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Lower Bound Algebras

To each vertex i of a quiver @, we associate

/ -1 Hij Hji +1 +1
Xi = X; HXJ'U_‘_HXjﬂ eClx, .. x]

Ji J—i
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Lower Bound Algebras

To each vertex i of a quiver @, we associate

/ -1 Hij Hji +1 +1
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Definition (Lower Bound Algebra)

The lower bound algebra £ associated to a quiver Q is the subring
+1
Clxt,. . X, X], ..., x4] CClg, ... xE.
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Lower Bound Algebras

To each vertex i of a quiver @, we associate

/ -1 Hij Hji +1 +1
Xi = X; HXJ-”—i-HXj" eClx, .. x]

Ji J—i

Definition (Lower Bound Algebra)

The lower bound algebra £ associated to a quiver Q is the subring
+1
Clxt,. . X, X], ..., x4] CClg, ... xE.

Given an arbitrary quiver @, what relations hold in £ other than the above
definitional relations?
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Cycle Relations

Theorem (Cycle Relations)

Whenever a quiver @ contains a cycle j; — jo — -+ — jx — j1, the
product x; ---x; can be expressed as a polynomial f in the variables x;

and x; whose terms contain fewer than k of the x/. Thus x; ---x; —f =0.
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Cycle Relations

Theorem (Cycle Relations)

Whenever a quiver @ contains a cycle j; — jo — -+ — jx — j1, the
product fo1 -+-x{ can be expressed as a polynomial f in the variables x;

and x; whose terms contain fewer than k of the x/. Thus x; ---x; —f =0.

Proof Strategy

Suppose @ is the cycle 1 -2 — --- — k — 1. We expand the product

k
/ / -1
Xy X = HX; (Xi—1 + Xi41) -
i=1

We can characterize the terms of the expansion by the number of factors
they have of the form (xi_lx,'+1)(xijrllx,-) =1
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Lower Bound ldeals

We define the surjective ring homomorphism
©0:R=C[x1,...,Xn, ¥1,---,¥n] = L,

/
Xi = Xj, Yir> X,

and let K = ker . We call K the lower bound ideal. Now £ = R/K. Can
we find a set of generators for K7
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Lower Bound ldeals

We can obtain an ordering < of the monomials of R by specifying an
ordering on the variables xi, .

.oy Xny Y1, .-+, Yn- In our case, we use the
ordering induced by

YL > o> Yy > Xy D> > X (Lexicographical Ordering)
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Lower Bound ldeals

We can obtain an ordering < of the monomials of R by specifying an
ordering on the variables x1,...,x,, y1,..., ¥a. In our case, we use the
ordering induced by

YL > o> Yy > Xy D> > X (Lexicographical Ordering)

@ Given a polynomial f, the initial term in. f is the term of f that is
maximal with respect to <.

@ Given an ideal /, the initial ideal in. / is the ideal generated by the
initial terms of polynomials in /.

@ This is an example of a monomial ideal: an ideal whose generators are
monomials.

@ A Grobner basis for an ideal [ is a finite set G of generators of / such
that {inc f | f € G} is a set of generators for in< /.
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Lower Bound ldeals

The definitional relations give us the polynomials
e Hij Hji
Di=ywi— | [I" + 115" | €K
Ji J—i
and the cycle relations give us the polynomials

yi-y, —feK.
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Lower Bound ldeals

The definitional relations give us the polynomials

D; =y — | 14" + 11"

Ji J—i
and the cycle relations give us the polynomials

yi-y, —feK.

Theorem (Grobner Basis for K)

The polynomials D; and y;, - --y; — f form a Grobner basis for K.

We now have generators for K and for in. K.
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Stanley-Reisner Complexes

Definition (Stanley-Reisner Complex)

Given a monomial ideal / of k[x, ..., x|, the Stanley-Reisner complex of /
is the simplicial complex A on {xi,...,x,} such that
AcA = Jlieax gl
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Stanley-Reisner Complexes

Theorem (Topology of some Stanley-Reisner Complexes)

The Stanley-Reisner complex associated to the the initial ideal of a lower
bound ideal K is always homeomorphic to an (n — 1)-ball, except when
y1---¥n & |, in which case it is homeomorphic to an (n — 1)-sphere.
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Theorem (Topology of some Stanley-Reisner Complexes)

The Stanley-Reisner complex associated to the the initial ideal of a lower
bound ideal K is always homeomorphic to an (n — 1)-ball, except when
yi---yn ¢ I, in which case it is homeomorphic to an (n — 1)-sphere.
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