The Ahlfors-Rauch variational formula

Bradley Zykoski

June 5, 2020

Outline

(1) Measuring the difference between Riemann surfaces

Outline

(1) Measuring the difference between Riemann surfaces
(2) The Torelli space

Outline

(1) Measuring the difference between Riemann surfaces
(2) The Torelli space
(3) The Ahlfors-Rauch variational formula

Measuring the difference between Riemann surfaces

Two Riemann surfaces X and Y of genus g are always diffeomorphic, thanks to the classification of topological surfaces. However, they might not have the same complex structure.

Measuring the difference between Riemann surfaces

Two Riemann surfaces X and Y of genus g are always diffeomorphic, thanks to the classification of topological surfaces. However, they might not have the same complex structure.

That is to say, there might not be any holomorphic $X \rightarrow Y$ with a holomorphic inverse $Y \rightarrow X$. But how close can we get?

Measuring the difference between Riemann surfaces

Two Riemann surfaces X and Y of genus g are always diffeomorphic, thanks to the classification of topological surfaces. However, they might not have the same complex structure.

That is to say, there might not be any holomorphic $X \rightarrow Y$ with a holomorphic inverse $Y \rightarrow X$. But how close can we get?

For an orientation-preserving diffeomorphism $f: X \rightarrow Y$, we would like to say how close f is to being a biholomorphism (holomorphic map with holomorphic inverse).

Measuring the difference between Riemann surfaces

Two Riemann surfaces X and Y of genus g are always diffeomorphic, thanks to the classification of topological surfaces. However, they might not have the same complex structure.

That is to say, there might not be any holomorphic $X \rightarrow Y$ with a holomorphic inverse $Y \rightarrow X$. But how close can we get?

For an orientation-preserving diffeomorphism $f: X \rightarrow Y$, we would like to say how close f is to being a biholomorphism (holomorphic map with holomorphic inverse).

To do this, we will define a differential form μ_{f} on X that measures how far f is from being a biholomorphism.

Measuring the difference between Riemann surfaces

Goal: Define a form μ_{f} on X measuring how far $f: X \rightarrow Y$ is from being a biholomorphism.

Measuring the difference between Riemann surfaces

Goal: Define a form μ_{f} on X measuring how far $f: X \rightarrow Y$ is from being a biholomorphism.

Note that f is a biholomorphism if and only if $(d f)_{p}: T_{p} X \rightarrow T_{f(p)} Y$ is \mathbb{C}-linear for every $p \in X$.

Measuring the difference between Riemann surfaces

Goal: Define a form μ_{f} on X measuring how far $f: X \rightarrow Y$ is from being a biholomorphism.

Note that f is a biholomorphism if and only if $(d f)_{p}: T_{p} X \rightarrow T_{f(p)} Y$ is \mathbb{C}-linear for every $p \in X$.

Thus we may start with a more down-to-earth goal: Define a quantity μ_{T} measuring how far a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is from being \mathbb{C}-linear.

Measuring the difference between Riemann surfaces
Goal: Define a quantity μ_{T} measuring how far a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is from being \mathbb{C}-linear.
\mathbb{C}-linear \Leftrightarrow Maps circleste circles

$$
z \mapsto \alpha z
$$

Failure to be \Leftrightarrow How much you stretch
\mathbb{C}-linear \Leftrightarrow circles int ellipses

$$
z \mapsto a z+b \bar{z}
$$

Measuring the difference between Riemann surfaces

Goal: Define a quantity μ_{T} measuring how far a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is from being \mathbb{C}-linear.

Measuring the difference between Riemann surfaces

Goal: Define a quantity μ_{T} measuring how far a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is from being \mathbb{C}-linear.

Since an arbitrary $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is of the form $T(z)=a z+b \bar{z}$, we define $\mu_{T}=\frac{b}{a}$.

Measuring the difference between Riemann surfaces

Goal: Define a quantity μ_{T} measuring how far a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is from being \mathbb{C}-linear.

