Principal Bundles
 Day 1: Introduction

Bradley Zykoski

June 15, 2020

Fiber bundles

Throughout this minicourse, we will work in the category of C^{∞} manifolds.

Definition (Fiber Bundle)

A surjection $\pi: E \rightarrow B$ is a fiber bundle with fiber F if, for every $b \in B$, there is an open neighborhood $U \ni b$ so that we have a diffeomorphism

$$
\varphi: \pi^{-1}(U) \xrightarrow{\sim} U \times F
$$

that conjugates π to the first coordinate projection.

Fiber bundles

Throughout this minicourse, we will work in the category of C^{∞} manifolds.

Definition (Fiber Bundle)

A surjection $\pi: E \rightarrow B$ is a fiber bundle with fiber F if, for every $b \in B$, there is an open neighborhood $U \ni b$ so that we have a diffeomorphism

$$
\varphi: \pi^{-1}(U) \xrightarrow{\sim} U \times F
$$

that conjugates π to the first coordinate projection.
If $B=\bigcup_{\alpha} U_{\alpha}$ is an open cover so that there are diffeomorphisms $\varphi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \xrightarrow{\sim} U_{\alpha} \times F$, we have functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}(F)$ given by

$$
\left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right)(b, f)=\left(b, \varphi_{\alpha \beta}(b)(f)\right) \quad \text { for } b \in U_{\alpha} \cap U_{\beta}
$$

Fiber bundles

$$
B=\bigcup_{\alpha} U_{\alpha}, \quad \varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}(F)
$$

We can construct our original bundle from this data. We have $E \cong \coprod_{\alpha}\left(U_{\alpha} \times F\right) / \sim$, where $\left(b \in U_{\alpha}, f\right) \sim\left(b \in U_{\beta}, \varphi_{\alpha \beta}(b)(f)\right)$ for every $b \in U_{\alpha} \cap U_{\beta}$. Then $\pi: E \rightarrow B$ is induced by the first coordinate projection.

Fiber bundles

$$
B=\bigcup_{\alpha} U_{\alpha}, \quad \varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}(F)
$$

We can construct our original bundle from this data. We have $E \cong \coprod_{\alpha}\left(U_{\alpha} \times F\right) / \sim$, where $\left(b \in U_{\alpha}, f\right) \sim\left(b \in U_{\beta}, \varphi_{\alpha \beta}(b)(f)\right)$ for every $b \in U_{\alpha} \cap U_{\beta}$. Then $\pi: E \rightarrow B$ is induced by the first coordinate projection.

It is often the case that the $\varphi_{\alpha \beta}$ all have image in some subgroup $G \subset \operatorname{Diffeo}(F)$. Of course G acts on F, but it also acts on itself!

Fiber bundles

$$
B=\bigcup_{\alpha} U_{\alpha}, \quad \varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}(F)
$$

We can construct our original bundle from this data. We have $E \cong \coprod_{\alpha}\left(U_{\alpha} \times F\right) / \sim$, where $\left(b \in U_{\alpha}, f\right) \sim\left(b \in U_{\beta}, \varphi_{\alpha \beta}(b)(f)\right)$ for every $b \in U_{\alpha} \cap U_{\beta}$. Then $\pi: E \rightarrow B$ is induced by the first coordinate projection.

It is often the case that the $\varphi_{\alpha \beta}$ all have image in some subgroup $G \subset \operatorname{Diffeo}(F)$. Of course G acts on F, but it also acts on itself!

We can construct $P=\coprod_{\alpha}\left(U_{\alpha} \times G\right) / \sim$, where $\left(b \in U_{\alpha}, g\right) \sim\left(b \in U_{\beta}, \varphi_{\alpha \beta}(b) g\right)$ for every $b \in U_{\alpha} \cap U_{\beta}$. We have a bundle $\bar{\pi}: P \rightarrow B$ induced by the first coordinate projection.

Principal bundles

Definition (Principal Bundle)

A fiber bundle $\bar{\pi}: P \rightarrow B$ with fiber G is a principal G-bundle if there is a right action $P \curvearrowleft G$ that preserves the fibers of $\bar{\pi}$, and acts freely and transitively on each fiber.

