Lower Bound Algebras and Stanley-Reisner Complexes

Bradley Zykoski
REU Project with Greg Muller and Jenna Rajchgot

September 26, 2015

Outline

(1) Lower Bound Algebras from Quivers
© Cycle Relations
(3) Lower Bound Ideals
(Stanley-Reisner Complexes

Outline

(1) Lower Bound Algebras from Quivers
(2) Cycle Relations
(3) Lower Bound Ideals
(Otanley-Reisner Complexes

Outline

(1) Lower Bound Algebras from Quivers
(2) Cycle Relations
(3) Lower Bound Ideals

- Stanley-Reisner Complexes

Outline

(1) Lower Bound Algebras from Quivers
(2) Cycle Relations
(3) Lower Bound Ideals
(3) Stanley-Reisner Complexes

Lower Bound Algebras

To each vertex i of a quiver Q, we associate

$$
x_{i}^{\prime}=x_{i}^{-1}\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

Definition (Lower Bound Algebra)

The lower bound algebra \mathcal{L} associated to a quiver Q is the subring $\mathbb{C}\left[x_{1}\right.$,

Given an arbitrary quiver Q, what relations hold in \mathcal{L} other than the above definitional relations?

Lower Bound Algebras

To each vertex i of a quiver Q, we associate

$$
x_{i}^{\prime}=x_{i}^{-1}\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

Definition (Lower Bound Algebra)

The lower bound algebra \mathcal{L} associated to a quiver Q is the subring $\mathbb{C}\left[x_{1}\right.$,

Given an arbitrary quiver Q, what relations hold in \mathcal{L} other than the above definitional relations?

Lower Bound Algebras

To each vertex i of a quiver Q, we associate

$$
x_{i}^{\prime}=x_{i}^{-1}\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

Definition (Lower Bound Algebra)

The lower bound algebra \mathcal{L} associated to a quiver Q is the subring $\mathbb{C}\left[x_{1}\right.$,

Given an arbitrary quiver Q, what relations hold in \mathcal{L} other than the above definitional relations?

Lower Bound Algebras

To each vertex i of a quiver Q, we associate

$$
x_{i}^{\prime}=x_{i}^{-1}\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

Definition (Lower Bound Algebra)

The lower bound algebra \mathcal{L} associated to a quiver Q is the subring $\mathbb{C}\left[x_{1}\right.$,

Given an arbitrary quiver Q, what relations hold in \mathcal{L} other than the above definitional relations?

Lower Bound Algebras

To each vertex i of a quiver Q, we associate

$$
x_{i}^{\prime}=x_{i}^{-1}\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

Definition (Lower Bound Algebra)

The lower bound algebra \mathcal{L} associated to a quiver Q is the subring $\mathbb{C}\left[x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right] \subseteq \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

Given an arbitrary quiver Q, what relations hold in \mathcal{L} other than the above definitional relations?

Lower Bound Algebras

To each vertex i of a quiver Q, we associate

$$
x_{i}^{\prime}=x_{i}^{-1}\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

Definition (Lower Bound Algebra)

The lower bound algebra \mathcal{L} associated to a quiver Q is the subring $\mathbb{C}\left[x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right] \subseteq \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

Given an arbitrary quiver Q, what relations hold in \mathcal{L} other than the above definitional relations?

Cycle Relations

Theorem (Cycle Relations)

Whenever a quiver Q contains a cycle $j_{1} \rightarrow j_{2} \rightarrow \cdots \rightarrow j_{k} \rightarrow j_{1}$, the product $x_{j_{1}}^{\prime} \cdots x_{j_{k}}^{\prime}$ can be expressed as a polynomial f in the variables x_{i} and x_{i}^{\prime} whose terms contain fewer than k of the x_{i}^{\prime}. Thus $x_{j_{1}}^{\prime} \cdots x_{j_{k}}^{\prime}-f=0$.

Cycle Relations

Theorem (Cycle Relations)

Whenever a quiver Q contains a cycle $j_{1} \rightarrow j_{2} \rightarrow \cdots \rightarrow j_{k} \rightarrow j_{1}$, the product $x_{j_{1}}^{\prime} \cdots x_{j_{k}}^{\prime}$ can be expressed as a polynomial f in the variables x_{i} and x_{i}^{\prime} whose terms contain fewer than k of the x_{i}^{\prime}. Thus $x_{j_{1}}^{\prime} \cdots x_{j_{k}}^{\prime}-f=0$.