Since an arbitrary $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is of the form $T(z)=a z+b \bar{z}$, we define $\mu_{T}=\frac{b}{a}$.

When T is \mathbb{C}-linear, we have $T(z)=a z$, and so $\mu_{T}=0$. The more T depends on \bar{z}, the greater b is, and hence the greater μ_{T} is.

Measuring the difference between Riemann surfaces

Goal: Define a quantity μ_{T} measuring how far a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is from being \mathbb{C}-linear.

Since an arbitrary $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is of the form $T(z)=a z+b \bar{z}$, we define $\mu_{T}=\frac{b}{a}$.

When T is \mathbb{C}-linear, we have $T(z)=a z$, and so $\mu_{T}=0$. The more T depends on \bar{z}, the greater b is, and hence the greater μ_{T} is.

When T is orientation-preserving, we have $\left|\frac{b}{a}\right|<1$.

Measuring the difference between Riemann surfaces

Goal: Define a form μ_{f} on X measuring how far $f: X \rightarrow Y$ is from being a biholomorphism.

Definition (Beltrami differential at a point)

Let $f: X \rightarrow Y$ be an orientation-preserving diffeomorphism of Riemann surfaces, and let $p \in X$. Fix coordinate systems about p and $f(p)$, giving isomorphisms $T_{p} X \cong \mathbb{C}$ and $T_{f(p)} Y \cong \mathbb{C}$. Then we have $(d f)_{p}=\left(\frac{\partial f}{\partial z}(p)\right) z+\left(\frac{\partial f}{\partial \bar{z}}(p)\right) \bar{z}$. We define

$$
\mu_{f}(p)=\mu_{(d f)_{p}}=\frac{\frac{\partial f}{\partial \bar{z}}(p)}{\frac{\partial f}{\partial z}(p)}
$$

Measuring the difference between Riemann surfaces

Exercise

Let $f: X \rightarrow Y$ be an orienation-preserving diffeomorphism of Riemann surfaces, and let $p \in X$.
(1) Fix a coordinate system about p. Show that $\mu_{f}(p)$ does not depend on the choice of coordinate system about $f(p)$.
(2) Show that if z and w are local coordinates about p, with $z=\varphi(w)$, then

$$
\mu_{f}(p)_{\text {w.r.t. } w}=\frac{\frac{\partial(f \circ \varphi)}{\partial \bar{w}}(p)}{\frac{\partial(f \circ \varphi)}{\partial w}(p)}=\frac{\frac{\partial f}{\partial \bar{z}}(p)}{\frac{\partial f}{\partial z}(p)} \cdot \frac{\frac{\partial \varphi}{\partial w}(p)}{\frac{\partial \varphi}{\partial w}(p)}=\mu_{f}(p)_{\text {w.r.t. } z} \cdot \frac{\frac{\frac{\partial \varphi}{\partial w}(p)}{\frac{\partial \varphi}{\partial w}(p)}}{}
$$

Measuring the difference between Riemann surfaces

Exercise

Let $f: X \rightarrow Y$ be an orienation-preserving diffeomorphism of Riemann surfaces, and let $p \in X$.
(1) Fix a coordinate system about p. Show that $\mu_{f}(p)$ does not depend on the choice of coordinate system about $f(p)$.
(2) Show that if z and w are local coordinates about p, with $z=\varphi(w)$, then

$$
\mu_{f}(p)_{\text {w.r.t. } w}=\frac{\frac{\partial(f \circ \varphi)}{\partial \bar{w}}(p)}{\frac{\partial(f \circ \varphi)}{\partial w}(p)}=\frac{\frac{\partial f}{\partial \bar{z}}(p)}{\frac{\partial f}{\partial z}(p)} \cdot \frac{\frac{\partial \varphi}{\partial w}(p)}{\frac{\partial \varphi}{\partial w}(p)}=\mu_{f}(p)_{\text {w.r.t. } z} \cdot \frac{\frac{\frac{\partial \varphi}{\partial w}(p)}{\frac{\partial \varphi}{\partial w}(p)}}{}
$$

The second exercise shows that μ_{f} can be understood as a C^{∞} section of $\bar{K} \otimes K^{*}$, where K is the holomorphic cotangent bundle of X, and \bar{K} and K^{*} are its complex conjugate and linear dual, respectively. In local coordinates, we write $\mu_{f}=\mu(z) \frac{d z}{d z}$ for some local C^{∞} function μ.

