
Notes on Classical Teichmüller Theory

Bradley Zykoski

Contents

1 Beltrami Differentials 1
1.1 The case of a single vector space . . . . . . . . . . . . . . . . . . 3
1.2 The case of a Riemann surface . . . . . . . . . . . . . . . . . . . 7
1.3 Moduli of Riemann surfaces . . . . . . . . . . . . . . . . . . . . . 10

2 Holomorphic Quadratic Differentials 13
2.1 The Schwarzian derivative at a point . . . . . . . . . . . . . . . . 14
2.2 The Schwarzian derivative as a tensor . . . . . . . . . . . . . . . 17
2.3 Moduli of projective structures . . . . . . . . . . . . . . . . . . . 20

3 The Bers Embedding 21
3.1 Quasi-Fuchsian representations . . . . . . . . . . . . . . . . . . . 21
3.2 The Bers maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Differentiating the Bers maps . . . . . . . . . . . . . . . . . . . . 25

A Notation for Complex Manifolds 25
A.1 Definitions for general complex manifolds . . . . . . . . . . . . . 25
A.2 Definitions for Riemann surfaces . . . . . . . . . . . . . . . . . . 27

B Remarks on the definition of Mod(S) 28

C Computing the dimension of QD(X) with Riemann-Roch 29
C.1 Serre Duality and Riemann-Roch . . . . . . . . . . . . . . . . . . 30
C.2 Dimension Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D A perspective on the Weil-Petersson metric 32

References 33

1 Beltrami Differentials

One of the key principles of the classical approach to Teichmüller theory is that
you can measure how much an orientation-preserving homeomorphism of Rie-
mann surfaces differs from being a biholomorphism at a point by looking at how
much it deforms circles in the tangent space at that point. Therefore, we should
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be able to say how different two complex structures on the same surface are by
taking this measurement in the case of the identity map.

We will see that a Beltrami differential is precisely this sort of “measure-
ment.” Then the latter claim says that we should guess that the moduli space
of complex structures that can be put on a Riemann surface X is the space of
Beltrami differentials on X, or perhaps some quotient thereof.

We first analyze the situation in a single tangent space. Given a map
f : X → Y of Riemann surfaces, f is holomorphic at a point p ∈ X if
Dfp : (TRX)p → (TRY )f(p) exists and is equivariant with respect to the almost-
complex structures JX and JY . That is:

Dfp ◦ JX = JY ◦Dfp.

Remark 1.1. Throughout this section, all almost-complex vector spaces V are
assumed to be 2-dimensional over R, with orientation induced by the almost
complex structure JV . 4

Consider the following simple fact.

Lemma 1.2. Let A : V → W be a linear map of almost-complex vector spaces
(V, JV ), (W,JW ). Then there exist unique linear maps A′ : V → W and A′′ :
V → W , where A′ is equivariant with respect to the almost-complex structures,
and A′′ is anti-equivariant (i.e. A′′ ◦ JV = −JW ◦A′′), such that

A = A′ +A′′.

Proof. Existence follows from setting

A′ =
1

2
(A− JW ◦A ◦ JV ) , A′′ =

1

2
(A+ JW ◦A ◦ JV ) .

Uniqueness follows from solving for A′ and A′′ in the equations

A ◦ JV = JW ◦A′ − JW ◦A′′, JW ◦A = JW ◦A′ + JW ◦A′′.

In terms of the notation from Lemma 1.2, f : X → Y is holomorphic at p if
and only if Df ′′p = 0. We adopt the notation

∂fp := Df ′p, ∂fp := Df ′′p ,

so that
f : X → Y is holomorphic at p ⇐⇒ ∂fp = 0.

It should be clear that if you write the equation ∂fp = 0 down in coordinates,

then you get the equation ∂f
∂z = 0.
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1.1 The case of a single vector space

Let us consider the setting of almost-complex vector spaces for a bit. A linear
map A : V → W of almost-complex vector spaces (V, JV ), (W,JW ) is equivari-
ant with respect to the almost-complex structures if and only if A′′ = 0. When
A′′ 6= 0, can we write down some measurement that tells us how much the map
A fails to be equivariant? The first obvious candidate for such a measurement
is the number ‖A′′‖ (this involves choosing a norm ‖ · ‖). If we insist that the
“measurement” be more than just a number (we like data that can be pulled-
back, etc.), then the next obvious candidate is A′′ itself. If we further insist
that we be able to compare the “non-equivariance” of maps A : V → W and
B : V → U with different codomains, then we must think a little more.

It is also reasonable to restrict the scope of our discussion slightly: instead
of considering arbitrary maps A : V → W , we only consider those that are
orientation-preserving isomorphisms. This is a fairly reasonable restriction if
our goal is to measure how different a map is from being equivariant with re-
spect to the almost-complex structures; maps that are not orientation-preserving
are very non-equivariant! If A is orientation-preserving, then both A and A′ are
necessarily invertible. Furthermore, since (A′)−1 is equivariant, it is also rea-
sonable to say that composing any map B with (A′)−1 gives us a map that fails
to be equivariant no more and no less than B. With this in mind, it should be
reasonable to say that instead of measuring the non-equivariance of A : V →W
with the map A′′ : V →W , it’s just as good to compose with (A′)−1, so that we
measure non-equivariance with an endomorphism (A′)−1 ◦A′′ of V . This solves
the problem of not being able to compare the non-equivariance of A : V → W
and B : V → U , since now (A′)−1 ◦ A′′ and (B′)−1 ◦ B′′ both lie in EndR(V ).
We now have what seems to be a rather acceptable measurement.

Definition 1.3 (Beltrami forms). Given an orientation-preserving map A :
V →W of almost-complex vector spaces, the Beltrami form of A is the map

µ(A) := (A′)−1 ◦A′′ ∈ EndR(V ).

Note that this map anti-commutes with JV . Using the notation of Lemma 1.4

below, that lemma shows that ‖µ(A)‖ = |b|
|a| < 1. Therefore we define the space

of all Beltrami forms on V as follows.

Bel(V ) := {µ ∈ EndR(V ) | JV ◦ µ = −µ ◦ JV , ‖µ‖ < 1}.

Under the usual complex manifold structure on

{µ ∈ EndR(V ) | JV ◦ µ = −µ ◦ JV } ∼= {µ ∈ EndR(C) | ∃c ∈ C, µ(z) = cz} ∼= C,

the space Bel(V ) is biholomorphic to the unit disk D. 4

Lemma 1.4 (Exercise 4.8.5 of [Hub06]). Let A : V → W be a linear map of
almost-complex vector spaces. By choosing bases for V and W , we may suppose
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without loss of generality that (V, JV ) = (W,JW ) = (C, i). Then there are
a, b ∈ C with A′(z) = az and A′′(z) = bz. Then we have

‖A‖2

detA
=
|a|+ |b|
|a| − |b|

. (1)

It clearly follows from (1) that

(i) A is invertible if and only if |a| 6= |b|,

(ii) A preserves orientation if |a| > |b| and reverses orientation if |a| < |b|.

Proof. We can compute the operator norm using any inner product, so let us
endow C with the standard inner product on R2. By the singular-value decom-
position, we may write A = SDT , where S, T ∈ SO(2) and D is diagonal. Let
|λ1| > |λ2| be the eigenvalues of D. Then

‖A‖2

detA
=

λ2
1

λ1λ2
=
λ1

λ2
.

Therefore we will be done if we can show that λ1 = |a|+ |b| and λ2 = |a| − |b|.
Note that |λ1| = max{‖Av‖ | v ∈ V } while |λ2| = min{‖Av‖ | v ∈ V }.

It is easy to see that ‖Av‖ is maximized when v makes an angle of 1
2 (arg b−

arg a) with the real axis, and A rotates such v by arg a and then scales the result
by |a| + |b|. It is also clear that ‖Av‖ is minimized when v makes an angle of
1
2 (arg b− arg a) + π

2 with the real axis, and A rotates such v by arg a and then
scales the result by |a| − |b|. This completes the proof.

As one always likes to do in mathematics, we can now pose the following
inverse problem: given µ ∈ Bel(V ), how do we find an orientation-preserving
A : V →W with µ(A) = µ?

Definition 1.5 (The Beltrami equation). Given an almost-complex vector
space V and µ ∈ Bel(V ), an orientation-preserving map A : V → W into
some other almost-complex vector space W satisfies the Beltrami equation for
µ if

µ(A) = µ.

4

Example 1.6 (Solving the Beltrami equation on C). Any µ ∈ Bel(C) is of the
form µ(z) = cz for c ∈ C, |c| < 1. Then the map A : C→ C, z 7→ z+ cz satisfies
the Beltrami equation for µ:

A′(z) = z, A′′(z) = cz = µ(z), ((A′)−1 ◦A′′)(z) = µ(z).

Solutions to the Beltrami equation are unique up to postcomposition with an
isomorphism C → C that commutes with i (i.e. multiplication by a scalar in
C∗): Given two solutions A, B to the Beltrami equation for µ, we have A(z) =
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a1z + a2z and B(z) = b1z + b2z with a2/a1 = b2/b1 = c. It is straightforward
to see that

B−1(z) =
1

|b2|2 − |b1|2
(
−b1z + b2z

)
and so

(A ◦B−1)(z) =
1

|b2|2 − |b1|2
(
(a2b2 − a1b1)z + (a1b2 − a2b1)z

)
.

We are done if we can show that the coefficient of z above is equal to 0. Dividing
by a1 6= 0, we have

1

a1
(a1b2 − a2b1) = b2 −

a2

a1
b1

= b2 −
b2
b1
b1

= 0.

We conclude that µ : GL+(2,R)→ Bel(C), A 7→ µ(A) descends to a diffeomor-
phism

GL(1,C)\GL+(2,R) = SO(2)\SL(2,R)
µ−→ Bel(C) ∼= D.

4

Theorem 1.7 (Geometric interpretation of the Beltrami equation). Let V be an
almost-complex vector space, and let µ ∈ Bel(V ). Then µ has real and opposite
eigenvalues. Let E be an ellipse in V whose major axis is the eigenspace for the

positive eigenvalue of µ and whose ratio of major axis to minor axis is 1+|µ|
1−|µ| .

Then A : V → W solves the Beltrami equation for µ if and only if A maps E
to a circle in F .

Proof. Again we choose coordinates so that, without loss of generality, V =
W = C. Then µ(z) = cz for c ∈ C, |c| < 1. Therefore µ has eigenvalues |c| and
−|c|, whose eigenspaces are the lines making angles of 1

2 arg c and 1
2 arg c + π

2 ,
respectively, with the real axis. By Example 1.6, A solves the Beltrami equation
for µ if and only if A(z) = α(z + cz) for some α ∈ C∗. By the proof of Lemma
1.4, we see that A acts on the |c|-eigenspace by rotation by argα and scaling by
|α|(1 + |c|), and A acts on the −|c|-eigenspace by rotation by argα and scaling
by |α|(1− |c|). Therefore A takes E to a circle. Conversely, any map taking E
to a circle must be of the form z 7→ α(z + cz) for some α ∈ C∗, and so we are
done.

