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Fiber bundles

Throughout this minicourse, we will work in the category of C∞ manifolds.

Definition (Fiber Bundle)

A surjection π : E � B is a fiber bundle with fiber F if, for every b ∈ B,
there is an open neighborhood U 3 b so that we have a diffeomorphism

ϕ : π−1(U)
∼−→ U × F

that conjugates π to the first coordinate projection.

If B =
⋃
α Uα is an open cover so that there are diffeomorphisms

ϕα : π−1(Uα)
∼−→ Uα × F , we have functions ϕαβ : Uα ∩ Uβ → Diffeo(F )

given by

(ϕβ ◦ ϕ−1α )(b, f ) = (b, ϕαβ(b)(f )) for b ∈ Uα ∩ Uβ.
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Fiber bundles

B =
⋃
α

Uα, ϕαβ : Uα ∩ Uβ → Diffeo(F )

We can construct our original bundle from this data. We have
E ∼=

∐
α(Uα × F )/ ∼, where (b ∈ Uα, f ) ∼ (b ∈ Uβ, ϕαβ(b)(f )) for every

b ∈ Uα ∩ Uβ. Then π : E � B is induced by the first coordinate
projection.

It is often the case that the ϕαβ all have image in some subgroup
G ⊂ Diffeo(F ). Of course G acts on F , but it also acts on itself!

We can construct P =
∐
α(Uα × G )/ ∼, where

(b ∈ Uα, g) ∼ (b ∈ Uβ, ϕαβ(b)g) for every b ∈ Uα ∩ Uβ. We have a
bundle π : P � B induced by the first coordinate projection.
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Principal bundles

Definition (Principal Bundle)

A fiber bundle π : P � B with fiber G is a principal G -bundle if there is a
right action P x G that preserves the fibers of π, and acts freely and
transitively on each fiber.

In our example, we have
∐
α(Uα × G )/ ∼x G via (b, g).h = (b, gh),

giving a principal G -bundle.

Every principal G -bundle can be constructed by such open-covering data.
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Example: The tangent and frame bundles

Let M be C∞ manifold. Then the tangent bundle π : TM � M is a fiber
bundle with fiber Rn. Given any open cover M =

⋃
α Uα with

diffeomorphisms ϕ : π−1(Uα)→ Uα × Rn, the functions
ϕαβ : Uα ∩ Uβ → Diffeo(Rn) all have images contained in GLn(R).

We may then construct the frame bundle FM =
∐
α(Uα × GLn(R))/ ∼

with (b ∈ Uα,A) ∼ (b ∈ Uβ, ϕαβ(b)A). Again, the first coordinate
projection induces π : FM � M.

If we interpret the matrix A above as a list of linearly independent vectors
A = (v1 | v2 | · · · | vn) on which the matrix ϕαβ(b) acts by
change-of-coordinates (ϕαβ(b)v1 | ϕαβ(b)v2 | · · · | ϕαβ(b)vn), we obtain

π−1(b) = {(v1, v2, . . . , vn) ∈ (TbM)n | (v1, v2, . . . , vn) form a basis of TbM}.
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Example: Regular coverings

Let π : X � Y be a regular (i.e. normal, i.e. Galois) covering space with
deck group ∆. Then π : X � Y is a principal ∆-bundle:

It is a fiber bundle; its fibers are discrete pointsets of cardinality #∆.

There is a right action X x ∆ by deck transformations, which
preserves the fibers of π.

The fiberwise action is free (no fixed points!) and transitive.

In particular, the universal covering Ỹ � Y is a principal π1(Y )-bundle.

Nobody said we had to make natural constructions! The product space
Y × π1(Y ) with right action (y , γ).γ′ = (y , γγ′) is also a principal
π1(Y )-bundle.
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Associated bundles

We obtained principal bundles from more general fiber bundles, and we
can go the other way as well.

Definition (Associated bundle)

Let π : P � B be a principal G -bundle and let F be a space with a left
G -action G y F . Then (P × F ) x G via (p, f ).g = (p.g , g−1.f ). Then
the first coordinate projection induces an associated G -bundle
π : (P × F )/G � B with fiber F .