Measuring the difference between Riemann surfaces

Definition

Let X be a Riemann surface. We define the vector space $\operatorname{Bel}(X)$ of C^{∞} Beltrami differentials to be the set of C^{∞} sections of $\bar{K} \otimes K^{*}$.

Measuring the difference between Riemann surfaces

Definition

Let X be a Riemann surface. We define the vector space $\operatorname{Bel}(X)$ of C^{∞} Beltrami differentials to be the set of C^{∞} sections of $\bar{K} \otimes K^{*}$.

Exercise

Show that $|\mu(p)|$ is independent of any choice of coordinates about p for every $\mu \in \operatorname{Bel}(X)$.

Measuring the difference between Riemann surfaces

Definition

Let X be a Riemann surface. We define the vector space $\operatorname{Bel}(X)$ of C^{∞} Beltrami differentials to be the set of C^{∞} sections of $\bar{K} \otimes K^{*}$.

Exercise

Show that $|\mu(p)|$ is independent of any choice of coordinates about p for every $\mu \in \operatorname{Bel}(X)$.

Theorem (Global C^{∞} Riemann mapping theorem)

Let $\operatorname{Bel}_{1}(X)$ be the set of $\mu \in \operatorname{Bel}(X)$ with $|\mu(p)|<1$ for every $p \in X$.
For every $\mu \in \operatorname{Bel}_{1}(X)$, there exists a Riemann surface X_{μ} and a diffeomorphism $f: X \rightarrow X_{\mu}$ such that $\mu_{f}=\mu$.

The surface X_{μ} is unique up to biholomorphism, and the map f is unique up to postcomposition by some automorphism of X_{μ}.

The Torelli space

Recall that a Torelli marking on a Riemann surface X is a choice of basis $\mathscr{B}=\left\{a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}\right\}$ for $H_{1}(X ; \mathbb{Z})$ so that $a_{i} \cdot b_{j}=\delta_{i j}$ and $a_{i} \cdot a_{j}=b_{i} \cdot b_{j}=0$ for all i, j.

The Torelli space

Recall that a Torelli marking on a Riemann surface X is a choice of basis $\mathscr{B}=\left\{a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}\right\}$ for $H_{1}(X ; \mathbb{Z})$ so that $a_{i} \cdot b_{j}=\delta_{i j}$ and $a_{i} \cdot a_{j}=b_{i} \cdot b_{j}=0$ for all i, j.

Definition

Fix $g>0$. The Torelli space for genus g Riemann surfaces is
$\mathcal{U}_{g}=\{(X, \mathscr{B}) \mid X$ a genus g Riemann surface with Torelli marking $\mathscr{B}\} / \sim$, where $(X, \mathscr{B}) \sim(Y, \mathscr{C})$ if there is there is a biholomorphism $f: X \rightarrow Y$ with $f_{*} \mathscr{B}=\mathscr{C}$.

The Torelli space

Recall that a Torelli marking on a Riemann surface X is a choice of basis $\mathscr{B}=\left\{a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}\right\}$ for $H_{1}(X ; \mathbb{Z})$ so that $a_{i} \cdot b_{j}=\delta_{i j}$ and $a_{i} \cdot a_{j}=b_{i} \cdot b_{j}=0$ for all i, j.

Definition

Fix $g>0$. The Torelli space for genus g Riemann surfaces is
$\mathcal{U}_{g}=\{(X, \mathscr{B}) \mid X$ a genus g Riemann surface with Torelli marking $\mathscr{B}\} / \sim$, where $(X, \mathscr{B}) \sim(Y, \mathscr{C})$ if there is there is a biholomorphism $f: X \rightarrow Y$ with $f_{*} \mathscr{B}=\mathscr{C}$.