Principal bundles

Definition (Principal Bundle)

A fiber bundle $\bar{\pi}: P \rightarrow B$ with fiber G is a principal G-bundle if there is a right action $P \curvearrowleft G$ that preserves the fibers of $\bar{\pi}$, and acts freely and transitively on each fiber.

In our example, we have $\coprod_{\alpha}\left(U_{\alpha} \times G\right) / \sim \curvearrowleft G$ via $(b, g) . h=(b, g h)$, giving a principal G-bundle.

Principal bundles

Definition (Principal Bundle)

A fiber bundle $\bar{\pi}: P \rightarrow B$ with fiber G is a principal G-bundle if there is a right action $P \curvearrowleft G$ that preserves the fibers of $\bar{\pi}$, and acts freely and transitively on each fiber.

In our example, we have $\coprod_{\alpha}\left(U_{\alpha} \times G\right) / \sim \curvearrowleft G$ via $(b, g) . h=(b, g h)$, giving a principal G-bundle.

Every principal G-bundle can be constructed by such open-covering data.

Example: The tangent and frame bundles

Let M be C^{∞} manifold. Then the tangent bundle $\pi: T M \rightarrow M$ is a fiber bundle with fiber \mathbb{R}^{n}. Given any open cover $M=\bigcup_{\alpha} U_{\alpha}$ with diffeomorphisms $\varphi: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$, the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}\left(\mathbb{R}^{n}\right)$ all have images contained in $\mathrm{GL}_{n}(\mathbb{R})$.

Example: The tangent and frame bundles

Let M be C^{∞} manifold. Then the tangent bundle $\pi: T M \rightarrow M$ is a fiber bundle with fiber \mathbb{R}^{n}. Given any open cover $M=\bigcup_{\alpha} U_{\alpha}$ with diffeomorphisms $\varphi: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$, the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}\left(\mathbb{R}^{n}\right)$ all have images contained in $\mathrm{GL}_{n}(\mathbb{R})$.

We may then construct the frame bundle $F M=\coprod_{\alpha}\left(U_{\alpha} \times G L_{n}(\mathbb{R})\right) / \sim$ with $\left(b \in U_{\alpha}, A\right) \sim\left(b \in U_{\beta}, \varphi_{\alpha \beta}(b) A\right)$. Again, the first coordinate projection induces $\bar{\pi}: F M \rightarrow M$.

Example: The tangent and frame bundles

Let M be C^{∞} manifold. Then the tangent bundle $\pi: T M \rightarrow M$ is a fiber bundle with fiber \mathbb{R}^{n}. Given any open cover $M=\bigcup_{\alpha} U_{\alpha}$ with diffeomorphisms $\varphi: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$, the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}\left(\mathbb{R}^{n}\right)$ all have images contained in $\mathrm{GL}_{n}(\mathbb{R})$.

We may then construct the frame bundle $F M=\coprod_{\alpha}\left(U_{\alpha} \times \mathrm{GL}_{n}(\mathbb{R})\right) / \sim$ with $\left(b \in U_{\alpha}, A\right) \sim\left(b \in U_{\beta}, \varphi_{\alpha \beta}(b) A\right)$. Again, the first coordinate projection induces $\bar{\pi}: F M \rightarrow M$.

If we interpret the matrix A above as a list of linearly independent vectors $A=\left(v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right)$ on which the matrix $\varphi_{\alpha \beta}(b)$ acts by change-of-coordinates $\left(\varphi_{\alpha \beta}(b) v_{1}\left|\varphi_{\alpha \beta}(b) v_{2}\right| \cdots \mid \varphi_{\alpha \beta}(b) v_{n}\right)$, we obtain
$\bar{\pi}^{-1}(b)=\left\{\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in\left(T_{b} M\right)^{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right.$ form a basis of $\left.T_{b} M\right\}$.

Example: Regular coverings

Let $\bar{\pi}: X \rightarrow Y$ be a regular (i.e. normal, i.e. Galois) covering space with deck group Δ. Then $\bar{\pi}: X \rightarrow Y$ is a principal Δ-bundle:

Example: Regular coverings

Let $\bar{\pi}: X \rightarrow Y$ be a regular (i.e. normal, i.e. Galois) covering space with deck group Δ. Then $\bar{\pi}: X \rightarrow Y$ is a principal Δ-bundle:

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\# \Delta$.