The last thing we need to talk about in the “infinitesimal” world of one
almost-complex vector space at a time is the pullback of Beltrami forms. One
might expect that since µ ∈ Bel(V ) is a map V → V , we might be able to
pull back µ along some orientation-preserving isomorphism ϕ : W → V via

(W
ϕ∗µ−−→W ) := (W

ϕ−→ V
µ−→ V

ϕ−1

−−→W ). This does not work. If ϕ∗µ is defined
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in this way, then it is not a Beltrami form: If µ ∈ Bel(C) and ϕ : C → C are
given by µ(z) = cz and ϕ(z) = az + bz, then we have

(ϕ−1 ◦ µ ◦ ϕ)(z) =
1

|b|2 − |a|2
(
−2Im(abc)z + c(b2 − a2)z

)
.

In order for (ϕ−1 ◦ µ ◦ϕ) to be a Beltrami form, the coefficient of z above must
vanish. But this means that abc is real, which is of course not always the case
for arbitrary a, b.

Another attempt at defining the pullback of a Beltrami form is the following.
Since every almost-complex vector space V is isomorphic to C as an almost-
complex vector space, Example 1.6 shows that the Beltrami equation for µ ∈
Bel(V ) always has a set of solutions A : V → U for any almost-complex vector
space U . For any orientation-preserving isomorphism A : V → U ,

[A] := {(B,W ) |W an almost-complex vector space, B : V
∼−→W orientation-preserving, µ(B) = µ(A)}.

That is, [A] is the collection of all solutions to the Beltrami equation for µ(A).
Then there is a one-to-one correspondence of Bel(V ) with the set of all [A], given
by µ = µ(A) ↔ [A]. This correspondence presents us with another natural-
looking definition of pullback: just precompose the solution A to the Beltrami
equation for µ with the map ϕ. Given [A] ↔ µ ∈ Bel(V ) and an orientation-
preserving isomorphism ϕ : W → V , it seems natural to define ϕ∗[A] = [A ◦ ϕ].
Therefore, for µ = µ(A), we define ϕ∗µ = ϕ∗(µ(A)) = µ(A ◦ ϕ). In words,
ϕ∗µ ∈ Bel(W ) is the unique Beltrami form such that if A solves the Beltrami
equation for µ, then A ◦ϕ solves the Beltrami equation for ϕ∗µ. This turns out
to be the correct definition of pullback.

Definition 1.8 (Pullback of a Beltrami form). Let V and W be almost-complex
vector spaces, and let ϕ : W → V be an orientation-preserving isomorphism.
We define the pullback ϕ∗ : Bel(V )→ Bel(W ) along ϕ by

ϕ∗(µ(A)) := µ(A ◦ ϕ).

4

Theorem 1.9 (Biholomorphicity of the pullback). Let V and W be almost-
complex vector spaces, and let ϕ : W → V be an orientation-preserving isomor-
phism. Then ϕ∗ : Bel(V ) → Bel(W ) is a biholomorphism with respect to the
usual complex manifold structures on Bel(V ) and Bel(W ).

Proof. It suffices to consider the case V = W = C. Let µ ∈ Bel(C) and
ϕ : C → C be given by µ(z) = cz and ϕ(z) = az + bz. Then µ = µ(A) for
A : C→ C given by A(z) = z + cz. We have (A ◦ ϕ)(z) = (a+ cb)z + (b+ ca)z.
Recall that we have a biholomorphism Bel(C) ∼= D given by (µ(z) = cz) ↔ c.
Since

ϕ∗µ(z) = µ(A ◦ ϕ) =
b+ ca

a+ cb
z,
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we conclude that under the identification Bel(C) ∼= D, the pullback ϕ∗ is the
conformal automorphism

c 7→ b+ ca

a+ cb

of D.

1.2 The case of a Riemann surface

We return to the problem of measuring how much an orientation-preserving
homeomorphism f : X → Y of Riemann surfaces differs from being a biholomor-
phism. As the preceding discussion suggests, we would like to use infinitesimal
data. Of course, that requires f to have some well-defined notion of deriva-
tive. Therefore we must make a restriction on f beyond being an orientation-
preserving homeomorphism. We will see that the following definition suits our
needs perfectly.

Definition 1.10 (Definition 4.1.1 of [Hub06]). Let U, V ⊆ C be open, letK ≥ 1,
and let k = (K−1)/(K+1), A homeomorphism f : U → V is K-quasiconformal
if its distributional partial derivatives are locally L2 functions and satisfy∣∣∣∣∂f∂z

∣∣∣∣ ≤ k ∣∣∣∣∂f∂z
∣∣∣∣

almost everywhere. A map is quasiconformal if it is a K-quasiconformal home-
omorphism for some K. 4

Note that the inequality in the above definition can be restated as

|µ(Dfp)| ≤ k for a.e. p ∈ U.

Note also that k is defined so that K is a global upper bound on the ratio of
major axis to minor axis of the ellipses Dfp(S

1) for p ∈ U (see Theorem 1.7).
As the preceding discussion suggests, we will use µ(Dfp) as our measurement
of how much f differs from being a biholomorphism. Therefore we may think of
a quasiconformal map as a function that differs from being a biholomorphism
by a bounded amount. We summarize a variety of results about quasiconformal
maps as follows. See [Hub06] or [IT92] for proofs of all of the claims the following
proposition entails.

Proposition 1.11. There is a well-defined category Q whose objects are Rie-
mann surfaces and whose morphisms are homeomorphisms between Riemann
surfaces that are quasiconformal when written in local coordinates. This cate-
gory is in fact a groupoid.

We call morphisms f : X → Y in Q quasiconformal maps of Riemann surfaces.
Note that µ(Dfp) is well-defined at every p ∈ X, since any change of coordinates
h : U → U on an open set U is holomorphic, and hence µ(Dfp) = µ(D(f ◦h)p).

For the sake of easy bookkeeping, we would like to organize all of the Beltrami
forms µ(Dfp) into one object. We therefore give the following definition.
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Definition 1.12. Let X be a Riemann surface. An L∞ R-linear bundle map
µ : TRX → TRX satisfying µ ◦ JX = −JX ◦ µ and ‖µ‖∞ < 1 is called a
Beltrami differential on X. The space of all Beltrami differentials on X is
denoted Bel(X), and has the structure of a Banach manifold: it is the open unit
ball in the complex Banach space of L∞ R-linear bundle maps µ : TRX → TRX
satisfying µ ◦ JX = −JX ◦ µ.

For a quasiconformal map f : X → Y of Riemann surfaces, let µ(f) ∈ Bel(X)
be given by µ(f)p := µ(Dfp) at every p ∈ X. 4

It is convenient to identify Bel(X) with the space of L∞ sections of T ∗X⊗C
TX that are essentially bounded by 1. We describe this identification as follows.
Fix a point p ∈ X. Choosing a system of coordinates, we have the form dz :
(TCX)p → C given by ∂

∂x 7→ 1 and ∂
∂y 7→ −i. By restriction of scalars, we have

an induced R-linear map dz : (TRX)p → C given by ∂
∂x 7→ 1 and ∂

∂y 7→ −i. Note

that dz : (TRX)p → C is anti-equivariant with respect to the almost-complex
structures ((TRX)p, JX) and (C, i). Since (TRX)p and C are both 1-complex-
dimensional, every R-linear map (TRX)p → C that is anti-equivariant with
respect to the almost-complex structures is of the form cdz for c ∈ C.

Globally, this means that the complex line bundle whose fiber at a point p
is the space of anti-equivariant R-linear maps (TRX)p → C is isomorphic to the
bundle T ∗X (one must check that the transition maps are the right ones, but this
is easy). Therefore the bundle B whose fiber at a point p is the space of R-linear
maps µp : (TRX)p → (TRX)p satisfying µp ◦JX = −JX ◦µp is isomorphic to the
bundle T ∗X⊗CTRX. By Appendix A.1, we have an isomorphism TRX ∼= TX of
complex vector bundles, and so B ∼= T ∗X ⊗C TX. Since, by definition, Bel(X)
is the space of L∞ sections of B that are essentially bounded by 1, we conclude
that Bel(X) can also be identified with the space of L∞ sections of T ∗X⊗C TX
that are essentially bounded by 1. This means that in local coordinates on a
coordinate chart U ⊆ X, any µ ∈ Bel(X) may be written as

µ(z) = µU (z)dz ⊗ ∂

∂z
, µU ∈ L∞(U,C).

We adopt the notation
dz

dz
:= dz ⊗ ∂

∂z
,

so that we can more succinctly write µ = µU
dz
dz . We will interchangeably think

of a Beltrami differential as a bundle map and as a section of T ∗X ⊗C TX.
Again we have the inverse problem: given µ ∈ Bel(X), how do we find a

quasiconformal f : X → Y with µ(f) = µ? This is the Beltrami equation for
µ. We first answer this question locally. The answer is exactly what you would
guess after seeing Example 1.6.

Theorem 1.13 (Measurable Riemann mapping theorem, version 1). Let U be
an open subset of C, and let µ ∈ Bel(U). Then there exists a quasiconformal
map f : U → C such that µ(f) = µ. Every other quasiconformal g : U → C
satisfying µ(g) = µ is of the form g = h ◦ f , where h : f(U)→ C is an injective
analytic map (i.e. a biholomorphism onto its image).
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Proof. See [Hub06], Theorem 4.6.1.

Now, let X be a Riemann surface, µ ∈ Bel(X), and let {Uα}α be a covering
of X by coordinate charts. Then by Theorem 1.13, for each α, there exists a
quasiconformal map fα : Uα → C satisfying µ(fα) = µ|Uα . On the intersections
Uα ∩ Uβ , there is an injective analytic map h : fα(Uα ∩ Uβ) → C such that
fβ = h ◦ fα. That is to say, the transition function fβ ◦ (fα)−1 is analytic.
Therefore we have a new complex structure {(Uα, fα)}α on X. Denote by Xµ

the topological surface X endowed with this new complex structure. Note that
Xµ indeed depends only on µ: any other choice of solution gα the the Beltrami
equation for µ on Uα is of the form q ◦ fα for q : fα(Uα) → C injective and
analytic. Since q is a biholomorphism onto its image, using gα instead of fα
gives the same complex structure Xµ.

Note that this setup also produces for us a quasiconformal map f : X →
Xµ of Riemann surfaces, simply by letting f be the identity map X → X on
the underlying topological surface. Observe that when we write f down in
coordinates on Uα, we simply get f = fα. Therefore µ(f) = µ. Furthermore, if
g : X → Xµ is another quasiconformal map of Riemann surfaces with µ(g) = µ,
then Theorem 1.13 gives us that g ◦ f−1 is holomorphic, and hence g = h ◦
f , where h : Xµ → Xµ is a biholomorphism. We summarize the preceding
discussion as follows.

Theorem 1.14 (Measurable Riemann mapping theorem, version 2). Let X be
a Riemann surface, and let µ ∈ Bel(X). Then there exists a unique Riemann
surface Xµ (up to biholomorphism) and a quasiconformal map f : X → Xµ such
that µ(f) = µ. Every other quasiconformal g : X → Xµ satisfying µ(g) = µ is
of the form g = h ◦ f , where h is a conformal automorphism of the Riemann
surface Xµ.