Let $(X, \mathscr{B}) \in \mathcal{U}_{g}$, and let $\mu \in \operatorname{Bel}(X)$. For small enough $t \in \mathbb{R}$, we have $t \mu \in \operatorname{Bel}_{1}(X)$, and so by the global C^{∞} Riemann mapping theorem we have a diffeomorphism $f_{t \mu}: X \rightarrow X_{t \mu}$. By the definition of the Torelli space, there is a well-defined point $\left(X_{t \mu},\left(f_{t \mu}\right)_{*} \mathscr{B}\right) \in \mathcal{U}_{g}$, irrespective of the choice of $X_{t \mu}$ and $f_{t \mu}$.

The Torelli space

Theorem

The map

$$
\begin{aligned}
\operatorname{Bel}(X) & \rightarrow T_{(X, \mathscr{B})} \mathcal{U}_{g} \\
\mu & \left.\mapsto \frac{\partial}{\partial t}\right|_{t=0}\left(X_{t \mu},\left(f_{t \mu}\right)_{*} \mathscr{B}\right)
\end{aligned}
$$

is a linear surjection. We may therefore understand every tangent vector to \mathcal{U}_{g} as an equivalence class $[\mu$] of Beltrami differentials.

The Torelli space

Recall that every $(X, \mathscr{B}) \in \mathcal{U}_{g}$ has a dual basis $\omega_{1}, \ldots, \omega_{g} \in \Omega(X)$ satisfying

$$
\int_{a_{i}} \omega_{j}=\delta_{i j}, \quad \forall 1 \leq i, j \leq g
$$

We define the period matrix $\tau(X, \mathscr{B})_{i, j=1}^{g}=\left(\int_{b_{i}} \omega_{j}\right)_{i, j=1}^{g}$.

The Torelli space

Recall that every $(X, \mathscr{B}) \in \mathcal{U}_{g}$ has a dual basis $\omega_{1}, \ldots, \omega_{g} \in \Omega(X)$ satisfying

$$
\int_{a_{i}} \omega_{j}=\delta_{i j}, \quad \forall 1 \leq i, j \leq g
$$

We define the period matrix $\tau(X, \mathscr{B})_{i, j=1}^{g}=\left(\int_{b_{i}} \omega_{j}\right)_{i, j=1}^{g}$.
Let $f: X \rightarrow Y$ be a biholomorphism with $\mathscr{C}=f_{*} \mathscr{B}$. Then the formula $\int_{f_{*} \gamma} \omega=\int_{\gamma} f^{*} \omega$ implies that $\left(f^{-1}\right)^{*} \omega_{1}, \ldots,\left(f^{-1}\right)^{*} \omega_{g}$ is a dual basis for (Y, \mathscr{C}), and that $\tau(X, \mathscr{B})=\tau(Y, \mathscr{C})$.

The Torelli space

Recall that every $(X, \mathscr{B}) \in \mathcal{U}_{g}$ has a dual basis $\omega_{1}, \ldots, \omega_{g} \in \Omega(X)$ satisfying

$$
\int_{a_{i}} \omega_{j}=\delta_{i j}, \quad \forall 1 \leq i, j \leq g
$$

We define the period matrix $\tau(X, \mathscr{B})_{i, j=1}^{g}=\left(\int_{b_{i}} \omega_{j}\right)_{i, j=1}^{g}$.
Let $f: X \rightarrow Y$ be a biholomorphism with $\mathscr{C}=f_{*} \mathscr{B}$. Then the formula $\int_{f_{*} \gamma} \omega=\int_{\gamma} f^{*} \omega$ implies that $\left(f^{-1}\right)^{*} \omega_{1}, \ldots,\left(f^{-1}\right)^{*} \omega_{g}$ is a dual basis for (Y, \mathscr{C}), and that $\tau(X, \mathscr{B})=\tau(Y, \mathscr{C})$.