Example: Regular coverings

Let $\bar{\pi}: X \rightarrow Y$ be a regular (i.e. normal, i.e. Galois) covering space with deck group Δ. Then $\bar{\pi}: X \rightarrow Y$ is a principal Δ-bundle:

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\# \Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\bar{\pi}$.

Example: Regular coverings

Let $\bar{\pi}: X \rightarrow Y$ be a regular (i.e. normal, i.e. Galois) covering space with deck group Δ. Then $\bar{\pi}: X \rightarrow Y$ is a principal Δ-bundle:

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\# \Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\bar{\pi}$.
- The fiberwise action is free (no fixed points!) and transitive.

Example: Regular coverings

Let $\bar{\pi}: X \rightarrow Y$ be a regular (i.e. normal, i.e. Galois) covering space with deck group Δ. Then $\bar{\pi}: X \rightarrow Y$ is a principal Δ-bundle:

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\# \Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\bar{\pi}$.
- The fiberwise action is free (no fixed points!) and transitive. In particular, the universal covering $\widetilde{Y} \rightarrow Y$ is a principal $\pi_{1}(Y)$-bundle.

Example: Regular coverings

Let $\bar{\pi}: X \rightarrow Y$ be a regular (i.e. normal, i.e. Galois) covering space with deck group Δ. Then $\bar{\pi}: X \rightarrow Y$ is a principal Δ-bundle:

- It is a fiber bundle; its fibers are discrete pointsets of cardinality $\# \Delta$.
- There is a right action $X \curvearrowleft \Delta$ by deck transformations, which preserves the fibers of $\bar{\pi}$.
- The fiberwise action is free (no fixed points!) and transitive. In particular, the universal covering $\widetilde{Y} \rightarrow Y$ is a principal $\pi_{1}(Y)$-bundle.

Nobody said we had to make natural constructions! The product space $Y \times \pi_{1}(Y)$ with right action $(y, \gamma) \cdot \gamma^{\prime}=\left(y, \gamma \gamma^{\prime}\right)$ is also a principal $\pi_{1}(Y)$-bundle.

Associated bundles

We obtained principal bundles from more general fiber bundles, and we can go the other way as well.

Definition (Associated bundle)

Let $\pi: P \rightarrow B$ be a principal G-bundle and let F be a space with a left G-action $G \curvearrowright F$. Then $(P \times F) \curvearrowleft G$ via $(p, f) . g=\left(p . g, g^{-1} . f\right)$. Then the first coordinate projection induces an associated G-bundle $\pi:(P \times F) / G \rightarrow B$ with fiber F.

Associated bundles

We obtained principal bundles from more general fiber bundles, and we can go the other way as well.

Definition (Associated bundle)

Let $\pi: P \rightarrow B$ be a principal G-bundle and let F be a space with a left G-action $G \curvearrowright F$. Then $(P \times F) \curvearrowleft G$ via $(p, f) . g=\left(p . g, g^{-1} . f\right)$. Then the first coordinate projection induces an associated G-bundle $\pi:(P \times F) / G \rightarrow B$ with fiber F.

It is somewhat easier to see what is going on locally. For $U \times G \rightarrow U$, our action is $(U \times G \times F) \curvearrowleft G$ via $(b, h, f) . g=\left(b, h g, g^{-1} . f\right)$. Every G-orbit of (b, h, f) has a unique representative of the form $\left(b, 1_{G}, f^{\prime}\right)$, namely $(b, h, f) \cdot h^{-1}$. Thus the middle factor is superfluous, so we have $(U \times G \times F) / G \cong U \times F$. Hence $(P \times F) / G$ has fiber F.