It is somewhat easier to see what is going on locally. For U × G � U, our
action is (U × G × F ) x G via (b, h, f ).g = (b, hg , g−1.f ). Every G -orbit
of (b, h, f ) has a unique representative of the form (b, 1G , f

′), namely
(b, h, f ).h−1. Thus the middle factor is superfluous, so we have
(U × G × F )/G ∼= U × F . Hence (P × F )/G has fiber F .
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Example: The classic non-orientable shapes

There are only two principal Z/2Z-bundles over S1:

Etriv = S1 q S1 � S1 where S1 q S1 x Z/2Z by swapping the two
components

Enontriv = S1 � S1, e iθ 7→ e2iθ, where S1 x Z/2Z via e iθ.1 = e i(θ+π)

Consider the actions Z/2Z y S1 via 1.e iθ = e−iθ and Z/2Z y (0, 1) via
1.x = 1− x . Then:

(Etriv × S1)/(Z/2Z) is a torus

(Enontriv × S1)/(Z/2Z) is a Klein bottle

(Etriv × (0, 1))/(Z/2Z) is a cylinder

(Enontriv × (0, 1))/(Z/2Z) is a Möbius strip
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Reduction of structure group

Notice that, with some of these constructions, we did not use the group to
its full potential!

A torus is just S1 × S1. There is no meaningful sense in which we
need Z/2Z.

Indeed, if a bundle π : E � B is isomorphic to a Cartesian product
E ∼= B × F , then the diffeomorphisms ϕα : π−1(Uα)→ Uα × F can
all be chosen so that the functions ϕαβ : Uα ∩ Uβ → Diffeo(F ) all
have images in {1} ⊂ Diffeo(F ).

For the tangent bundle TM � M, we said the functions
ϕαβ → Diffeo(Rn) all have images in GLn(R), but it we choose a
Riemannian metric on M and compatible diffeomorphisms ϕα, then
the functions ϕαβ will all have images in O(n) ⊂ GLn(R).
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Reduction of structure group

Definition (Reduction of structure group)

Let G be a group and H ≤ G a subgroup. If we have a principal G -bundle
P � B and a principal H-bundle Q � B, then a fiber-preserving
embedding ψ : Q ↪→ P is a reduction of structure group if ψ is
H-equivariant:

ψ(q.h) = ψ(q).h ∀q ∈ Q, h ∈ H.

A principal G -bundle P � B admits a reduction of structure group
ψ : Q ↪→ P if and only if B admits an open covering B =

⋃
α Uα so that

there are functions ϕαβ : Uα ∩ Uβ → H such that P ∼=
∐
α(Uα × G )/ ∼,

where (b ∈ Uα, g) ∼ (b ∈ Uβ, ϕαβ(b)g) for every b ∈ Uα ∩ Uβ
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Reduction of structure group

Lemma

We have a reduction of structure group ψ : Q ↪→ P if and only if the
functions ϕαβ : Uα ∩ Uβ → G can be taken with image lying in H.

Proof sketch.

If ϕαβ has image in H, then Q =
∐
α(Uα × H)/((b, h) ∼ (b, ϕαβ(b)h)) is

a principal H-bundle, and ψ can be defined on every Uα × H by
ψ|Uα×H(b, h) = (b, h) ∈ Uα × G .

If we start with a reduction ψ : Q ↪→ P, then P is isomorphic to the
associated H-bundle (Q × G )/H via the map

Ψ : (Q × G )/H → P

(q, g) mod H 7→ ψ(q).g

It is left as an exercise to check that Ψ is a well-defined isomorphism.
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Special cases of reduction of structure group

Let π : P � B be a principal G -bundle.