Therefore we have a well defined map

$$
\begin{aligned}
\tau: \mathcal{U}_{g} & \rightarrow \mathfrak{S}_{g} \subset \mathbb{C}^{g^{2}} \\
(X, \mathscr{B}) & \mapsto \tau(X, \mathscr{B}),
\end{aligned}
$$

where \mathfrak{S}_{g} is the space of symmetric $g \times g$ complex matrices with positive-definite imaginary part, called the Siegel upper half-space.

The Ahlfors-Rauch variational formula

Theorem (Ahlfors-Rauch variational formula)
The derivative $(d \tau)_{(X, \mathscr{B})}: T_{(X, \mathscr{B})} \mathcal{U}_{g} \rightarrow T_{\tau(X, \mathscr{B})} \mathfrak{S}_{g}$ is given by

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\int_{X}\left(\omega_{i} \otimes \omega_{j}\right) \mu, \quad \forall \mu \in \operatorname{Bel}(X) .
$$

The Ahlfors-Rauch variational formula

Theorem (Ahlfors-Rauch variational formula)

The derivative $(d \tau)_{(X, \mathscr{B})}: T_{(X, \mathscr{B})} \mathcal{U}_{g} \rightarrow T_{\tau(X, \mathscr{B})} \mathfrak{S}_{g}$ is given by

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\int_{X}\left(\omega_{i} \otimes \omega_{j}\right) \mu, \quad \forall \mu \in \operatorname{Bel}(X) .
$$

It is not immediately evident that the expression $\left(\omega_{i} \otimes \omega_{j}\right) \mu$ denotes the sort of thing that can be integrated. If we write in local coordinates $\omega_{i}=c_{i}(z) d z, \omega_{j}=c_{j}(z) d z$, and $\mu=\mu(z) \frac{d z}{d z}$, then one often sees the deceptively simple algebraic manipulation
$\left(c_{i}(z) d z\right)\left(c_{j}(z) d z\right)\left(\mu(z) \frac{\overline{d z}}{d z}\right)=c_{i}(z) c_{j}(z) \mu(z) \frac{(d z)^{2} \overline{d z}}{d z}=c_{i}(z) c_{j}(z) \mu(z) d z \overline{d z}$, where $d z \overline{d z}=d z \wedge \overline{d z}=-2 i d x \wedge d y$.

The Ahlfors-Rauch variational formula

Theorem (Ahlfors-Rauch variational formula)

The derivative $(d \tau)_{(X, \mathscr{B})}: T_{(X, \mathscr{B})} \mathcal{U}_{g} \rightarrow T_{\tau(X, \mathscr{B})} \mathfrak{S}_{g}$ is given by

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\int_{X}\left(\omega_{i} \otimes \omega_{j}\right) \mu, \quad \forall \mu \in \operatorname{Bel}(X) .
$$

It is not immediately evident that the expression $\left(\omega_{i} \otimes \omega_{j}\right) \mu$ denotes the sort of thing that can be integrated. If we write in local coordinates $\omega_{i}=c_{i}(z) d z, \omega_{j}=c_{j}(z) d z$, and $\mu=\mu(z) \frac{\overline{d z}}{d z}$, then one often sees the deceptively simple algebraic manipulation
$\left(c_{i}(z) d z\right)\left(c_{j}(z) d z\right)\left(\mu(z) \frac{\overline{d z}}{d z}\right)=c_{i}(z) c_{j}(z) \mu(z) \frac{(d z)^{2} \overline{d z}}{d z}=c_{i}(z) c_{j}(z) \mu(z) d z \overline{d z}$, where $d z \overline{d z}=d z \wedge \overline{d z}=-2 i d x \wedge d y$.

In the exercises, we will obtain this manipulation as a sequence of vector bundle isomorphisms.