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

- $E_{\text {triv }}=S^{1} \amalg S^{1} \rightarrow S^{1}$ where $S^{1} \amalg S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ by swapping the two components

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

- $E_{\text {triv }}=S^{1} \amalg S^{1} \rightarrow S^{1}$ where $S^{1} \amalg S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ by swapping the two components
- $E_{\text {nontriv }}=S^{1} \rightarrow S^{1}, e^{i \theta} \mapsto e^{2 i \theta}$, where $S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ via $e^{i \theta} .1=e^{i(\theta+\pi)}$

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

- $E_{\text {triv }}=S^{1} \amalg S^{1} \rightarrow S^{1}$ where $S^{1} \amalg S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ by swapping the two components
- $E_{\text {nontriv }}=S^{1} \rightarrow S^{1}, e^{i \theta} \mapsto e^{2 i \theta}$, where $S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ via $e^{i \theta} .1=e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright S^{1}$ via $1 . e^{i \theta}=e^{-i \theta}$ and $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright(0,1)$ via 1. $x=1-x$. Then:

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

- $E_{\text {triv }}=S^{1} \amalg S^{1} \rightarrow S^{1}$ where $S^{1} \amalg S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ by swapping the two components
- $E_{\text {nontriv }}=S^{1} \rightarrow S^{1}, e^{i \theta} \mapsto e^{2 i \theta}$, where $S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ via $e^{i \theta} .1=e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright S^{1}$ via $1 . e^{i \theta}=e^{-i \theta}$ and $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright(0,1)$ via 1. $x=1-x$. Then:
- $\left(E_{\text {triv }} \times S^{1}\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a torus

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

- $E_{\text {triv }}=S^{1} \amalg S^{1} \rightarrow S^{1}$ where $S^{1} \amalg S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ by swapping the two components
- $E_{\text {nontriv }}=S^{1} \rightarrow S^{1}, e^{i \theta} \mapsto e^{2 i \theta}$, where $S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ via $e^{i \theta} .1=e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright S^{1}$ via $1 . e^{i \theta}=e^{-i \theta}$ and $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright(0,1)$ via 1. $x=1-x$. Then:
- $\left(E_{\text {triv }} \times S^{1}\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a torus
- $\left(E_{\text {nontriv }} \times S^{1}\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a Klein bottle

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

- $E_{\text {triv }}=S^{1} \amalg S^{1} \rightarrow S^{1}$ where $S^{1} \amalg S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ by swapping the two components
- $E_{\text {nontriv }}=S^{1} \rightarrow S^{1}, e^{i \theta} \mapsto e^{2 i \theta}$, where $S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ via $e^{i \theta} .1=e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright S^{1}$ via $1 . e^{i \theta}=e^{-i \theta}$ and $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright(0,1)$ via 1. $x=1-x$. Then:
- $\left(E_{\text {triv }} \times S^{1}\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a torus
- $\left(E_{\text {nontriv }} \times S^{1}\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a Klein bottle
- $\left(E_{\text {triv }} \times(0,1)\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a cylinder

Example: The classic non-orientable shapes

There are only two principal $\mathbb{Z} / 2 \mathbb{Z}$-bundles over S^{1} :

- $E_{\text {triv }}=S^{1} \amalg S^{1} \rightarrow S^{1}$ where $S^{1} \amalg S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ by swapping the two components
- $E_{\text {nontriv }}=S^{1} \rightarrow S^{1}, e^{i \theta} \mapsto e^{2 i \theta}$, where $S^{1} \curvearrowleft \mathbb{Z} / 2 \mathbb{Z}$ via $e^{i \theta} .1=e^{i(\theta+\pi)}$ Consider the actions $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright S^{1}$ via $1 . e^{i \theta}=e^{-i \theta}$ and $\mathbb{Z} / 2 \mathbb{Z} \curvearrowright(0,1)$ via 1. $x=1-x$. Then:
- $\left(E_{\text {triv }} \times S^{1}\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a torus
- $\left(E_{\text {nontriv }} \times S^{1}\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a Klein bottle
- $\left(E_{\text {triv }} \times(0,1)\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a cylinder
- $\left(E_{\text {nontriv }} \times(0,1)\right) /(\mathbb{Z} / 2 \mathbb{Z})$ is a Möbius strip

Reduction of structure group

Notice that, with some of these constructions, we did not use the group to its full potential!

Reduction of structure group

Notice that, with some of these constructions, we did not use the group to its full potential!