Finally, the notion of pullback of a Beltrami form induces a notion of pullback
for Beltrami differentials.

Definition 1.15 (Pullback of a Beltrami differential). Let X and Y be Riemann
surfaces, and let f : Y → X be a quasiconformal map. We define the pullback
f∗ : Bel(X)→ Bel(Y ) along f by

f∗(µ(g)) := µ(g ◦ f).

4

Theorem 1.16 (Biholomorphicity of the pullback). Let X and Y be Riemann
surfaces, and let f : Y → X be a quasiconformal map. Then f∗ : Bel(X) →
Bel(Y ) is a biholomorphism with respect to the complex Banach manifold struc-
tures on Bel(X) and Bel(Y ).

Proof. Similar to the proof of Theorem 1.9. See [Hub06], Proposition 4.8.17.
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1.3 Moduli of Riemann surfaces

The measurable Riemann mapping theorem (Theorem 1.14) tells us that we
should guess that the moduli space of all Riemann surfaces quasiconformally
equivalent to a given Riemann surface X is Bel(X), or perhaps a quotient of
Bel(X). (Recall that by Proposition 1.11, admitting a quasiconformal map
X → Y is an equivalence relation.) This makes more precise the informal
discussion at the beginning of this section. In the rest of this section, all Riemann
surfaces will be assumed to be compact.

So far, we have been discussing Riemann surfaces in generality, but the
assumption that our surfaces are compact will imply that the resulting moduli
space depends only on the topological type of the chosen surface, not on its
complex structure. To be precise, we have the following theorem.

Theorem 1.17. If two compact Riemann surfaces X and Y are homeomorphic,
then they are quasiconformally equivalent.

Proof. By the classification of compact surfaces, any two surfaces that are home-
omorphic are also diffeomorphic by some diffeomorphism f : X → Y . Every
compact surface has an orientation-reversing involution, and so we may as-
sume that f is orientation-preserving. Orientation-preserving diffeomorphisms
of compact Riemann surfaces are clearly quasiconformal: if f : X → Y is such
a diffeomorphism, then the function X → R given by p 7→ |µ(Dfp)| is bounded
because X is compact.

Theorem 1.17 says that for each g ≥ 0, there is a connected component Qg
of the groupoid Q consisting of all Riemann surfaces of genus g. Note that given
any closed oriented smooth surface S of genus g, there exists for each X ∈ Qg
an atlas of charts on S compatible with the smooth structure and orientation
on S that induces a complex structure biholomorphic to X. Moreover, given
any Riemann surface Y , a map S → Y is quasiconformal with respect to one
such atlas of charts if and only if it is quasiconformal with respect to every such
atlas; we call any such map quasiconformal. Indeed, if we think of Y as having
S as its underlying smooth manifold, then we have the following definition.

Definition 1.18. Let S be a closed oriented smooth surface. We say a map
f : S → S is quasiconformal if there exist atlases of charts {Uα}α, {Vβ}β on
S that define complex structures on S compatible with the smooth structure
and orientation on S such that f is quasiconformal with respect to the induced
complex structures. Denote by QC(S) the topological group of all such maps,
topologized with the compact-open topology.

Let QC0(S) denote the subgroup of QC(S) of quasiconformal homeomor-
phisms ϕ : S → S that are homotopic to the identity Id : S → S. Note that
QC0(S) is a normal subgroup of QC(S).

The mapping class group Mod(S) is the quotient QC(S)/QC0(S). Note
that Mod(S) is a discrete group. See Appendix B for further remarks on the
definition of Mod(S). 4
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We can consider a smooth oriented surface S of genus g to be representative
of Qg. In the following definition, we fix a collection of such representatives.

Definition 1.19. Let Sg denote some fixed closed smooth surface of genus
g ≥ 0 with some fixed orientation. Let Sg denote the same smooth surface
endowed with the opposite orientation. Note that there exists an orientation-
preserving diffeomorphism Sg → Sg, but no such diffeomorphism is homotopic
to the identity map of the underlying smooth surface. 4

The following proposition makes more precise the claim that Sg is “repre-
sentative” of Qg.

Proposition 1.20. Let Sg denote the groupoid whose only object is Sg (so Sg

is a group in the categorical sense), and whose set of morphisms is QC(Sg).
Then Sg and Qg are equivalent categories.

Proof. Succinctly, this holds because Sg is isomorphic to each subcategory
(X,AutQg (X)) of Qg, and since Qg is a groupoid, each such subcategory is
a skeleton for Qg. We give a full proof below.

For each X ∈ Qg, choose an atlas of charts {UXα }α on Sg compatible with
the smooth structure and orientation on Sg such that there is a biholomor-
phism fX : X → Sg from X to Sg endowed with this atlas. Define a functor
F : Qg → Sg on objects by F(X) = Sg, and on morphisms by

F(ϕ : X → Y ) = fY ◦ ϕ ◦ (fX)−1.

Define a functor G : Sg → Qg by picking an arbitrary Y ∈ Qg, and defining
G(Sg) = Y , and

G(ψ : Sg → Sg) = (fY )−1 ◦ ψ ◦ fY , ∀ψ ∈ QC(Sg).

The composition F ◦ G is in fact equal to the identity functor on Sg. We define
a natural isomorphism η : G ◦ F ⇒ IdQg by setting

ηX = (fX)−1 ◦ fY : G ◦ F(X) = Y → X.

This is obviously a natural isomorphism, and so we are done.

To reflect the fact that our moduli space depends only on the topology of
our surface, we define a space of Beltrami differentials for Sg.

Definition 1.21. Let Bel(Sg) denote the space of all equivalence classes of pairs
(ϕ : Sg → X,µ), where ϕ is a quasiconformal map from Sg to a Riemann surface
X, and µ ∈ Bel(X). Two pairs (ϕ1 : Sg → X1, µ1) and (ϕ2 : Sg → X2, µ2)
are equivalent if µ2 = (ϕ1 ◦ ϕ−1

2 )∗µ1. We denote the equivalence class of a pair
(ϕ, µ) by [ϕ, µ]. 4

Remark 1.22. It is not hard to see that any quasiconformal map ϕ : Sg → X
from S to a Riemann surface X induces a bijection

ϕ∗ : Bel(X)→ Bel(Sg)

µ 7→ [ϕ, µ],
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and so Bel(Sg) admits the structure of a complex Banach manifold biholomor-
phic to Bel(X) for any Riemann surface X ∈ Qg. 4

Our guess that the moduli space Mg of closed Riemann surfaces of genus g
is a quotient of Bel(Sg) is correct. In fact, it is the quotient by a group action.
The group QC(Sg) acts on Bel(Sg) on the right in a straightforward way: given
f ∈ QC(Sg) and [ϕ, µ] ∈ Bel(Sg), we have

[ϕ, µ].f := [ϕ ◦ f, µ].

We can therefore make the following definitions.

Definition 1.23 (Teichmüller space and moduli space). The Teichmüller space
of Sg is the space Teich(Sg) := Bel(Sg)/QC0(Sg) with the quotient topology,
and the moduli space of Sg is the spaceMg := Bel(Sg)/QC(Sg) = Teich(Sg)/Mod(Sg)
with the quotient topology. 4

Remark 1.24. Note thatMg is the quotient of Teich(Sg) by a discrete group.
Though the action of Mod(Sg) on Teich(Sg) is not free, it is a theorem of Fricke
that this action is properly discontinuous. We will later see that Teich(Sg) is
a finite-dimensional contractible manifold. Along with Fricke’s theorem, this
implies that Teich(Sg) is the orbifold universal cover of Mg. 4

While Definition 1.23 is concise and clean and showcases the relationship
between Bel(Sg), Teich(Sg), andMg, it would be preferable to have more direct
descriptions of the points of Teich(Sg) andMg than simply as orbits of elements
of Bel(Sg) under a group action. We give these descriptions now. First observe
that if [ϕ : S → X,µ] ∈ Bel(Sg), then if we let g : X → Xµ be such that
µ(g) = µ, then [ϕ, µ] = [g ◦ ϕ : S → Xµ, 0]. Therefore every element of Bel(Sg)
can be written in the form [ψ : S → Y, 0].

Proposition 1.25. Two elements [ϕ1 : S → X1, 0], [ϕ2 : S → X2, 0] ∈ Bel(Sg)
lie in the same orbit of QC0(Sg) if and only if there exists a biholomorphism
j : X2 → X1 such that j ◦ ϕ2 is homotopic to ϕ1.

Proof. Suppose [ϕ1, 0] and [ϕ2, 0] lie in the same orbit, so that there exists some
quasiconformal f : Sg → Sg homotopic to the identity such that [ϕ1 ◦ f, 0] =
[ϕ2, 0]. By definition, this equality means that (ϕ1 ◦ f ◦ϕ−1

2 )∗0 = 0, which is to
say that j := ϕ1 ◦f ◦ϕ−1

2 : X2 → X1 is a biholomorphism. Since f is homotopic
to the identity, j ◦ ϕ2 is homotopic to ϕ1.

Now suppose there exists such a j. Letting f := ϕ−1
1 ◦ j ◦ ϕ2, we see that

[ϕ1, 0].f = [ϕ2, 0].

Corollary 1.26.

Teich(Sg) =
{ϕ : Sg → X | X a Riemann surface, ϕ quasiconformal}

(ϕ1 : Sg → X1) ∼ (ϕ2 : Sg → X2) ⇐⇒ ∃h : X2 → X1 a biholomorphism with h ◦ ϕ2 ' ϕ1
.

12



One also often sees Teich(Sg) and Mod(Sg) defined not in terms of quasi-
conformal maps, but in terms of orientation-preserving diffeomorphisms. By
Corollary B.6, we have Mod(Sg) = π0Diff+(Sg). Furthermore, Lemma B.2 tells
us that every homotopy class of quasiconformal maps has a representative that
is an orientation-preserving diffeomorphism, and hence we have the following.

Corollary 1.27.

Teich(Sg) =
{ϕ : Sg → X | X a Riemann surface, ϕ an orientation-preserving diffeomorphism}

(ϕ1 : Sg → X1) ∼ (ϕ2 : Sg → X2) ⇐⇒ ∃h : X2 → X1 a biholomorphism with h ◦ ϕ2 ' ϕ1
.

Finally, we obtain a characterization ofMg that makes no reference to gen-
eral quasiconformal or smooth maps, only to biholomorphisms.

Proposition 1.28. Two elements [ϕ1 : S → X1, 0], [ϕ2 : S → X2, 0] ∈ Bel(Sg)
lie in the same orbit of QC(Sg) if and only if X1 is biholomorphic to X2.

Proof. Suppose [ϕ1, 0] and [ϕ2, 0] lie in the same orbit, so that there exists some
quasiconformal f : Sg → Sg such that [ϕ1 ◦ f, 0] = [ϕ2, 0]. By definition, this
equality means that (ϕ1 ◦ f ◦ϕ−1

2 )∗0 = 0, which is to say that j := ϕ1 ◦ f ◦ϕ−1
2 :

X2 → X1 is a biholomorphism.
Now suppose there exists a biholomorphism j : X2 → X1. Letting f :=

ϕ−1
1 ◦ j ◦ ϕ2, we see that [ϕ1, 0].f = [ϕ2, 0].

