ over which the bundle can be trivialized $\pi^{-1}(U) \cong U \times F$. Then a section over a k-cell c_k is equivalent to a map $c_k \to F$. Let $B^{(k)}$ denote the k-skeleton of B. We define a section $\sigma: B \to E$ by induction on k. For each $b \in B^{(0)}$, we may pick any point in the fiber over b, thereby defining $\sigma|_{B^{(0)}}: B^{(0)} \to E$. Now suppose we have already defined $\sigma|_{B^{(k-1)}}$ for k > 0, and let c_k be any k-cell of B. We already have $\partial c_k \cong S^{k-1} \to F$, and since $\pi_k(F) = 0$, this extends to a map $c_k \to F$. These maps $c_k \to F$ define $\sigma|_{B^{(k)}}$. By induction, we have a section defined on all of B.

Let $P_n(\mathbb{R})$ denote the space of symmetric positive-definite $n \times n$ matrices over \mathbb{R} , and let $\pi : TM \to M$ be the tangent bundle. Given a trivialization $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^n$ over an open subset $U_{\alpha} \subset M$, a Riemannian metric over U_{α} is just a choice of section $g_{\alpha} : U_{\alpha} \to U_{\alpha} \times P_n(\mathbb{R})$. Let $P_n(\mathbb{R})$ denote the space of symmetric positive-definite $n \times n$ matrices over \mathbb{R} , and let $\pi : TM \to M$ be the tangent bundle. Given a trivialization $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^n$ over an open subset $U_{\alpha} \subset M$, a Riemannian metric over U_{α} is just a choice of section $g_{\alpha} : U_{\alpha} \to U_{\alpha} \times P_n(\mathbb{R})$.

Let $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}_n(\mathbb{R})$ be a transition function for *TM*. A Riemannian metric over $U_{\alpha} \cup U_{\beta}$ is a pair of g_{α} , g_{β} with $g_{\beta}(p) = \varphi_{\alpha\beta}(p)g_{\alpha}(p)\varphi_{\alpha\beta}(p)^{\top}$. Therefore a Riemannian metric on *M* is a section of the associated $\operatorname{GL}_n(\mathbb{R})$ -bundle $E = \coprod_{\alpha}(U_{\alpha} \times \operatorname{P}_n(\mathbb{R}))/\sim$ with fiber $\operatorname{P}_n(\mathbb{R})$. Let $P_n(\mathbb{R})$ denote the space of symmetric positive-definite $n \times n$ matrices over \mathbb{R} , and let $\pi : TM \to M$ be the tangent bundle. Given a trivialization $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^n$ over an open subset $U_{\alpha} \subset M$, a Riemannian metric over U_{α} is just a choice of section $g_{\alpha} : U_{\alpha} \to U_{\alpha} \times P_n(\mathbb{R})$.

Let $\varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}_{n}(\mathbb{R})$ be a transition function for *TM*. A Riemannian metric over $U_{\alpha} \cup U_{\beta}$ is a pair of g_{α} , g_{β} with $g_{\beta}(p) = \varphi_{\alpha\beta}(p)g_{\alpha}(p)\varphi_{\alpha\beta}(p)^{\top}$. Therefore a Riemannian metric on *M* is a section of the associated $\operatorname{GL}_{n}(\mathbb{R})$ -bundle $E = \coprod_{\alpha}(U_{\alpha} \times \operatorname{P}_{n}(\mathbb{R}))/\sim$ with fiber $\operatorname{P}_{n}(\mathbb{R})$.

By the polar decomposition for real matrices, we have $P_n(\mathbb{R}) \cong GL_n(\mathbb{R})/O(n)$. By the Gram-Schmidt procedure, $GL_n(\mathbb{R})/O(n)$ is contractible. Therefore, by the previous lemma, *E* has a section. That is, there exists a Riemannian metric on *M*.

- S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, Vol. 1
- T. Walpuski, Notes on the geometry of manifolds, https: //math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf
- P. Michor, Topics in Differential Geometry
- My notes on tangent spaces to character varieties on my website