Proof Strategy

Suppose Q is the cycle $1 \rightarrow 2 \rightarrow \cdots \rightarrow k \rightarrow 1$. We expand the product

$$
x_{1}^{\prime} \cdots x_{k}^{\prime}=\prod_{i=1}^{k} x_{i}^{-1}\left(x_{i-1}+x_{i+1}\right)
$$

We can characterize the terms of the expansion by the number of factors they have of the form $\left(x_{i}^{-1} x_{i+1}\right)\left(x_{i+1}^{-1} x_{i}\right)=1$.

Lower Bound Ideals

We define the surjective ring homomorphism

$$
\begin{gathered}
\varphi: R=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \rightarrow \mathcal{L} \\
x_{i} \mapsto x_{i}, \quad y_{i} \mapsto x_{i}^{\prime}
\end{gathered}
$$

and let $K=\operatorname{ker} \varphi$. We call K the lower bound ideal. Now $\mathcal{L} \cong R / K$. Can we find a set of generators for K ?

Lower Bound Ideals

We can obtain an ordering < of the monomials of R by specifying an ordering on the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. In our case, we use the ordering induced by

$$
y_{1}>\cdots>y_{n}>x_{1}>\cdots>x_{n}
$$

(Lexicographical Ordering)

- Given a polynomial f, the initial term $\mathrm{in}_{<} f$ is the term of f that is maximal with respect to
- Given an ideal \boldsymbol{I}, the initial ideal in $/ \boldsymbol{l}$ is the ideal generated by the initial terms of polynomials in I
- This is an example of a monomial ideal: an ideal whose generators are monomials.
- A Gröbner basis for an ideal / is a finite set G of generators of I such that $\left\{\mathrm{in}_{<} f \mid f \in G\right\}$ is a set of generators for $\mathrm{in}_{<} /$

Lower Bound Ideals

We can obtain an ordering < of the monomials of R by specifying an ordering on the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. In our case, we use the ordering induced by

$$
y_{1}>\cdots>y_{n}>x_{1}>\cdots>x_{n} . \quad \text { (Lexicographical Ordering) }
$$

- Given a polynomial f, the initial term $\mathrm{in}_{<} f$ is the term of f that is maximal with respect to $<$.
- Given an ideal I, the initial ideal $\mathrm{in}_{<} I$ is the ideal generated by the initial terms of polynomials in 1
- This is an example of a monomial ideal: an ideal whose generators are monomials.
- A Gröbner basis for an ideal I is a finite set G of generators of $/$ such that $\left\{\mathrm{in}_{<} f \mid f \in G\right\}$ is a set of generators for $\mathrm{in}_{<} I$

Lower Bound Ideals

We can obtain an ordering < of the monomials of R by specifying an ordering on the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. In our case, we use the ordering induced by

$$
y_{1}>\cdots>y_{n}>x_{1}>\cdots>x_{n} . \quad \text { (Lexicographical Ordering) }
$$

- Given a polynomial f, the initial term $\mathrm{in}_{<} f$ is the term of f that is maximal with respect to $<$.
- Given an ideal I, the initial ideal $\mathrm{in}_{<} l$ is the ideal generated by the initial terms of polynomials in I.
- This is an example of a monomial ideal: an ideal whose generators are monomials.
- A Gröbner basis for an ideal / is a finite set G of generators of / such that $\left\{\operatorname{in}_{<} f \mid f \in G\right\}$ is a set of generators for $\mathrm{in}_{<} l$

Lower Bound Ideals

We can obtain an ordering < of the monomials of R by specifying an ordering on the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. In our case, we use the ordering induced by

$$
y_{1}>\cdots>y_{n}>x_{1}>\cdots>x_{n} . \quad \text { (Lexicographical Ordering) }
$$

- Given a polynomial f, the initial term $\mathrm{in}_{<} f$ is the term of f that is maximal with respect to $<$.
- Given an ideal I, the initial ideal $\mathrm{in}_{<} l$ is the ideal generated by the initial terms of polynomials in l.
- This is an example of a monomial ideal: an ideal whose generators are monomials.
- A Gröbner basis for an ideal / is a finite set G of generators of | such that $\left\{\mathrm{in}_{<} f \mid f \in G\right\}$ is a set of generators for $\mathrm{in}_{<} l$

Lower Bound Ideals

We can obtain an ordering < of the monomials of R by specifying an ordering on the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. In our case, we use the ordering induced by

$$
y_{1}>\cdots>y_{n}>x_{1}>\cdots>x_{n} . \quad \text { (Lexicographical Ordering) }
$$

- Given a polynomial f, the initial term $\mathrm{in}_{<} f$ is the term of f that is maximal with respect to $<$.
- Given an ideal I, the initial ideal $\mathrm{in}_{<} l$ is the ideal generated by the initial terms of polynomials in I.
- This is an example of a monomial ideal: an ideal whose generators are monomials.
- A Gröbner basis for an ideal I is a finite set G of generators of I such that $\left\{\operatorname{in}_{<} f \mid f \in G\right\}$ is a set of generators for $\mathrm{in}_{<} l$.