Corollary 1.29.

Mg =
{X a Riemann surface | X has genus g}
X ∼ Y ⇐⇒ X is biholomorphic to Y

Corollaries 1.27 and 1.29 are usually given as the definitions of Teich(Sg)
and Mg. Note that these definitions do not immediately induce a topology on
either space, but our Definition 1.23 does. There is another common definition
of Teichmüller space in terms of representations of π1(Sg) that also induces
a topology; see Theorem 3.1. That approach to Teichmüller theory is very
important, but to pursue it now would mean putting complex analysis on hold
for a while, so we will not go down that route at the moment.

2 Holomorphic Quadratic Differentials

Just as we came up with certain tensors (Beltrami differentials) that measured
the difference between two complex structures in the last section, in this section
we will come up with tensors (holomorphic quadratic differentials) that measure
the difference between two projective structures.

Definition 2.1 (Projective structure). Let S be a topological surface. A pro-
jective structure on S is a system of coordinate charts {(Uα, ϕα : Uα → CP1)}α
such that the coordinate transition functions are Möbius transformations, i.e.
ϕβ ◦ ϕ−1

α ∈ PSL2(C). (Note that, technically, ϕβ ◦ ϕ−1
α is only defined on

13



the image of ϕα, but if it is expressible as a fractional linear transformation,
then it extends to all of CP1, and so there is nothing wrong with writing
ϕβ ◦ ϕ−1

α ∈ PSL2(C).)
We call a surface endowed with a complex projective structure a complex

projective surface. 4

2.1 The Schwarzian derivative at a point

Just as a Beltrami differential measures how much a quasiconformal map dif-
fers from a biholomorphism, a Schwarzian derivative measures how much a
holomorphic map differs from a Möbius transformation. We first give some
linear-algebraic preliminaries.

Definition 2.2. Just as a linear map V → W of vector spaces may be de-
fined as a mapping given by homogeneous linear polynomials in every system
of coordinates (i.e. choice of basis), a degree k map (quadratic map, cubic map,
etc.) V → W of vector spaces is a mapping given by homogeneous degree k
polynomials in every system of coordinates. Let Homk(V,W ) denote the vector
space of degree k maps V → W . Let F denote the field over which the vector
space V is defined; elements of Homk(V, F ) are called degree k forms (quadratic
forms, cubic forms, etc.) 4

Example 2.3. The map T : R2 → R2 given by T (x, y) = (2x3 − xy2, 10y3)
is a cubic map of vector spaces: If we precompose T with an invertible linear
transformation (i.e. a change of coordinates) A = ( a1 a2a3 a4 ), the result is still
given by homogeneous cubic polynomials

T ◦A(x, y) = (2(a1x+ a2y)3 − (a1x+ a2y)(a3x+ a4y)2, 10(a3x+ a4y)3).

Similarly, if we postcompose T with a change of coordinates B =
(
b1 b2
b3 b4

)
, the

result is still given by homogeneous cubic polynomials

B ◦ T (x, y) = (b1(2x3 − xy2) + b2(10y3), b3(2x3 − xy2) + b4(10y3)).

4

Remark 2.4. Observe that Homk(V,W ) is isomorphic to Symk(V ∗) ⊗W via
the natural isomorphism defined on simple tensors by

Symk(V ∗)⊗W ∼−→ Homk(V,W )

(α1 · · ·αk)⊗ w 7→

(
v 7→

(
k∏
i=1

αi(v)

)
w

)
.

Note that in the case k = 1, this is just the ordinary isomorphism Hom(V,W ) ∼=
V ∗ ⊗W . 4

Lemma 2.5. Let V be a 1-dimensional vector space over a field F , and let
k, ` ∈ N with k ≥ `. Then there is an isomorphism Ψ : Homk−`(V, F ) →
Homk(V, V ⊗`) given by

ϕ 7→
(
v 7→ ϕ(v)v⊗`

)
.
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Proof. By Remark 2.4, it is clear that the vector spaces Homk−`(V, F ) and
Homk(V, V ⊗`) are 1-dimensional. Therefore, since the map Ψ is nonzero, it is
an isomorphism.

The following lemma is an elementary fact about differential topology, though
not one that is often found in textbooks. It is a special case of Principle 2.3.1
in [Hub06], which is given as an exercise in that text. The proof of the gen-
eral principle is the same as the proof of the following lemma, but with more
bookkeeping.

Lemma 2.6. Let X and Y be Riemann surfaces, let p ∈ X, and let f : X → Y
be a holomorphic function. Let ϕ : U → C be a coordinate chart about p, and
ψ : V → C be a coordinate chart about f(p), so that ϕ(p) = ψ(f(p)) = 0.
Suppose that the Taylor series of ψ ◦ f ◦ ϕ−1 has no terms of degree less than
k for some k ≥ 1. Then the same is true for any other choices of coordinate
charts. Furthermore, if ak

k! z
k + · · · is this Taylor series, then

TpX ∼=
ϕ∗
T0C = C→ C = T0C ∼=

ψ∗
Tf(p)Y

z 7→ akz
k

is a degree k map Dk
pf : TpX → Tf(p)Y of vector spaces that depends only on

f , not on the choices of coordinate charts.

Remark 2.7. Observe that in Lemma 2.6, the map D1
pf is just the ordinary

derivative Df = f∗ : TpX → Tf(p)Y . The map Dk
pf can be thought of as the

kth derivative of f at p. Then Lemma 2.6 states that the kth derivative of f at
p is independent of the choice of coordinates when f vanishes to degree k−1 (cf.
the Hessian of a scalar-valued function on a manifold, which is only independent
of coordinates at critical points of the function). 4

Proof. Let ϕ′ : U ′ → C, ψ′ : V ′ → C be other choices of coordinate charts with
ϕ′(p) = ψ′(f(p)) = 0. For ease of notation, let g := ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ),
let Φ := ϕ◦(ϕ′)−1 : ϕ′(U∩U ′)→ ϕ(U∩U ′), and let Ψ := ψ′◦ψ−1 : ψ(V ∩V ′)→
ψ′(V ∩ V ′). Then ak

k! z
k + · · · is the Taylor series for g about 0; let

Φ(z) =

∞∑
n=1

αn
n!
zn, Ψ(z) =

∞∑
n=1

βn
n!
zn

be the Taylor series for Φ and Ψ about 0. Note that by our assumptions, these
Taylor series indeed do not have any degree zero terms. Now, the Taylor series
for ψ′ ◦ f ◦ (ϕ′)−1 = Ψ ◦ g ◦ Φ about 0 is

Ψ ◦ g ◦ Φ(z) =

∞∑
n=1

βn
n!

( ∞∑
m=k

am
m!

( ∞∑
`=1

α`
`!
z`

)m)n

=
β1akα

k
1

k!
zk + higher degree terms.
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This proves the claim that f has trivial Taylor coefficients of order less than k
in every system of coordinates.

The map Dk
pf is certainly a well-defined degree k map of vector spaces; the

question is whether it is independent of the choices of coordinate charts. We
see that the coordinate charts ϕ′, ψ′ give us the degree k map

(D′)kpf : TpX ∼=
ϕ′∗

T0C = C→ C = T0C ∼=
ψ′∗

Tf(p)Y

z 7→ β1akα
k
1z
k.

We must show that (D′)kpf is in fact the same map as Dk
pf . To see this, we

use the coordinate transition maps Φ and Ψ to write (D′)kpf in the coordinates
given by ϕ and ψ:

C C C C

z α−1
1 z β1akα

k
1

(
α−1

1 z
)k

= β1akz
k β−1

1

(
β1akz

k
)

= akz
k.

Φ−1
∗ ψ′∗◦(D

′)kpf◦(ϕ
′
∗)
−1

Ψ−1
∗

The above map is ψ∗ ◦ (D′)kpf ◦ (ϕ∗)
−1, and we see that it is indeed equal to

ψ∗ ◦Dk
pf ◦ (ϕ∗)

−1. Since ϕ∗ and ψ∗ are invertible, we conclude that (D′)kpf =

Dk
pf .

The key ingredient in the definition of the Schwarzian derivative is the fact
that every meromorphic function with nonvanishing first derivative can be ap-
proximated to second order by a Möbius transformation.

Lemma 2.8. Let U ⊆ CP1 be open, let f : U → CP1 be a holomorphic function
with Df 6= 0 everywhere, and let z0 ∈ U . Then there is a unique A ∈ PSL2(C)

with ∂kA
∂zk

(z0) = ∂kf
∂zk

(z0) for all 0 ≤ k ≤ 2.

Proof. Since PSL2(C) acts transitively on CP1 by biholomorphisms, we may
assume without loss of generality that U contains 0, that z0 = 0, and that
f(0) = 0. Then if

∑ an
n! z

n is the Taylor series for f about 0, the map

A(z) =
a1z

1− (a2/2a1)z

is the desired Möbius transformation.

We are now in the position to define the Schwarzian derivative of a holomor-
phic map f : X → Y of complex projective surfaces, where Df is assumed to
be nontrivial everywhere. Let {(Uα, ϕα : Uα → CP1)}α denote the projective
structure on X, and let {(Vβ , ψβ : Vβ → CP1)}β denote the projective structure
on Y . Let p ∈ X, let (U,ϕ) be one of the charts (Uα, ϕα) about p, and let (V, ψ)
be one of the charts (Vβ , ψβ) about f(p). Suppose that ψ(f(p)) = 0. Then
let Af,p,ϕ,ψ : ϕ(U)→ CP1 be the unique Möbius transformation approximating
ψ ◦ f ◦ ϕ−1 to second order at 0.
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Since ψ(f(p)) = 0, the difference (ψ ◦ f ◦ ϕ−1) − Af,p,ϕ,ψ is well-defined in
a neighborhood of 0 in ϕ(U). Let us suppose that U is small enough that this
difference is well-defined on all of ϕ(U). If (U ′, ϕ′) is some other coordinate
chart about p, then the coordinate transition map B = ϕ ◦ (ϕ′)−1 is a Möbius
transformation, and so Af,p,ϕ′,ψ = Af,p,ϕ,ψ ◦B. Therefore

(ψ ◦ f ◦ (ϕ′)−1)−Af,p,ϕ′,ψ = ((ψ ◦ f ◦ ϕ−1)−Af,p,ϕ,ψ) ◦ (ϕ ◦ (ϕ′)−1).

Similarly, if (V ′, ψ′) is some other coordinate chart about f(p) with ψ′(f(p)) = 0,
then

(ψ′ ◦ f ◦ ϕ−1)−Af,p,ϕ,ψ′ = (ψ′ ◦ ψ−1) ◦ ((ψ ◦ f ◦ ϕ−1)−Af,p,ϕ,ψ).