- A torus is just $S^{1} \times S^{1}$. There is no meaningful sense in which we need $\mathbb{Z} / 2 \mathbb{Z}$.

Reduction of structure group

Notice that, with some of these constructions, we did not use the group to its full potential!

- A torus is just $S^{1} \times S^{1}$. There is no meaningful sense in which we need $\mathbb{Z} / 2 \mathbb{Z}$.
- Indeed, if a bundle $\pi: E \rightarrow B$ is isomorphic to a Cartesian product $E \cong B \times F$, then the diffeomorphisms $\varphi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times F$ can all be chosen so that the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}(F)$ all have images in $\{1\} \subset \operatorname{Diffeo}(F)$.

Reduction of structure group

Notice that, with some of these constructions, we did not use the group to its full potential!

- A torus is just $S^{1} \times S^{1}$. There is no meaningful sense in which we need $\mathbb{Z} / 2 \mathbb{Z}$.
- Indeed, if a bundle $\pi: E \rightarrow B$ is isomorphic to a Cartesian product $E \cong B \times F$, then the diffeomorphisms $\varphi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times F$ can all be chosen so that the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{Diffeo}(F)$ all have images in $\{1\} \subset \operatorname{Diffeo}(F)$.
- For the tangent bundle $T M \rightarrow M$, we said the functions $\varphi_{\alpha \beta} \rightarrow \operatorname{Diffeo}\left(\mathbb{R}^{n}\right)$ all have images in $\mathrm{GL}_{n}(\mathbb{R})$, but it we choose a Riemannian metric on M and compatible diffeomorphisms φ_{α}, then the functions $\varphi_{\alpha \beta}$ will all have images in $\mathrm{O}(n) \subset G L_{n}(\mathbb{R})$.

Reduction of structure group

Definition (Reduction of structure group)

Let G be a group and $H \leq G$ a subgroup. If we have a principal G-bundle $P \rightarrow B$ and a principal H-bundle $Q \rightarrow B$, then a fiber-preserving embedding $\psi: Q \hookrightarrow P$ is a reduction of structure group if ψ is H-equivariant:

$$
\psi(q . h)=\psi(q) . h \quad \forall q \in Q, h \in H .
$$

Reduction of structure group

Definition (Reduction of structure group)

Let G be a group and $H \leq G$ a subgroup. If we have a principal G-bundle $P \rightarrow B$ and a principal H-bundle $Q \rightarrow B$, then a fiber-preserving embedding $\psi: Q \hookrightarrow P$ is a reduction of structure group if ψ is H-equivariant:

$$
\psi(q . h)=\psi(q) . h \quad \forall q \in Q, h \in H .
$$

A principal G-bundle $P \rightarrow B$ admits a reduction of structure group $\psi: Q \hookrightarrow P$ if and only if B admits an open covering $B=\bigcup_{\alpha} U_{\alpha}$ so that there are functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow H$ such that $P \cong \coprod_{\alpha}\left(U_{\alpha} \times G\right) / \sim$, where $\left(b \in U_{\alpha}, g\right) \sim\left(b \in U_{\beta}, \varphi_{\alpha \beta}(b) g\right)$ for every $b \in U_{\alpha} \cap U_{\beta}$

Reduction of structure group

Lemma

We have a reduction of structure group $\psi: Q \hookrightarrow P$ if and only if the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ can be taken with image lying in H.

Reduction of structure group

Lemma

We have a reduction of structure group $\psi: Q \hookrightarrow P$ if and only if the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ can be taken with image lying in H.

Proof sketch.

If $\varphi_{\alpha \beta}$ has image in H, then $Q=\coprod_{\alpha}\left(U_{\alpha} \times H\right) /\left((b, h) \sim\left(b, \varphi_{\alpha \beta}(b) h\right)\right)$ is a principal H-bundle, and ψ can be defined on every $U_{\alpha} \times H$ by $\left.\psi\right|_{U_{\alpha} \times H}(b, h)=(b, h) \in U_{\alpha} \times G$.

Reduction of structure group

Lemma

We have a reduction of structure group $\psi: Q \hookrightarrow P$ if and only if the functions $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ can be taken with image lying in H.

Proof sketch.