The Ahlfors-Rauch variational formula

We proceed to prove the variational formula

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\int_{X}\left(\omega_{i} \otimes \omega_{j}\right) \mu
$$

The Ahlfors-Rauch variational formula

We proceed to prove the variational formula

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\int_{X}\left(\omega_{i} \otimes \omega_{j}\right) \mu
$$

For small enough $t \in \mathbb{R}$, we again have $f_{t \mu}: X \rightarrow X_{t \mu}$. Let $\omega_{1, t}, \ldots, \omega_{g, t}$ be the dual basis for $X_{t \mu}$. Then

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\lim _{t \rightarrow 0} \frac{1}{t}\left(\tau\left(X_{t \mu},\left(f_{t \mu}\right)_{*} \mathscr{B}\right)_{i j}-\tau(X, \mathscr{B})_{i j}\right)
$$

The Ahlfors-Rauch variational formula

We proceed to prove the variational formula

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\int_{X}\left(\omega_{i} \otimes \omega_{j}\right) \mu
$$

For small enough $t \in \mathbb{R}$, we again have $f_{t \mu}: X \rightarrow X_{t \mu}$. Let $\omega_{1, t}, \ldots, \omega_{g, t}$ be the dual basis for $X_{t \mu}$. Then

$$
(d \tau)_{(X, \mathscr{B})}([\mu])_{i j}=\lim _{t \rightarrow 0} \frac{1}{t}\left(\tau\left(X_{t \mu},\left(f_{t \mu}\right)_{*} \mathscr{B}\right)_{i j}-\tau(X, \mathscr{B})_{i j}\right)
$$

Fix j, and let $\psi_{t}=f_{t \mu}^{*} \omega_{j, t}-\omega_{j}$. Then $\tau\left(X_{t \mu},\left(f_{t \mu}\right)_{*} \mathscr{B}\right)_{i j}-\tau(X, \mathscr{B})_{i j}=\int_{b_{i}} \psi_{t}$. The variational formula then becomes

$$
\int_{b_{i}} \psi_{t}=t \int_{X}\left(\omega_{i} \otimes \omega_{j}\right) \mu+O\left(t^{2}\right)
$$

The Ahlfors-Rauch variational formula

Since $T_{\mathbb{C}}^{*} X=K \oplus \bar{K}$, we may decompose $\psi_{t}=f_{t \mu}^{*} \omega_{j, t}-\omega_{j}$ as the sum of its K-part ψ_{t}^{K} and its \bar{K}-part $\psi_{t}^{\bar{K}}$. Let z be a local coordinate on X and z_{t} be a local coordinate on $X_{t \mu}$. Then, writing $\omega_{j}=c_{j}(z) d z$ and $\omega_{j, t}=c_{j, t}\left(z_{t}\right) d z_{t}$, we have

$$
\begin{aligned}
& \psi_{t}^{K}=\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z \\
& \psi_{t}^{K}=\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial \bar{z}} \overline{d z}
\end{aligned}
$$

The Ahlfors-Rauch variational formula

Since $T_{\mathbb{C}}^{*} X=K \oplus \bar{K}$, we may decompose $\psi_{t}=f_{t \mu}^{*} \omega_{j, t}-\omega_{j}$ as the sum of its K-part ψ_{t}^{K} and its \bar{K}-part $\psi_{t}^{\bar{K}}$. Let z be a local coordinate on X and z_{t} be a local coordinate on $X_{t \mu}$. Then, writing $\omega_{j}=c_{j}(z) d z$ and $\omega_{j, t}=c_{j, t}\left(z_{t}\right) d z_{t}$, we have

$$
\begin{aligned}
\psi_{t}^{K} & =\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z \\
\psi_{t}^{K} & =\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial \bar{z}} \overline{d z} \\
& =\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z} \overline{d z},
\end{aligned}
$$

where the latter equality follows from the definition of $f_{t \mu}$.