Therefore the function

(f −A)p : U → V

(f −A)p(z) := ψ−1(((ψ ◦ f ◦ ϕ−1)−Af,p,ϕ,ψ) ◦ ϕ(z)), ∀z ∈ U

is well-defined independent of the choice of coordinate functions ϕ and ψ. Since
the Taylor series of the function (f − A)p has no terms of degree less than 2,
Lemma 2.6 tells us that there is a well-defined cubic map

D3
p(f −A)p : TpX → Tf(p)Y.

Postcomposing with Df−1 gives us a cubic map

Df−1 ◦D3
p(f −A)p : TpX → TpX,

and hence by Lemma 2.5 (with k = 3 and ` = 1) a quadratic form

S(f)p : TpX → C.

Definition 2.9. Let f : X → Y be a holomorphic map of complex projective
surfaces, where Df is nontrivial everywhere. Then the quadratic form S(f)p is
called the Schwarzian derivative of f at p ∈ X. 4

2.2 The Schwarzian derivative as a tensor

Just as we were able to fit together all of the µ(f)p into an L∞ section µ(f)
of T ∗X ⊗C TX for a quasiconformal map f , we are able to fit together all
of the S(f)p into a holomorphic section S(f) of Sym2(T ∗X) = T ∗X ⊗C T

∗X
(note that this equality holds because X is 1-dimensional as a complex man-
ifold). By Remark 2.4, Sym2(T ∗X) ∼= Hom2(T ∗X,F ), and so holomorphic
sections of Sym2(T ∗X) are called holomorphic quadratic differentials on X.
Since Sym2(T ∗X) is a holomorphic vector bundle, it makes sense to drop the
qualifier “holomorphic” and just call these sections quadratic differentials on X.
Let QD(X) denote the vector space of all quadratic differentials on X. It is a
consequence of the Riemann-Roch theorem that when X is a closed Riemann
surface of genus g, we have dimCQD(X) = 3g − 3; see Appendix C.
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Lemma 2.10. Let f : X → Y be a holomorphic map of complex projective
surfaces, where Df is nontrivial everywhere. Then the section S(f) : p 7→ S(f)p
of Sym2(T ∗X) is holomorphic, and hence S(f) is a quadratic differential.

Proof. First, a proof sketch: Looking at the formula in Lemma 2.8, we see
that all the Taylor coefficients of the Möbius transformation that approximates
f depend holomorphically (indeed, rationally) on the Taylor coefficients of f ,
which themselves vary holomorphically in p. Therefore S(f) is a holomorphic
map.

Explicitly, let ϕ : U → CP1 and ψ : U → CP1 be coordinate charts around p
and f(p), respectively, such that ϕ(p) = ψ(ϕ(p)) = 0. If

∑ an
n! z

n is the Taylor
series for g := ψ ◦ f ◦ϕ−1 about 0, then the formula in Lemma 2.8 gives us that

Af,p,ϕ,ψ(z) = a1z + a2z
2 +

a22
4a1

z3 + · · · . Therefore, we have

D3
p(f −A)p : TpX ∼=

ϕ∗
T0C = C→ C = T0C ∼=

ψ∗
Tf(p)Y

z 7→ 6

(
a3

6
− a2

2

4a1

)
z3,

and hence

Df−1 ◦D3
p(f −A)p : TpX ∼=

ϕ∗
T0C = C→ C = T0C ∼=

ϕ∗
TpX

z 7→ 6

a1

(
a3

6
− a2

2

4a1

)
z3

=

(
a3

a1
− 3

2

(
a2

a1

)2
)
z3

Therefore, in the local coordinate w given by ϕ, the section S(f) : X →
Sym2(T ∗X) has the formula

S(f) =

 ∂3g
∂w3 (w)
∂g
∂w (w)

− 3

2

(
∂2g
∂w2 (w)
∂g
∂w (w)

)2
 dw2.

Since g is holomorphic, this formula shows that S(f) is also holmorphic.

Once again, we have an inverse problem: given q ∈ QD(X), how do we find
a holomorphic f : X → Y with S(f) = q? This is the Schwarzian differential
equation for q. We will first answer this question locally.

Theorem 2.11 (Solving the Schwarzian equation, version 1). Let U be a simply-
connected open subset of CP1, and let q ∈ QD(U). Then there exists a holo-
morphic map f : U → CP1 (i.e. a meromorphic function on U) such that
S(f) = q. Every other holomorphic g : U → CP1 satisfying S(g) = q is of the
form g = A ◦ f , where A ∈ PSL2(C).

Proof. See [Hub06], Proposition 6.3.7.
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Similarly to our discussion after version 1 of the measurable Riemann map-
ping theorem (Theorem 1.13), we can patch together local solutions of the
Schwarzian differential equation on a Riemann surface to get a global solu-
tion.

Let X be a Riemann surface with projective structure {(Uα, ϕα : Uα →
CP1)}α, where each Uα is simply-connected, and let q ∈ QD(X). Then by The-
orem 2.11, for each α, there exists a holomorphic map fα : Uα → CP1 satisfying
S(fα) = q|Uα . For each intersection Uα ∩ Uβ , there is a Möbius transformation
Aαβ ∈ PSL2(C) such that fβ = Aαβ ◦fα. That is to say, the transition function
fβ ◦ (fα)−1 is a Möbius transformation. Therefore we have a new projective
structure {(Uα, fα)}α on X. Denote by Xq the topological surface X endowed
with this new projective structure. Note that Xq indeed depends only on q: any
other choice of solution gα to the Schwarzian differential equation for q on Uα
is of the form B ◦ fα for B ∈ PSL2(C) a Möbius transformation. Since B is a
Möbius transformation, using gα instead of fα gives the same Riemann surface
Xq with projective structure.

Note that this setup also produces for us a biholomorphism f : X → Xq of
Riemann surfaces with projective structure, simply by letting f be the identity
map X → X on the underlying topological surface. Observe that when we
write f down in coordinates on Uα, we simply get f = fα. Therefore S(f) = q.
Furthermore, if g : X → Xq is another holomorphic map with S(g) = q, then
Theorem 2.11 gives us that g ◦ f−1 is a Möbius transformation, and hence
g = h ◦ f , where h : Xq → Xq is an automorphism of the projective structure
on Xq (i.e. a biholomorphism Xq → Xq that is fractional-linear when written
in local coordinates).

Note that the preceding discussion mirrors exactly the discussion after ver-
sion 1 of the measurable Riemann mapping theorem. We summarize this dis-
cussion as follows.

Theorem 2.12 (Solving the Schwarzian equation, version 2). Let X be a com-
plex projective surface, and let q ∈ QD(X). Then there exists a unique complex
projective surface Xq (up to isomorphism of complex projective surfaces) and
a biholomorphism f : X → Xq such that S(f) = q. Every other biholomor-
phism g : X → Xq satisfying S(g) = q is of the form g = h ◦ f , where h is an
automorphism of the projective structure on Xq.

Remark 2.13. By the uniformization theorem, the group of projective auto-
morphisms of a complex projective surface X is isomorphic to the group of
biholomorphisms of X.

This section is meant to mirror §1.2, and so we should discuss the pullback
of quadratic differentials. It seems there is nothing special to say here. Since
a quadratic differential q on Y is a holomorphic section of T ∗Y ⊗C T

∗Y , we
already have a notion of pullback of q along a holomorphic map f : X → Y
given by

f∗(α⊗ β) = f∗α⊗ f∗β.
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However, there is more than meets the eye. Whereas we had (by definition)
f∗µ(g) = µ(g ◦ f), one can see that f∗S(g) 6= S(g ◦ f). Instead, given holo-
morphic maps f : X → Y and g : Y → Z of complex projective surfaces, we
have

f∗S(g) = S(g ◦ f)− S(f). (2)

Equation 2 is called the cocycle condition.

2.3 Moduli of projective structures

For a far more in-depth look at moduli of projective structures, see [Dum09].

Definition 2.14. The set MProj(Sg) of marked projective structures is the
collection of all equivalence classes of orientation-preserving diffeomorphisms
ϕ : Sg → X from Sg to a complex projective surface X, where two maps
ϕ1 : Sg → X1 and ϕ2 : Sg → X2 are equivalent if there is an isomorphism
h : X2 → X1 of projective structures such that h ◦ ϕ2 is homotopic to ϕ1. The
equivalence class of a map ϕ is denoted [ϕ], and is called an marked projective
structure on S.

Since every isomorphism of projective structures is a biholomorphism, it fol-
lows from Corollary 1.27 that we have a surjection π : MProj(Sg)→ Teich(Sg)
given by weakening the equivalence relation from requiring that h be an isomor-
phism of projective structures to requiring that h merely be some biholomor-
phism.

Remark 2.15. Note that, generically, given two closed Riemann surfaces X and
Y , there exists at most one biholomorphism X → Y . Therefore, the question
of whether two complex projective surfaces X and Y are isomorphic is usually
just the question “Are X and Y biholomorphic, and if so, does the unique
biholomorphism respect the given projective structures?”

Lemma 2.16. For every τ = [ϕ : Sg → X] ∈ Teich(Sg), the fiber π−1(τ) is an
affine space modeled on QD(X), where

[ψ : Sg → Y ] + q = [f ◦ ψ : Sg → Yq], [ψ] ∈ π−1(τ), q ∈ QD(Y ) ∼= QD(X),

where f : Y → Yq is the unique holomorphic map with S(f) = q such that there
is a biholomorphism h : Yq → X such that h ◦ f is homotopic to ϕ.

Proof. Given q ∈ QD(Y ), Theorem 2.12 tells us that there exists a biholomor-
phism f : Y → Yq with S(f) = q. By Remark 2.13 and the biholomorphicity of
automorphisms of projective structure, we can always choose f so that there is
a biholomorism h : Yq → X such that h ◦ f is homotopic to ϕ. Therefore [ψ] + q
is well-defined for every ψ ∈ π−1(τ) and every q ∈ QD(X).

To see that [ψ] 7→ [ψ] + q is indeed a group action, note first that we obvi-
ously have [ψ] + 0 = [ψ]. Now, given q, r ∈ QD(X), let f : Y → Yq be the map
associated to q, and let g : Yq → (Yq)r be the map associated to r. The cocycle
condition (2) implies that q+r = S(g◦f), and hence ([ψ]+q)+r = [ψ]+(q+r).
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Therefore [ψ] 7→ [ψ]+q is indeed a group action of QD(X) on π−1(τ). That this
group action is free and transitive is another consequence of Theorem 2.12.

In Theorem 3.10 we will see that Teich(Sg) is a complex manifold whose holo-
morphic tangent space at [ϕ : Sg → X] is canonically identified with QD(X).
Therefore, any global section of π induces a bijection MProj(Sg)→ T ∗Teich(Sg)
that, for each [ϕ : Sg → X] ∈ Teich(Sg), is equivariant with respect to the
QD(X) action on the fiber over [ϕ : Sg → X]. When g ≥ 2, there is a preferred
section of π called the Fuchsian section. Given a Riemann surface X of genus
g ≥ 2, the uniformization theorem states that there is a locally biholomorphic
covering map H2 → X obtained by taking the quotient of H2 by a Fuchsian
group. This covering endows X with the projective structure whose coordinate
maps U → H2 ⊆ CP1 are precisely the local sections of the covering. Let XFuchs

denote the surface X endowed with this projective structure.