Lower Bound Ideals

The definitional relations give us the polynomials

$$
D_{i}=y_{i} x_{i}-\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in K
$$

and the cycle relations give us the polynomials

$$
y_{j_{1}} \cdots y_{j_{k}}-f \in K
$$

Theorem (Gröbner Basis for K)

The polynomials D_{i} and $y_{j_{1}} \cdots y_{j_{k}}-f$ form a Gröbner basis for K.
We now have generators for K and for in K

Lower Bound Ideals

The definitional relations give us the polynomials

$$
D_{i}=y_{i} x_{i}-\left(\prod_{j \leftarrow i} x_{j}^{\mu_{i j}}+\prod_{j \rightarrow i} x_{j}^{\mu_{j i}}\right) \in K
$$

and the cycle relations give us the polynomials

$$
y_{j_{1}} \cdots y_{j_{k}}-f \in K
$$

Theorem (Gröbner Basis for K)

The polynomials D_{i} and $y_{j_{1}} \cdots y_{j_{k}}-f$ form a Gröbner basis for K.
We now have generators for K and for $\mathrm{in}_{<} K$.

Stanley-Reisner Complexes

Definition (Stanley-Reisner Complex)

Given a monomial ideal I of $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, the Stanley-Reisner complex of I is the simplicial complex Δ on $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $A \in \Delta \Longleftrightarrow \prod_{x \in A} x \notin I$.

Stanley-Reisner Complexes

Definition (Stanley-Reisner Complex)

Given a monomial ideal I of $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, the Stanley-Reisner complex of I is the simplicial complex Δ on $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $A \in \Delta \Longleftrightarrow \prod_{x \in A} x \notin I$.

Stanley-Reisner Complexes

Definition (Stanley-Reisner Complex)

Given a monomial ideal I of $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, the Stanley-Reisner complex of I is the simplicial complex Δ on $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $A \in \Delta \Longleftrightarrow \prod_{x \in A} x \notin I$.

Stanley-Reisner Complexes

Definition (Stanley-Reisner Complex)

Given a monomial ideal I of $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, the Stanley-Reisner complex of I is the simplicial complex Δ on $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $A \in \Delta \Longleftrightarrow \prod_{x \in A} x \notin I$.

Stanley-Reisner Complexes

Theorem (Topology of some Stanley-Reisner Complexes)

The Stanley-Reisner complex associated to the the initial ideal of a lower bound ideal K is always homeomorphic to an ($n-1$)-ball, except when $y_{1} \cdots y_{n} \notin I$, in which case it is homeomorphic to an ($n-1$)-sphere.

Stanley-Reisner Complexes

Theorem (Topology of some Stanley-Reisner Complexes)

The Stanley-Reisner complex associated to the the initial ideal of a lower bound ideal K is always homeomorphic to an ($n-1$)-ball, except when $y_{1} \cdots y_{n} \notin I$, in which case it is homeomorphic to an ($n-1$)-sphere.

Stanley-Reisner Complexes

Theorem (Topology of some Stanley-Reisner Complexes)

The Stanley-Reisner complex associated to the the initial ideal of a lower bound ideal K is always homeomorphic to an ($n-1$)-ball, except when $y_{1} \cdots y_{n} \notin I$, in which case it is homeomorphic to an ($n-1$)-sphere.

Stanley-Reisner Complexes

Theorem (Topology of some Stanley-Reisner Complexes)

The Stanley-Reisner complex associated to the the initial ideal of a lower bound ideal K is always homeomorphic to an $(n-1)$-ball, except when $y_{1} \cdots y_{n} \notin I$, in which case it is homeomorphic to an ($n-1$)-sphere.

Stanley-Reisner Complexes

Theorem (Topology of some Stanley-Reisner Complexes)

The Stanley-Reisner complex associated to the the initial ideal of a lower bound ideal K is always homeomorphic to an $(n-1)$-ball, except when $y_{1} \cdots y_{n} \notin I$, in which case it is homeomorphic to an ($n-1$)-sphere.