If $\varphi_{\alpha \beta}$ has image in H, then $Q=\coprod_{\alpha}\left(U_{\alpha} \times H\right) /\left((b, h) \sim\left(b, \varphi_{\alpha \beta}(b) h\right)\right)$ is a principal H-bundle, and ψ can be defined on every $U_{\alpha} \times H$ by $\left.\psi\right|_{U_{\alpha} \times H}(b, h)=(b, h) \in U_{\alpha} \times G$.

If we start with a reduction $\psi: Q \hookrightarrow P$, then P is isomorphic to the associated H-bundle $(Q \times G) / H$ via the map

$$
\begin{aligned}
\Psi:(Q \times G) / H & \rightarrow P \\
(q, g) \bmod H & \mapsto \psi(q) \cdot g
\end{aligned}
$$

It is left as an exercise to check that Ψ is a well-defined isomorphism.

Special cases of reduction of structure group

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle.

Special cases of reduction of structure group

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle.
A reduction to the trivial subgroup $\{1\} \subset G$ is a fiber-preserving $\{1\}$-equivariant map $\psi: B \cong B \times\{1\} \hookrightarrow P$. Equivariance here is vacuous, and fiber-preserving reduces to the condition $\bar{\pi} \circ \psi=\operatorname{Id}_{B}$. Thus a reduction to $\{1\}$ is the same thing as a section of $\bar{\pi}: P \rightarrow B$. We conclude that P is a trivial bundle $P \cong B \times G$ if and only if $\bar{\pi}$ has a section.

Special cases of reduction of structure group

Let $\bar{\pi}: P \rightarrow B$ be a principal G-bundle.
A reduction to the trivial subgroup $\{1\} \subset G$ is a fiber-preserving $\{1\}$-equivariant map $\psi: B \cong B \times\{1\} \hookrightarrow P$. Equivariance here is vacuous, and fiber-preserving reduces to the condition $\bar{\pi} \circ \psi=\operatorname{Id}_{B}$. Thus a reduction to $\{1\}$ is the same thing as a section of $\bar{\pi}: P \rightarrow B$. We conclude that P is a trivial bundle $P \cong B \times G$ if and only if $\bar{\pi}$ has a section.

A reduction to $G=G$ is a fiber-preserving G-equivariant diffeomorphism $\psi: P \xrightarrow{\sim} P$. We call such maps gauge transformations of P. A gauge transformation induces an automorphism of any associated bundle $(P \times F) / G$ via

$$
(p, f)_{/ G} \mapsto(\psi(p), f)_{/ G}
$$

Example: Tensorial structures reduce the frame bundle

Let $\bar{\pi}: F M \rightarrow M$ be the frame bundle of M. Recall that $F M$ is a principal $\mathrm{GL}_{n}(\mathbb{R})$-bundle whose fiber at $b \in M$ is the set of bases of $T_{b} M$.

Example: Tensorial structures reduce the frame bundle

Let $\bar{\pi}: F M \rightarrow M$ be the frame bundle of M. Recall that $F M$ is a principal $\mathrm{GL}_{n}(\mathbb{R})$-bundle whose fiber at $b \in M$ is the set of bases of $T_{b} M$.

If M admits a volume form, let $S M \rightarrow M$ be the principal $S L_{n}(\mathbb{R})$-bundle whose fiber at $b \in M$ is the set of bases of $T_{b} M$ with volume 1 . The inclusion $S M \hookrightarrow F M$ is a reduction of structure group to $S L_{n}(\mathbb{R})$.

Example: Tensorial structures reduce the frame bundle

Let $\bar{\pi}: F M \rightarrow M$ be the frame bundle of M. Recall that $F M$ is a principal $\mathrm{GL}_{n}(\mathbb{R})$-bundle whose fiber at $b \in M$ is the set of bases of $T_{b} M$.

If M admits a volume form, let $S M \rightarrow M$ be the principal $S L_{n}(\mathbb{R})$-bundle whose fiber at $b \in M$ is the set of bases of $T_{b} M$ with volume 1 . The inclusion $S M \hookrightarrow F M$ is a reduction of structure group to $S L_{n}(\mathbb{R})$.