Definition 2.17. The Fuchsian section of π : MProj(Sg) → Teich(Sg) is the
map

σFuchs : Teich(Sg)→ MProj(Sg)

[ϕ : Sg → X] 7→ [ϕ : Sg → XFuchs].

To complete the analogy between projective structures and complex struc-
tures, note that Mod(Sg) acts on MProj(Sg) in the same way as it acts on
Teich(Sg), and so we can similarly form the quotient MProj(Sg)/Mod(Sg), the
space of unmarked projective structures.

3 The Bers Embedding

The stories of sections 1 and 2 appear to run parallel to each other, but in
fact they intersect. Their point of intersection is the Bers embedding theorem.
This gives Teich(Sg) the structure of a complex manifold whose tangent space
at [ϕ : Sg → X] is naturally identified with a quotient of Bel(X), and whose
cotangent space at [ϕ : Sg → X] is naturally identified with QD(X).

A very clean exposition of the material of this section can be found in
[McM00]. From now on, we will be assuming g ≥ 2.

3.1 Quasi-Fuchsian representations

Recall that a Fuchsian representation of a surface group is a discrete and faith-
ful representation π1(Sg) → PSL2(R). The space DF(π1(Sg),PSL2(R)) of all
such representations is a subspace of Hom(π1(Sg),PSL2(R)), and hence inher-
its the subspace topology from this Hom space, which is naturally endowed
with the compact-open topology. The group PSL2(R) acts on representations
ρ ∈ Hom(π1(Sg),PSL2(R)) by conjugation:

ρ(γ).A = A−1ρ(γ)A A ∈ PSL2(R), γ ∈ π1(Sg).
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Note thatDF(π1(Sg),PSL2(R)) is preserved by this action; let Fuchs(Sg) denote
the quotient of DF(π1(Sg),PSL2(R)) by this action. The following theorem is
essentially a fancy version of the classical uniformization theorem.

Theorem 3.1. There is a homeomorphism Fuchs(Sg) ∼= Teich(Sg).

Partial proof. We will only define the map Teich(Sg) → Fuchs(Sg) that turns
out to be a homeomorphism. Given [ϕ : Sg → X] ∈ Teich(Sg), choose a uni-

versal covering map π : S̃g → Sg and a locally biholomorphic universal covering
map π′ : H2 → X (the existence of π′ is the content of the uniformization theo-

rem). Let ϕ̃ : S̃g → H2 be a lift of ϕ. For any deck transformation γ : S̃g → S̃g
for π, the map ϕ̃ ◦ γ ◦ ϕ̃−1 : H2 → H2 is a deck transformation for π′, and hence
is an element of PSL2(R). Now define

f : Teich(Sg)→ Fuchs(Sg)

[ϕ] 7→ [γ 7→ ϕ̃ ◦ γ ◦ ϕ̃−1].

The map f does not depend on any of the choices we have made, and is the
desired homeomorphism.

Since PSL2(R) ⊆ PSL2(C), we can make the following definition.

Definition 3.2. A representation η : π1(Sg) → PSL2(C) is quasi-Fuchsian if
there exists a quasiconformal map f : CP1 → CP1 and a Fuchsian representation
ρ : π1(Sg)→ PSL2(R) such that

η(γ) = f ◦ ρ(γ) ◦ f−1, ∀γ ∈ π1(Sg).

The group PSL2(C) acts on Hom(π1(Sg),PSL2(C)) by conjugation just as above,
and the space of all quasi-Fuchsian representations of π1(Sg) is naturally a
subspace of this Hom space, just as above. Denote by QFuchs(Sg) the quotient
of the space of quasi-Fuchsian representations of π1(Sg) by this action. 4

Lemma 3.3. Let A ∈ PSL2(C) and µ ∈ Bel(CP1). If A∗µ = µ, then for every
quasiconformal f : CP1 → CP1 satisfying the Beltrami equation for µ, we have
f ◦A ◦ f−1 ∈ PSL2(C).

Proof. For 0 ∈ Bel(CP1), we have

(f ◦A ◦ f−1)∗0 = (f−1)∗A∗f∗0 = (f−1)∗A∗µ = (f−1)∗µ = 0.

Therefore f ◦A ◦ f−1 is a holomorphic homeomorphism CP1 → CP1.

Similarly to Theorem 3.1, we have

Theorem 3.4 (Bers’ Simultaneous Uniformization). There is a homeomor-
phism QFuchs(Sg) ∼= Teich(Sg)× Teich(Sg).
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Recall that Sg denotes the same underlying smooth surface as Sg, endowed
with the opposite orientation. Of course, there is only one equivalence class of
genus g surfaces up to orientation-preserving diffeomorphism, but we will find
it more convenient to use Sg in some places rather than Sg. Similarly, given a
Riemann surface X, we denote by X the underlying topological surface of X,
endowed with the opposite complex structure (and hence opposite oreintation);
if J : TRX → TRX defines the complex structure for X, then −J : TRX → TRX
defines the complex structure for X. We can also describe X as follows: if
π : H2 → X is a locally biholomorphic covering with deck transformation group
Γ ⊆ PSL2(R), then we have a commutative diagram

H2 H2

X X

z 7→z

π π

Id

where Id : X → X is the identity map on the underlying topological surface,

and π : H2 → X is the quotient of H2
by Γ.

Fix some orientation-preserving diffeomorphism ϕ0 : Sg → X from Sg to a
Riemann surface X, and fix a locally biholomorphic covering π : H2 → X. The
map ϕ0 induces an identification ϕ∗0 : Bel(X)

∼−→ Bel(Sg). Any µ ∈ Bel(X) lifts
to some µ̃ := π∗µ ∈ Bel(H2) that is invariant under the deck transformation
group Γ ⊆ PSL2(R); given any deck transformation γ ∈ Γ, we have γ∗µ̃ = (π ◦
γ)∗µ = π∗µ = µ̃. The map ϕ0 is also an orientation-preserving diffeomorphism
Sg → X, and hence also induces an identification ϕ∗0 : Bel(X)

∼−→ Bel(Sg).
Letting π be as in the above diagram, we can also lift any ν ∈ Bel(X) to

some ν̃ := π∗ν ∈ Bel(H2
) that is invariant under Γ. We can therefore define

(µ̃, ν̃) ∈ Bel(CP1) by

(µ̃, ν̃)z :=

{
µ̃z if z ∈ H2

ν̃z if z ∈ H2
.

Note that this definition depends on the choice of ϕ0 and the choice of π.

Definition 3.5. Fix some orientation-preserving diffeomorphism ϕ0 : Sg → X
from Sg to a Riemann surface X, and fix a universal covering map π : H2 →
X. Given µ ∈ Bel(Sg), ν ∈ Bel(Sg), let fµ,ν : CP1 → CP1 be the unique

quasiconformal map with Beltrami differential (ϕ̃∗0µ, ϕ̃
∗
0ν) that fixes 0, 1, and

∞. Note1 that ϕ0 and π induce an identification π1(Sg) ∼= π1(X) ∼= Deck(π) ⊆
PSL2(R). We define the quasi-Fuchsian representation ρµ,ν by

ρµ,ν(γ) := fµ,ν ◦ γ ◦ f−1
µ,ν , ∀γ ∈ π1(Sg).

By Lemma 3.3, ρµ,ν is a well-defined quasi-Fuchsian representation.
4

1Actually, different choices of basepoints in Sg , X, and H2 will induce different identifica-
tions π1(Sg) ∼= Deck(π). However, all of these identifications differ only by postcomposition
by an inner automorphism of PSL2(C), and so no matter which basepoints we choose, ρµ,ν
will define the same point of QFuchs(Sg).
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Partial proof of Theorem 3.4. Let ΦSg : Bel(Sg)→ Teich(Sg) and ΦSg : Bel(Sg)→
Teich(Sg) be the quotient maps. Fix some orientation-preserving diffeomor-
phism ϕ0 : Sg → X from Sg to a Riemann surface X, and fix a universal
covering map π : H2 → X, and define the map

QF : Bel(Sg)× Bel(Sg)→ QFuchs(Sg)

(µ, ν) 7→ [ρµ,ν ].

The proof is completed by showing that QF factors through ΦSg × ΦSg , and

that the induced map QF : Teich(Sg) × Teich(Sg) is a homeomorphism. For a
proof of part of this, see [Hub06].

Notice that we have a “diagonal” inclusion, which can be written as either

Teich(Sg) ↪→ Teich(Sg)× Teich(Sg)

τ 7→ (τ, τ)

or

Fuchs(Sg) ↪→ QFuchs(Sg)

ρ 7→ ρ,

where τ denotes, for τ = [ϕ : Sg → X] ∈ Teich(Sg), the element

[Sg
Id−→ Sg

ϕ−→ X
Id−→ X] ∈ Teich(Sg).

Equivalently, for τ = [µ], we have τ = [µ].
Given (µ, ν) ∈ Bel(Sg)× Bel(Sg), the universal covering

fµ,ν(H2)→ fµ,ν(H2)/ρµ,ν(π1(Sg))

defines a projective structure on the Riemann surfaceX = fµ,ν(H2)/ρµ,ν(π1(Sg)).
This projective structure depends only on the point (τ, κ) = ΦSg ×ΦSg (µ, ν) ∈
Teich(Sg)×Teich(Sg) (see [Hub06]), and so we denote it by στ (τ, κ) ∈ π−1(τ) ⊆
MProj(Sg). Similarly, we define σκ(τ, κ) ∈ MProj(Sg) via the universal covering

fµ,ν(H2
)→ fµ,ν(H2

)/ρµ,ν(π1(Sg)). Finally, observe that σFuchs(τ) = στ (τ, τ).

3.2 The Bers maps

Recall that, by Lemma 2.16, the difference between two projective structures in
π−1([ϕ : Sg → X]) can be seen as an element of QD(X).

Definition 3.6 (Bers projection and Bers embedding). Let S be a closed,
oriented surface. Let ΦS : Bel(S) → Teich(S) be the quotient map, and let
κ = [ψ : S → Y ] ∈ Teich(S). We define the Bers projection (based at κ)

Ψ̃κ : Bel(S)→ QD(Y )

[ϕ, µ] 7→ σκ(ΦS([ϕ, µ]), κ)− σκ(κ, κ).
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Clearly Ψ̃κ factors through ΦS : Bel(S) → Teich(S), and hence descends to a
map Ψκ : Teich(S) → QD(Y ), which we call the Bers embedding (based at κ).
As shorthand we will call these maps the Bers maps. 4

Analyticity of Ψ̃κ is fairly straightforward, and we also have the following
lemma.

Lemma 3.7. The Bers embedding is injective.

Proof. See propositions 9.8-9.10 of [Wri].

The following lemma is crucial for Theorem 3.9, and can be seen as the point
at which the stories of §1 and §2 intersect.