A reduction to the trivial subgroup {1} ⊂ G is a fiber-preserving
{1}-equivariant map ψ : B ∼= B × {1} ↪→ P. Equivariance here is vacuous,
and fiber-preserving reduces to the condition π ◦ ψ = IdB . Thus a
reduction to {1} is the same thing as a section of π : P � B. We conclude
that P is a trivial bundle P ∼= B × G if and only if π has a section.

A reduction to G = G is a fiber-preserving G -equivariant diffeomorphism
ψ : P

∼−→ P. We call such maps gauge transformations of P. A gauge
transformation induces an automorphism of any associated bundle
(P × F )/G via

(p, f )/G 7→ (ψ(p), f )/G
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Example: Tensorial structures reduce the frame bundle

Let π : FM � M be the frame bundle of M. Recall that FM is a principal
GLn(R)-bundle whose fiber at b ∈ M is the set of bases of TbM.

If M admits a volume form, let SM � M be the principal SLn(R)-bundle
whose fiber at b ∈ M is the set of bases of TbM with volume 1. The
inclusion SM ↪→ FM is a reduction of structure group to SLn(R).

If M admits a Riemannian metric, let OM � M be the principal
O(n)-bundle whose fiber at b ∈ M is the set of orthonormal bases of TbM.
The inclusion OM ↪→ FM is a reduction of structure group to O(n).

When n is even, an almost-complex structure is a bundle isomorphism
J : TM

∼−→ TM with (J|TbM)2 = −IdTbM for every b ∈ M. Let CM � M
be the principal GLn/2(C)-bundle whose fiber at b ∈ M is the set of bases
{vi}ni=1 of TbM with Jv2k = v2k+1 for every k . The inclusion CM ↪→ M is
a reduction of structure group to GLn/2(C).
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Another perspective on Riemannian metrics

Theorem

Every C∞ manifold M admits a Riemannian metric g .

Standard proof.

By the Whitney embedding theorem, there exists some N ∈ N so that
there is a smooth embedding M ↪→ RN . Let gEuc denote the standard
Euclidean metric on RN . Setting g := gEuc|M , we are done.

This is a nice proof, but it would be satisfying to know if there was also a
nice proof that does not rely on the Whitney embedding theorem.
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Another perspective on Riemannian metrics

Lemma

If F is contractible, then every fiber bundle π : E → B with fiber F has a
section.

Proof.

Let B have a CW-structure such that every k-cell lies in a neighborhood
U ⊂ B over which the bundle can be trivialized π−1(U) ∼= U × F . Then a
section over a k-cell ck is equivalent to a map ck → F . Let B(k) denote
the k-skeleton of B. We define a section σ : B → E by induction on k .

For each b ∈ B(0), we may pick any point in the fiber over b, thereby
defining σ|B(0) : B(0) → E . Now suppose we have already defined σ|B(k−1)

for k > 0, and let ck be any k-cell of B. We already have
∂ck(∼= Sk−1)→ F , and since πk(F ) = 0, this extends to a map ck → F .
These maps ck → F define σ|B(k) . By induction, we have a section defined
on all of B.
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Another perspective on Riemannian metrics

Let Pn(R) denote the space of symmetric positive-definite n × n matrices
over R, and let π : TM → M be the tangent bundle. Given a trivialization
ϕα : π−1(Uα)

∼−→ Uα × Rn over an open subset Uα ⊂ M, a Riemannian
metric over Uα is just a choice of section gα : Uα → Uα × Pn(R).

Let ϕαβ : Uα ∩ Uβ → GLn(R) be a transition function for TM. A
Riemannian metric over Uα ∪ Uβ is a pair of gα, gβ with
gβ(p) = ϕαβ(p)gα(p)ϕαβ(p)>. Therefore a Riemannian metric on M is a
section of the associated GLn(R)-bundle E =

∐
α(Uα × Pn(R))/ ∼ with

fiber Pn(R).

By the polar decomposition for real matrices, we have
Pn(R) ∼= GLn(R)/O(n). By the Gram-Schmidt procedure, GLn(R)/O(n) is
contractible. Therefore, by the previous lemma, E has a section. That is,
there exists a Riemannian metric on M.
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