The Ahlfors-Rauch variational formula

Since $T_{\mathbb{C}}^{*} X=K \oplus \bar{K}$, we may decompose $\psi_{t}=f_{t \mu}^{*} \omega_{j, t}-\omega_{j}$ as the sum of its K-part ψ_{t}^{K} and its \bar{K}-part $\psi_{t}^{\bar{K}}$. Let z be a local coordinate on X and z_{t} be a local coordinate on $X_{t \mu}$. Then, writing $\omega_{j}=c_{j}(z) d z$ and $\omega_{j, t}=c_{j, t}\left(z_{t}\right) d z_{t}$, we have

$$
\begin{aligned}
\psi_{t}^{K} & =\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z \\
\psi_{t}^{K} & =\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial \bar{z}} \overline{d z} \\
& =\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z} \overline{d z}
\end{aligned}
$$

where the latter equality follows from the definition of $f_{t \mu}$.

Exercise

Use Riemann's bilinear relations to show that

$$
\int_{b_{i}} \psi_{t}=\int_{X} \omega_{i} \wedge \psi_{t}^{\bar{K}}
$$

The Ahlfors-Rauch variational formula

Since we are only interested in integrating $\omega_{i} \wedge \psi_{t}^{\bar{K}}$, it suffices to consider this form outside a set of measure 0 . Let $U \subset X$ be a (contractible) coordinate chart on X so that $X \backslash U$ has measure 0 , and let z be a coordinate on U.

The Ahlfors-Rauch variational formula

Since we are only interested in integrating $\omega_{i} \wedge \psi_{t}^{\bar{K}}$, it suffices to consider this form outside a set of measure 0 . Let $U \subset X$ be a (contractible) coordinate chart on X so that $X \backslash U$ has measure 0 , and let z be a coordinate on U.

We may now write

$$
\omega_{i} \wedge \psi_{t}^{\bar{K}}=\left(c_{i} \cdot\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right) d z \wedge \overline{d z}
$$

The Ahlfors-Rauch variational formula

Since we are only interested in integrating $\omega_{i} \wedge \psi_{t}^{\bar{K}}$, it suffices to consider this form outside a set of measure 0 . Let $U \subset X$ be a (contractible) coordinate chart on X so that $X \backslash U$ has measure 0 , and let z be a coordinate on U.

We may now write

$$
\omega_{i} \wedge \psi_{t}^{\bar{K}}=\left(c_{i} \cdot\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right) d z \wedge \overline{d z}
$$

We have reduced our problem to showing that the integral of $\omega_{i} \wedge \psi_{t}^{\bar{K}}-t\left(\omega_{i} \otimes \omega_{j}\right) \mu$ is $O\left(t^{2}\right)$. Note that

$$
\omega_{i} \wedge \psi_{t}^{\bar{K}}-t\left(\omega_{i} \otimes \omega_{j}\right) \mu=c_{i} \cdot t \mu \cdot\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z \wedge \overline{d z}
$$

The Ahlfors-Rauch variational formula

Since we are only interested in integrating $\omega_{i} \wedge \psi_{t}^{\bar{K}}$, it suffices to consider this form outside a set of measure 0 . Let $U \subset X$ be a (contractible) coordinate chart on X so that $X \backslash U$ has measure 0 , and let z be a coordinate on U.

We may now write

$$
\omega_{i} \wedge \psi_{t}^{\bar{K}}=\left(c_{i} \cdot\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right) d z \wedge \overline{d z}
$$

We have reduced our problem to showing that the integral of $\omega_{i} \wedge \psi_{t}^{\bar{K}}-t\left(\omega_{i} \otimes \omega_{j}\right) \mu$ is $O\left(t^{2}\right)$. Note that

$$
\begin{aligned}
\omega_{i} \wedge \psi_{t}^{\bar{K}}-t\left(\omega_{i} \otimes \omega_{j}\right) \mu & =c_{i} \cdot t \mu \cdot\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z \wedge \overline{d z} \\
& =t\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu
\end{aligned}
$$

The Ahlfors-Rauch variational formula

We have reduced our problem to showing that $t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu=O\left(t^{2}\right)$. Recall $\psi_{t}^{K}=\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z$.

The Ahlfors-Rauch variational formula

We have reduced our problem to showing that $t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu=O\left(t^{2}\right)$. Recall $\psi_{t}^{K}=\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z$.