Lemma 3.8 (Ahlfors-Weill). Let B1/2(0) ⊆ QD(Y ) be the ball of radius 1/2

about 0 in QD(Y ). This ball lies in the image of Ψ̃κ, and there exists a holo-

morphic section σ : B1/2(0)→ Bel(S) of Ψ̃κ.

Proof. See Theorem 6.3.10 of [Hub06].

Theorem 3.9 (Teichmüller spaces are complex manifolds). About each τ ∈
Teich(S) there is an open set Uτ ⊆ Teich(S) such that {(Uτ ,Ψτ )}τ∈Teich(S) is a
system of coordinate charts endowing Teich(S) with the structure of a complex
(3g − 3)-dimensional manifold.

Proof. See pages 265-266 of [Hub06].

As a consequence of Theorem 3.9, we have

Theorem 3.10. Given τ = [ϕ : S → X] ∈ Teich(S), the holomorphic cotangent
space T ∗τ Teich(S) is canonically isomorphic to QD(X), and the holomorphic
tangent space Tτ Teich(S) is canonically isomorphic to bel(S)/ bel0(S), where
bel(S) is the tangent space at 0 to Bel(S), and bel0(S) ⊆ bel(S) is the linear
subspace of differentials µ ∈ bel(S) satisfying

∫
µq = 0 for every q ∈ QD(X).

3.3 Differentiating the Bers maps

(Forthcoming)

A Notation for Complex Manifolds

A.1 Definitions for general complex manifolds

Let M be a complex manifold of real dimension 2n. Any coordinates we use are
assumed to be given by some coordinate chart in the atlas that determines the
complex structure on M . Throughout these notes, if V is a vector space/bundle,
we denote by V ∗ its linear dual, not its complex conjugate.
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• Given any vector bundle E →M , we denote by Γ(E) the space of smooth
sections of E. Unfortunately, we also often use the letter “Γ” to denote a
Fuchsian group, although it should always be clear in each context which
use of the letter is meant.

• TRM is the tangent bundle to M as a real 2n-manifold. It is a real rank 2n
vector bundle with an R-basis ∂

∂x1
, . . . , ∂

∂xn
, ∂
∂y1

, . . . , ∂
∂yn

at every point.
It has a natural almost-complex structure given by

JM :
∂

∂xi
7→ ∂

∂yi
∂

∂yi
7→ − ∂

∂xi

at every point. Therefore the fibers of TRM admit the structure of an
n-dimensional complex vector space with C-basis ∂

∂x1
, . . . , ∂

∂xn
, where the

complex scalar multiplication is given by (a+ bi)v := av+ bJX(v). In this
way, TRM can also be viewed as a complex rank n vector bundle.

• T ∗RM = (TRM)∗ is the cotangent bundle to M as a real 2n-manifold. It
is a real rank 2n vector bundle with an R-basis dx1, . . . , dxn, dy1, . . . , dyn
at every point. It has a natural almost-complex structure given by

J∗M : dxi 7→ dxi ◦ JM = −dyi
dyi 7→ dyi ◦ JM = dxi

at every point. Therefore the fibers of T ∗RM admit the structure of an
n-dimensional complex vector space with C-basis dx1, . . . , dxn, where the
complex scalar multiplication is given by (a+ bi)ϕ := aϕ+ bJ∗Mϕ. In this
way, T ∗RM can also be viewed as a complex rank n vector bundle. Note
that it is the complex dual bundle to the complex vector bundle TRM .

• TCM = TRM ⊗R C is the complexified tangent bundle to M . It is a
complex rank 2n vector bundle with a C-basis ∂

∂x1
, . . . , ∂

∂xn
, ∂
∂y1

, . . . , ∂
∂yn

at every point.

• T ∗CM = (TCM)∗ = T ∗RM ⊗RC is the complexified cotangent bundle to M .
It is a complex rank 2n vector bundle with a C-basis dx1, . . . , dxn, dy1, . . . , dyn
at every point.

• TM is the holomorphic tangent bundle to M . It is a complex rank n
sub-vector bundle of TCM with a C-basis ∂

∂z1
:= 1

2 ( ∂
∂x1
− i ∂

∂y1
), . . . , ∂

∂zn
:=

1
2 ( ∂
∂xn
−i ∂

∂yn
) at every point. The fiber of TM at a point is the eigenspace

of i for the complex-linear extension JM ⊗RC of JM . As a complex vector
bundle, TM is isomorphic to TRM via the isomorphism that at every fiber
takes ∂

∂zi
to ∂

∂xi
.
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• TM is the anti-holomorphic tangent bundle to M . It is a complex rank n
sub-vector bundle of TCM with a C-basis ∂

∂z1
:= 1

2 ( ∂
∂x1

+ i ∂
∂y1

), . . . , ∂
∂zn

:=
1
2 ( ∂
∂xn

+i ∂
∂yn

) at every point. The fiber of TM at a point is the eigenspace
of −i for the complex-linear extension JM ⊗R C of JM .

• T ∗M is the holomorphic cotangent bundle to M . It is a complex rank n
sub-vector bundle of T ∗CM with a C-basis dz1 := dx1 + idy1, . . . , dzn :=
dxn + idyn at every point. The fiber of T ∗M at a point is the eigenspace
of i for the complex-linear extension J∗M ⊗RC of J∗M . As a complex vector
bundle, T ∗M is isomorphic to T ∗RM via the isomorphism that at every
fiber takes dzi to dxi.

• T ∗M is the anti-holomorphic cotangent bundle to M . It is a complex rank
n sub-vector bundle of T ∗CM with a C-basis dz1 := dx1 − idy1, . . . , dzn :=
dxn − idyn at every point. The fiber of T ∗M at a point is the eigenspace
of −i for the complex-linear extension J∗M ⊗R C of J∗M .

•
∧k

T ∗RM is the kth alternating power of T ∗RM . It is a real rank
(

2n
k

)
quo-

tient vector bundle of (T ∗RM)⊗k with an R-basis {dxi1 ∧· · ·∧dxik}i1<···<ik
at every point. Smooth sections of

∧k
T ∗RM are called real differential

k-forms, and nowhere-vanishing smooth sections of
∧2n

T ∗RM are called
volume forms.

• Symk(T ∗RM) is the kth symmetric power of T ∗RM . It is a real rank
(
n+k−1

k

)
quotient vector bundle of (T ∗RM)⊗k with an R-basis

{dxi11 · · · dxinn }i1+···+in=k

at every point. When k = 2, for p ∈ M and v, w ∈ (TRM)p, we have
dadb(v, w) = 1

2 (da(v)db(w) + da(w)db(v)) for a, b among the xi, yj . A

section g of Sym2(T ∗RM) is called a Riemannian metric if the bilinear
form gp(·, ·) is positive definite at every point p ∈M .

•
∧k

T ∗CM is the kth alternating power of T ∗CM . It is a complex rank(
2n
k

)
quotient vector bundle of (T ∗CM)⊗k with an C-basis {dxi1 ∧ · · · ∧

dxik}i1<···<ik at every point.

• Symk(T ∗CM) is the kth symmetric power of T ∗CM . It is a complex rank(
n+k−1

k

)
quotient vector bundle of (T ∗CM)⊗k with a C-basis

{dxi11 · · · dxinn }i1+···+in=k

at every point.

A.2 Definitions for Riemann surfaces

Let X be a complex manifold of dimension 1, called a Riemann surface.
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• The canonical bundle of X is T ∗X, sometimes denoted K, and has C-
basis dz at every point. Holomorphic sections ω ∈ Γ(K) are called abelian
differentials. Note that K∗ = TX, with C-basis ∂

∂z at every point.

• K2 := K ⊗C K = Sym2(K) ⊂ Sym2(T ∗CX). Holomorphic sections q ∈
Γ(K2) are called holomorphic quadratic differentials.

• We have an inclusion
∧2

T ∗CX ↪→ (T ∗CX)⊗2 given by α ∧ β 7→ 1
2 (α ⊗ β −

β ⊗ α). We also have an inclusion Sym2(T ∗CX) ↪→ (T ∗CX)⊗2 given by
αβ 7→ 1

2 (α⊗ β + β ⊗ α). Then

dz ⊗ dz = (dx+ idy)⊗ (dx− idy)

= dx2 + dy2︸ ︷︷ ︸
Riemannian metric

−2idx ∧ dy︸ ︷︷ ︸
Volume form

= dzdz − dz ∧ dz.

B Remarks on the definition of Mod(S)

When the genus of X is at least 2, there is an even stronger formulation of
Theorem 1.17.

Theorem B.1. If S and S′ are closed surfaces of genus at least 2, then any
homotopy equivalence S → S′ is homotopic to a diffeomorphism.

Proof. See Section 8.3.2 of [FM12].

One often sees the mapping class group defined in terms of diffeomorphisms,
rather than in terms of quasiconformal maps. The following lemma and its
corollary tell us that these definitions are equivalent. Furthermore, Theorem
B.5 tells us the same for homeomorphisms.

Lemma B.2. Every quasiconformal map ϕ : Sg → X is homotopic to an
orientation-preserving diffeomorphism ψ : Sg → X.

Proof. For g ≥ 2, the claim follows from Theorem B.1. For g = 0, the claim
follows from the fact that π2(S0) = Z. For g = 1, it follows from Theorem 2.5 of
Farb-Margalit that every homeomorphism S1 → S1 is homotopic to a special-
linear map with integral coefficients, which is clearly an orientation-preserving
diffeomorphism.

Corollary B.3. Let Diff+(Sg) denote the group of orientation-preserving dif-
feomorphisms Sg → Sg, and let Diff+

0 (Sg) denote the subgroup of Diff+(Sg) of
diffeomorphisms that are homotopic to the identity map. Then the inclusion
Diff+(Sg) ↪→ QC(Sg) induces an isomorphism

Diff+(Sg)/Diff+
0 (Sg)

∼−→ QC(Sg)/QC0(Sg) = Mod(Sg).
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Let us return to the case where g ≥ 2. With respect to the compact-open
topology, Diff+

0 (Sg) is the connected component of the identity in Diff+(Sg),
so that Diff+(Sg)/Diff+

0 (Sg) = π0Diff+(Sg). One way of seeing this is as a
consequence of the following two theorems. Let Homeo+(Sg) denote the group
of orientation-preserving homeomorphisms Sg with the compact-open topology.

Theorem B.4 (Theorem 1.12 of [FM12]). Let ϕ,ψ ∈ Homeo+(Sg) be ho-
motopic functions. Then ϕ and ψ lie in the same connected component of
Homeo+(Sg).

Theorem B.5 (Theorem 1.2 of [Bol09]). The inclusion Diff+(Sg) ↪→ Homeo+(Sg)

induces an isomorphism π0Diff+(Sg)
∼−→ π0Homeo+(Sg).

Corollary B.6. Let ϕ,ψ ∈ Diff+(Sg) be homotopic functions. Then ϕ and ψ
lie in the same connected component of Diff+(Sg).

Proof. By Theorem B.4, ϕ and ψ lie in the same connected component of
Homeo+(Sg). By Theorem B.5, ϕ and ψ therefore also lie in the same con-
nected component of Diff+(Sg).