If M admits a Riemannian metric, let $O M \rightarrow M$ be the principal $\mathrm{O}(n)$-bundle whose fiber at $b \in M$ is the set of orthonormal bases of $T_{b} M$. The inclusion $O M \hookrightarrow F M$ is a reduction of structure group to $\mathrm{O}(n)$.

Example: Tensorial structures reduce the frame bundle

Let $\bar{\pi}: F M \rightarrow M$ be the frame bundle of M. Recall that $F M$ is a principal $\mathrm{GL}_{n}(\mathbb{R})$-bundle whose fiber at $b \in M$ is the set of bases of $T_{b} M$.

If M admits a volume form, let $S M \rightarrow M$ be the principal $S L_{n}(\mathbb{R})$-bundle whose fiber at $b \in M$ is the set of bases of $T_{b} M$ with volume 1 . The inclusion $S M \hookrightarrow F M$ is a reduction of structure group to $S L_{n}(\mathbb{R})$.

If M admits a Riemannian metric, let $O M \rightarrow M$ be the principal $\mathrm{O}(n)$-bundle whose fiber at $b \in M$ is the set of orthonormal bases of $T_{b} M$. The inclusion $O M \hookrightarrow F M$ is a reduction of structure group to $\mathrm{O}(n)$.

When n is even, an almost-complex structure is a bundle isomorphism $J: T M \xrightarrow{\sim} T M$ with $\left(\left.J\right|_{T_{b} M}\right)^{2}=-\operatorname{Id}_{T_{b} M}$ for every $b \in M$. Let $C M \rightarrow M$ be the principal $\mathrm{GL}_{n / 2}(\mathbb{C})$-bundle whose fiber at $b \in M$ is the set of bases $\left\{v_{i}\right\}_{i=1}^{n}$ of $T_{b} M$ with $J v_{2 k}=v_{2 k+1}$ for every k. The inclusion $C M \hookrightarrow M$ is a reduction of structure group to $\mathrm{GL}_{n / 2}(\mathbb{C})$.

Another perspective on Riemannian metrics

Theorem

Every C^{∞} manifold M admits a Riemannian metric g.

Another perspective on Riemannian metrics

Theorem

Every C^{∞} manifold M admits a Riemannian metric g.

Standard proof.

By the Whitney embedding theorem, there exists some $N \in \mathbb{N}$ so that there is a smooth embedding $M \hookrightarrow \mathbb{R}^{N}$. Let $g_{\text {Euc }}$ denote the standard Euclidean metric on \mathbb{R}^{N}. Setting $g:=g_{\text {Euc }} \mid M$, we are done.

Another perspective on Riemannian metrics

Theorem

Every C^{∞} manifold M admits a Riemannian metric g.

Standard proof.

By the Whitney embedding theorem, there exists some $N \in \mathbb{N}$ so that there is a smooth embedding $M \hookrightarrow \mathbb{R}^{N}$. Let $g_{\text {Euc }}$ denote the standard Euclidean metric on \mathbb{R}^{N}. Setting $g:=g_{\text {Euc }} \mid M$, we are done.

This is a nice proof, but it would be satisfying to know if there was also a nice proof that does not rely on the Whitney embedding theorem.

Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle $\pi: E \rightarrow B$ with fiber F has a section.

Proof.

Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle $\pi: E \rightarrow B$ with fiber F has a section.

Proof.

Let B have a CW-structure such that every k-cell lies in a neighborhood $U \subset B$ over which the bundle can be trivialized $\pi^{-1}(U) \cong U \times F$. Then a section over a k-cell c_{k} is equivalent to a map $c_{k} \rightarrow F$. Let $B^{(k)}$ denote the k-skeleton of B. We define a section $\sigma: B \rightarrow E$ by induction on k.

Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle $\pi: E \rightarrow B$ with fiber F has a section.

Proof.

