A Polytopal Decomposition of Strata of Translation Surfaces

Bradley Zykoski

University of Michigan

April 10, 2021

Translation surfaces and strata

- ② L^∞ -Delaunay triangulations and isodelaunay polytopes
- The infinite-adjacency phenomenon
- Olassifying and deleting the infinite adjacencies

- Translation surfaces and strata
- 2 L^{∞} -Delaunay triangulations and isodelaunay polytopes
- The infinite-adjacency phenomenon
- Olassifying and deleting the infinite adjacencies

- Translation surfaces and strata
- **2** L^{∞} -Delaunay triangulations and isodelaunay polytopes
- The infinite-adjacency phenomenon
- Classifying and deleting the infinite adjacencies

- Translation surfaces and strata
- 2 L^{∞} -Delaunay triangulations and isodelaunay polytopes
- The infinite-adjacency phenomenon
- Classifying and deleting the infinite adjacencies

Let S_g be a closed surface of genus g, and let $\Sigma \subset S_g$ be a finite subset.

Let S_g be a closed surface of genus g, and let $\Sigma \subset S_g$ be a finite subset.

Definition (Translation surface)

The structure of a translation surface M with underlying surface (S_g, Σ) is an atlas of charts to \mathbb{C} such that

Let S_g be a closed surface of genus g, and let $\Sigma \subset S_g$ be a finite subset.

Definition (Translation surface)

The structure of a translation surface M with underlying surface (S_g, Σ) is an atlas of charts to \mathbb{C} such that

• The changes-of-coordinates are Euclidean translations $z \mapsto z + \alpha$, where $\alpha \in \mathbb{C}$, and hence induce a Euclidean metric on $S_g \setminus \Sigma$,

Let S_g be a closed surface of genus g, and let $\Sigma \subset S_g$ be a finite subset.

Definition (Translation surface)

The structure of a translation surface M with underlying surface (S_g, Σ) is an atlas of charts to \mathbb{C} such that

- The changes-of-coordinates are Euclidean translations $z \mapsto z + \alpha$, where $\alpha \in \mathbb{C}$, and hence induce a Euclidean metric on $S_g \setminus \Sigma$,
- The points of Σ are cone singularities of the Euclidean metric whose angles are an integer multiples of 2π.

Let S_g be a closed surface of genus g, and let $\Sigma \subset S_g$ be a finite subset.

Definition (Translation surface)

The structure of a translation surface M with underlying surface (S_g, Σ) is an atlas of charts to \mathbb{C} such that

- The changes-of-coordinates are Euclidean translations $z \mapsto z + \alpha$, where $\alpha \in \mathbb{C}$, and hence induce a Euclidean metric on $S_g \setminus \Sigma$,
- The points of Σ are cone singularities of the Euclidean metric whose angles are an integer multiples of 2π.

The angles $2\pi \cdot (k_j + 1)$ of the cone singularities of a genus g translation surface satisfy

$$\sum k_j = 2g - 2.$$

The angles $2\pi \cdot (k_j + 1)$ of the cone singularities of a genus g translation surface satisfy

$$\sum k_j = 2g - 2.$$

Definition (Stratum of translation surfaces)

Let $\kappa = (k_1, \ldots, k_n)$ satisfy $\sum k_j = 2g - 2$. We denote by $\mathcal{H}(\kappa)$ the topological space that parametrizes all translation surfaces with cone singularities with angles $2\pi \cdot (k_j + 1)$.

The angles $2\pi \cdot (k_j + 1)$ of the cone singularities of a genus g translation surface satisfy

$$\sum k_j = 2g - 2.$$

Definition (Stratum of translation surfaces)

Let $\kappa = (k_1, \ldots, k_n)$ satisfy $\sum k_j = 2g - 2$. We denote by $\mathcal{H}(\kappa)$ the topological space that parametrizes all translation surfaces with cone singularities with angles $2\pi \cdot (k_j + 1)$.