Exercise

Use Riemann's bilinear relations to show that

$$
-\frac{i}{2} \int_{X} \psi_{t} \wedge \bar{\psi}_{t}=0
$$

Since $\psi_{t}=\psi_{t}^{K}+\psi_{t}^{\bar{K}}$, it follows that $-\frac{i}{2} \int_{X} \psi_{t}^{K} \wedge \overline{\psi_{t}^{K}}=\frac{i}{2} \int_{X} \psi_{t}^{\bar{K}} \wedge \overline{\psi_{t}^{\bar{K}}}$.

The Ahlfors-Rauch variational formula

We have reduced our problem to showing that $t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu=O\left(t^{2}\right)$. Recall $\psi_{t}^{K}=\left(\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right) d z$.

Exercise

Use Riemann's bilinear relations to show that

$$
-\frac{i}{2} \int_{X} \psi_{t} \wedge \bar{\psi}_{t}=0
$$

Since $\psi_{t}=\psi_{t}^{K}+\psi_{t}^{\bar{K}}$, it follows that $-\frac{i}{2} \int_{X} \psi_{t}^{K} \wedge \overline{\psi_{t}^{K}}=\frac{i}{2} \int_{X} \psi_{t}^{\bar{K}} \wedge \overline{\psi_{t}^{\bar{K}}}$.
In coordinates, this equation becomes

$$
\int_{U}\left|\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}-c_{j}\right|^{2} d x \wedge d y=\int_{U}\left|\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y
$$

The Ahlfors-Rauch variational formula

We therefore have

$$
\begin{aligned}
\frac{1}{4}\left|t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu\right|^{2} \leq|t|^{2} & \left(\int_{U}\left|c_{i} \cdot t \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|c_{j}-\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right)
\end{aligned}
$$

The Ahlfors-Rauch variational formula

We therefore have

$$
\begin{aligned}
\frac{1}{4}\left|t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu\right|^{2} \leq|t|^{2} & \left(\int_{U}\left|c_{i} \cdot t \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|c_{j}-\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right) \\
=|t|^{2} & \left(\int_{U}\left|c_{i} \cdot t \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right)
\end{aligned}
$$

The Ahlfors-Rauch variational formula

We therefore have

$$
\begin{aligned}
\frac{1}{4}\left|t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu\right|^{2} \leq|t|^{2} & \left(\int_{U}\left|c_{i} \cdot t \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|c_{j}-\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right) \\
=|t|^{2} & \left(\int_{U}\left|c_{i} \cdot t \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right) \\
=|t|^{4} & \left(\int_{U}\left|c_{i} \cdot \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|\left(c_{j, t} \circ f_{t \mu}\right) \cdot \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right)
\end{aligned}
$$

The Ahlfors-Rauch variational formula

We therefore have

$$
\begin{aligned}
\frac{1}{4}\left|t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu\right|^{2} \leq|t|^{2} & \left(\int_{U}\left|c_{i} \cdot t \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|c_{j}-\left(c_{j, t} \circ f_{t \mu}\right) \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right) \\
=|t|^{2} & \left(\int_{U}\left|c_{i} \cdot t \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|\left(c_{j, t} \circ f_{t \mu}\right) \cdot t \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right) \\
=|t|^{4} & \left(\int_{U}\left|c_{i} \cdot \mu\right|^{2} d x \wedge d y\right. \\
& \left.+\int_{U}\left|\left(c_{j, t} \circ f_{t \mu}\right) \cdot \mu \cdot \frac{\partial f_{t \mu}}{\partial z}\right|^{2} d x \wedge d y\right)
\end{aligned}
$$

Taking square roots, we conclude that $t \int_{X}\left(\omega_{i} \otimes \psi_{t}^{K}\right) \mu=O\left(t^{2}\right)$.

References

- My notes on the complex structure of Teichmüller space and classical Teichmüller theory on my website
- Y. Imayoshi and M. Taniguchi. An introduction to Teichmüller spaces. Chapter 1 and Appendix A
- S. Nag. The complex-analytic theory of Teichmüller spaces. Section 4.1