I am not aware of any analogue to Corollary B.6 with Diff+(Sg) replaced
with QC(Sg), and I don’t know whether or not this is an open problem.

C Computing the dimension of QD(X) with Riemann-
Roch

Let S be a closed oriented surface. Let ΩX denote the sheaf of holomorphic
1-forms on a Riemann surface X. Then we have the following theorem, which
is a consequence of Bers’ embedding theorem.

Theorem C.1. The holomorphic cotangent space to Teich(S) at the point
[ϕ : S → X] is isomorphic to H0(X,Ω⊗2

X ).

We wish to compute the dimension of QD(X) = H0(X,Ω⊗2
X ). This will be

done by appealing to Serre duality and the Riemann-Roch theorem. We will
also give a computation by appealing to Theorem C.1 and the Fenchel-Nielsen
coordinates on Teich(S).

Theorem C.2. When g ≥ 2, dimCH
0(X,Ω⊗2

X ) = 3g − 3.

We will see that Serre duality also gives the following theorem.

Theorem C.3. The holomorphic tangent space to Teich(S) at the point
[ϕ : S → X] is isomorphic to H1(X,Ω⊗−1

X ).

Note that Ω⊗−1
X is the sheaf of holomorphic vector fields on X. Note also

that H1(X,Ω⊗−1
X ) is the space of all infinitesimal deformations of the complex

structure on X in the sense of Kodaira-Spencer. The Bers embedding identifies
the tangent space to Teich(S) at the point [ϕ : S → X] with a quotient of the
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vector space bel(X) of L∞ global sections of ΩX ⊗ ΩX
⊗−1, where ΩX is the

space of antiholomorphic 1-forms on X. It is nontrivial, but not too difficult, to
show directly that these two descriptions of the tangent space to Teich(S) are
equivalent.

We will also concern ourselves with the space H0(X,ΩX) of global holomor-
phic 1-forms on X. These forms are of course of natural interest, and also admit
a very concrete interpretation in terms of translation surfaces, which are of par-
ticular contemporary interest. Serre duality will give the following theorem.

Theorem C.4. dimCH
0(X,ΩX) = g.

This is a particular instance of Hodge symmetry, which indeed also follows
from Serre duality.

C.1 Serre Duality and Riemann-Roch

In this section we quote analytic versions of Serre duality and the Riemann-
Roch theorem. Denote by O(−) the sheaf of sections of a vector bundle, and
denote by c1(−) the first Chern class of a line bundle.

Theorem C.5 (Serre duality, Theorem A9.14 of [Hub06]). Let V be a holo-
morphic vector bundle on a compact complex manifold X of dimension n, and
let V ∗ be the dual vector bundle. Then

Hk(X,O(V )) is dual to Hn−k(X,O(V ∗)⊗ Ω⊗nX ).

In particular, we will apply Serre duality in the following case. Let d be an
integer, and let X be a compact Riemann surface. Then

H1(X,Ω⊗dX ) is dual to H0(X,Ω
⊗(1−d)
X ). (3)

Observe that Theorem C.3 now follows immediately from (3) and Theorem C.1.

Theorem C.6 (Riemann-Roch, Theorem A10.0.1 of [Hub06]). Let L be a holo-
morphic line bundle on a compact Riemann surface X of genus g. Then

dimCH
0(X,O(L))− dimCH

1(X,O(L)) = c1(L) + 1− g.

C.2 Dimension Counts

In order to apply the Riemann-Roch theorem, we must know how to compute the
relevant Chern classes. This computation is made by appealing to the following
two lemmas.

Lemma C.7 (Proposition A10.2.1 of [Hub06]). On a compact Riemann surface
X, let L be a holomorphic line bundle and let D be a Weil divisor such that
O(L) = O(D). Then c1(L) = deg(D).

Lemma C.8 (Proposition 1.14 of Chapter V of [Mir95]). Let X be a compact
Riemann surface. Then X has a canonical divisor of degree 2g − 2.
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It follows from the above lemmas that

c1(Ω⊗dX ) = d(2g − 2). (4)

We can now prove Theorem C.2.

First proof of Theorem C.2. This proof appears as the proof of Proposition A10.3.2
in [Hub06]. Since c1(Ω⊗−1

X ) = 2− 2g < 0, we have H0(X,Ω⊗−1
X ) = 0. By Serre

duality, H1(X,Ω⊗2
X ) = 0. Then Riemann-Roch gives

dimCH
0(X,Ω⊗2

X )− dimCH
1(X,Ω⊗2

X ) = c1(Ω⊗2
X ) + 1− g

dimCH
0(X,Ω⊗2

X )− 0 = 2(2g − 2) + 1− g by (4)

dimCH
0(X,Ω⊗2

X ) = 3g − 3.

We can also prove Theorem C.2 be appealing to the Fenchel-Nielsen coordi-
nates on Teich(S).

Theorem C.9 (Fenchel-Nielsen coordinates). Let S be a closed topological sur-
face of genus g ≥ 2. Then Teich(S) is diffeomorphic to R6g−6.

Second proof of Theorem C.2. By Theorem C.9, the holomorphic cotangent space
to Teich(S) at any point [ϕ : S → X] has real dimension 6g−6, and hence com-
plex dimension 3g−3. By Theorem C.1, this space is isomorphic to H0(X,Ω⊗2

X ).

We also remark that a heuristic dimension count of dimCH
0(X,Ω⊗2

X ) can
be made by appealing to the fact that global sections of Ω⊗2

X are in one-to-one
correspondence with planar polygons whose sides come in parallel pairs.

We can also now prove Theorem C.4.

Proof of Theorem C.4. This proof appears as the proof of Proposition A10.1.1
in [Hub06]. The short exact sequence of sheaves

0→ C→ OX → ΩX → 0

induces a long exact sequence in cohomology. Part of this long exact sequence
is the short exact sequence

0→ H0(X,ΩX)→ H1(X,C)→ H1(X,OX)→ 0.

Serre duality gives that the left- and right-hand terms are dual, and hence

dimCH
0(X,ΩX) =

1

2
dimCH

1(X,C) = g.
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D A perspective on the Weil-Petersson metric

In this section we construct the Weil-Petersson metric. Let X ∼= H2/Γ be
a closed Riemann suface, and let Teich(X) be its Teichmüller space. We will
present the Weil-Petersson metric on Teich(X) as an explicit isomorphism
T ∗Teich(X)

∼−→ T Teich(X).
Note throughout that all the bundle isomorphisms we consider below are

constructions that work for any complex 1-manifold; they don’t just work be-
cause H2 is contractible, so that all C∞-bundles of the same dimension are
vacuously isomorphic! In particular, these constructions descend naturally to
any quotient manifold of H2. We’re really only working in H2 because we want
to write down explicit coordinate representations of forms. Thus, we’re using
the upper half-plane model of H2.

Consider the hyperbolic metric ds2 = 1
y2 (dx⊗dx+dy⊗dy) ∈ Γ((T ∗RH2)⊗2).

This is an everywhere nonvanishing section of (T ∗RH2)⊗2, and hence spans a
line subbundle L ↪→ (T ∗RH2)⊗2. Furthermore, ds2 is a Riemannian metric, and
hence determines an isomorphism

TRH2 ↔ T ∗RH2

∂

∂x
,
∂

∂y
↔ 1

y2
dx,

1

y2
dy,

and hence an isomorphism

(TRH2)⊗2 ↔ (T ∗RH2)⊗2

∂

∂xi
⊗ ∂

∂xj
↔ 1

y4
dxi ⊗ dxj ,

where we write x1 = x and x2 = y for simplicity. Under this isomorphism, we
have

ds2 =
1

y2
(dx⊗ dx+ dy ⊗ dy)↔ 1

y6

(
∂

∂x
⊗ ∂

∂x
+

∂

∂y
⊗ ∂

∂y

)
The section 1

y6

(
∂
∂x ⊗

∂
∂x + ∂

∂y ⊗
∂
∂y

)
∈ Γ((TRH2)⊗2) is also everywhere nonva-

nishing, and hence spans a line subbundle L′ ↪→ (TRH2)⊗2.
Now consider the line bundle L∗ = HomR(L,H2 × R), and denote by 1

ds2 ∈
Γ(L∗) the form satisfying 1

ds2 (ds2) = 1 at every point of H2. We have an iso-

morphism L∗
∼−→ L′ taking 1

ds2 to y2

2

(
∂
∂x ⊗

∂
∂x + ∂

∂y ⊗
∂
∂y

)
, which we shall also

denote by 1
ds2 . This realizes 1

ds2 as a section of (TRH2)⊗2 satisfying 1
ds2 (ds2) = 1

at every point of H2. Under the inclusion (TRH2)⊗2 ↪→ (TCH2)⊗2, we write 1
ds2

in complex notation:

1

ds2
= Im(z)2

(
∂

∂z
⊗ ∂

∂z
+

∂

∂z
⊗ ∂

∂z

)
.

We now define the Weil-Petersson Riemannian metric on Teich(X). We de-
fine the metric via its induced isomorphism QD(X) = T ∗Teich(X)

∼−→ T Teich(X) =
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bel(X)/ bel0(X). Given ϕ ∈ QD(X), let us abuse notation and also write
ϕ = fdz ⊗ dz ∈ QD(H2) for the lift of ϕ to the universal cover H2 of X. Then
consider

ϕ⊗ 1

ds2
= fIm(z)2

(
dz ⊗ dz ⊗ ∂

∂z
⊗ ∂

∂z
+ dz ⊗ dz ⊗ ∂

∂z
⊗ ∂

∂z

)
.

Now, notice that the line subbundle H ↪→ (T ∗CH2)⊗2 spanned by ϕ ⊗ 1
ds2 is

isomorphic to T ∗H2⊗TH2 via the isomorphism (dz⊗ dz⊗ ∂
∂z ⊗

∂
∂z + dz⊗ dz⊗

∂
∂z ⊗

∂
∂z ) 7→ 2dz ⊗ ∂

∂z . (Note: it seems that it is sometimes conventional to

rather use · · · 7→ dz ⊗ ∂
∂z so that ϕ ⊗ 1

ds2 = fIm(z)2dz ⊗ ∂
∂z . This is meant to

match the formal calculation fdz2 · Im(z)2

dzdz = fIm(z)2 dz2

dzdz = fIm(z)2 dz
dz .) Under

this isomorphism, we have

ϕ⊗ 1

ds2
= 2fIm(z)2dz ⊗ ∂

∂z
∈ bel(H2).

Note that ϕ ∈ QD(H2) is Γ-equivariant by construction, as is ds2. Hence
ϕ ⊗ 1

ds2 ∈ bel(H2) is also Γ-equivariant, and hence descends to a Beltrami
differential µϕ ∈ bel(X). The map QD(X) → bel(X)/bel0(X), ϕ 7→ [µϕ] is
the isomorphism defining the Weil-Petersson metric. We remark that µϕ is also
called a harmonic Beltrami differential, and that the restriction of the map
QD(X) → bel(X), ϕ 7→ µϕ to B 1

2
(0) ⊆ QD(X) is precisely the Ahlfors-Weill

section σ : B 1
2
(0)→ Bel(X).
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