Let B have a CW-structure such that every k-cell lies in a neighborhood $U \subset B$ over which the bundle can be trivialized $\pi^{-1}(U) \cong U \times F$. Then a section over a k-cell c_{k} is equivalent to a map $c_{k} \rightarrow F$. Let $B^{(k)}$ denote the k-skeleton of B. We define a section $\sigma: B \rightarrow E$ by induction on k. For each $b \in B^{(0)}$, we may pick any point in the fiber over b, thereby defining $\left.\sigma\right|_{B^{(0)}}: B^{(0)} \rightarrow E$. Now suppose we have already defined $\left.\sigma\right|_{B^{(k-1)}}$ for $k>0$, and let c_{k} be any k-cell of B. We already have $\partial c_{k}\left(\cong S^{k-1}\right) \rightarrow F$, and since $\pi_{k}(F)=0$, this extends to a map $c_{k} \rightarrow F$. These maps $c_{k} \rightarrow F$ define $\left.\sigma\right|_{B^{(k)}}$. By induction, we have a section defined on all of B.

Another perspective on Riemannian metrics

Let $P_{n}(\mathbb{R})$ denote the space of symmetric positive-definite $n \times n$ matrices over \mathbb{R}, and let $\pi: T M \rightarrow M$ be the tangent bundle. Given a trivialization $\varphi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{n}$ over an open subset $U_{\alpha} \subset M$, a Riemannian metric over U_{α} is just a choice of section $g_{\alpha}: U_{\alpha} \rightarrow U_{\alpha} \times P_{n}(\mathbb{R})$.

Another perspective on Riemannian metrics

Let $P_{n}(\mathbb{R})$ denote the space of symmetric positive-definite $n \times n$ matrices over \mathbb{R}, and let $\pi: T M \rightarrow M$ be the tangent bundle. Given a trivialization $\varphi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{n}$ over an open subset $U_{\alpha} \subset M$, a Riemannian metric over U_{α} is just a choice of section $g_{\alpha}: U_{\alpha} \rightarrow U_{\alpha} \times P_{n}(\mathbb{R})$.

Let $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$ be a transition function for $T M$. A Riemannian metric over $U_{\alpha} \cup U_{\beta}$ is a pair of g_{α}, g_{β} with $g_{\beta}(p)=\varphi_{\alpha \beta}(p) g_{\alpha}(p) \varphi_{\alpha \beta}(p)^{\top}$. Therefore a Riemannian metric on M is a section of the associated $G L_{n}(\mathbb{R})$-bundle $E=\coprod_{\alpha}\left(U_{\alpha} \times \mathrm{P}_{n}(\mathbb{R})\right) / \sim$ with fiber $P_{n}(\mathbb{R})$.

Another perspective on Riemannian metrics

Let $P_{n}(\mathbb{R})$ denote the space of symmetric positive-definite $n \times n$ matrices over \mathbb{R}, and let $\pi: T M \rightarrow M$ be the tangent bundle. Given a trivialization $\varphi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{n}$ over an open subset $U_{\alpha} \subset M$, a Riemannian metric over U_{α} is just a choice of section $g_{\alpha}: U_{\alpha} \rightarrow U_{\alpha} \times P_{n}(\mathbb{R})$.

Let $\varphi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$ be a transition function for $T M$. A Riemannian metric over $U_{\alpha} \cup U_{\beta}$ is a pair of g_{α}, g_{β} with $g_{\beta}(p)=\varphi_{\alpha \beta}(p) g_{\alpha}(p) \varphi_{\alpha \beta}(p)^{\top}$. Therefore a Riemannian metric on M is a section of the associated $G L_{n}(\mathbb{R})$-bundle $E=\coprod_{\alpha}\left(U_{\alpha} \times \mathrm{P}_{n}(\mathbb{R})\right) / \sim$ with fiber $P_{n}(\mathbb{R})$.

By the polar decomposition for real matrices, we have $P_{n}(\mathbb{R}) \cong G L_{n}(\mathbb{R}) / O(n)$. By the Gram-Schmidt procedure, $\mathrm{GL}_{n}(\mathbb{R}) / \mathrm{O}(n)$ is contractible. Therefore, by the previous lemma, E has a section. That is, there exists a Riemannian metric on M.

References

- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1
- T. Walpuski, Notes on the geometry of manifolds, https:
//math.mit.edu/~walpuski/18.965/GeometryOfManifolds.pdf
- P. Michor, Topics in Differential Geometry
- My notes on tangent spaces to character varieties on my website