Caveat: Throughout, we will talk about $\mathcal{H}(\kappa)$ when really we should be talking about an arbitrary finite orbifold cover of $\mathcal{H}(\kappa)$ that is a manifold.

The angles $2\pi \cdot (k_j + 1)$ of the cone singularities of a genus g translation surface satisfy

$$\sum k_j = 2g - 2.$$

Definition (Stratum of translation surfaces)

Let $\kappa = (k_1, \ldots, k_n)$ satisfy $\sum k_j = 2g - 2$. We denote by $\mathcal{H}(\kappa)$ the topological space that parametrizes all translation surfaces with cone singularities with angles $2\pi \cdot (k_i + 1)$.

We allow for some $k_j = 0$ ("nonsingular singularities," i.e. marked points), so the most simple example is:

The angles $2\pi \cdot (k_j + 1)$ of the cone singularities of a genus g translation surface satisfy

$$\sum k_j = 2g - 2.$$

Definition (Stratum of translation surfaces)

Let $\kappa = (k_1, \ldots, k_n)$ satisfy $\sum k_j = 2g - 2$. We denote by $\mathcal{H}(\kappa)$ the topological space that parametrizes all translation surfaces with cone singularities with angles $2\pi \cdot (k_i + 1)$.

We allow for some $k_j = 0$ ("nonsingular singularities," i.e. marked points), so the most simple example is:

 $\mathcal{H}(0)$, the stratum of flat tori with one marked point

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Construction

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Construction

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Construction

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Construction

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Construction

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Construction

The Stratum $\mathcal{H}(\kappa)$

Each point $M \in \mathcal{H}(0)$ may be expressed as $M = \mathbb{R}^2/\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^2$, where the marked point is the equivalence class of $0 \in \mathbb{R}^2$.

Construction

The Stratum $\mathcal{H}(\kappa)$

Each point $M \in \mathcal{H}(\kappa)$ has a well-defined "up," "right," etc. direction. Therefore we may speak of squares (rather than, say, diamonds) in M.

Construction

The Stratum $\mathcal{H}(\kappa)$

Each point $M \in \mathcal{H}(\kappa)$ has a well-defined "up," "right," etc. direction. Therefore we may speak of squares (rather than, say, diamonds) in M.

Construction

Find a maximal square in M that contains no singularities.

Definition (L^{∞} -Delaunay triangulation)

If all the of the maximal singularity-free squares in a translation surface M have at most 3 singularities on their boundaries, then we may form line segments inside these squares connecting these singularities to form a triangulation of M.

Definition (L^{∞} -Delaunay triangulation)

If all the of the maximal singularity-free squares in a translation surface M have at most 3 singularities on their boundaries, then we may form line segments inside these squares connecting these singularities to form a triangulation of M.

Definition (L^{∞} -Delaunay triangulation)

If all the of the maximal singularity-free squares in a translation surface M have at most 3 singularities on their boundaries, then we may form line segments inside these squares connecting these singularities to form a triangulation of M. We call this the L^{∞} -Delaunay triangulation of M if none of the edges are horizontal or vertical.

(i) One of the edges may be horizontal or vertical.

- (i) One of the edges may be horizontal or vertical.
- (ii) A maximal singularity-free square may have more than 3 singularities on its boundary.

- (i) One of the edges may be horizontal or vertical.
- (ii) A maximal singularity-free square may have more than 3 singularities on its boundary.

Let \mathscr{B} be a basis for $H_1(M, \Sigma; \mathbb{Z})$ whose members are all edges of the triangulation. Then:

- (i) One of the edges may be horizontal or vertical.
- (ii) A maximal singularity-free square may have more than 3 singularities on its boundary.

Let \mathscr{B} be a basis for $H_1(M, \Sigma; \mathbb{Z})$ whose members are all edges of the triangulation. Then:

The lengths and widths of the e ∈ ℬ form a system of local coordinates about M ∈ H(κ), called period coordinates.

- (i) One of the edges may be horizontal or vertical.
- (ii) A maximal singularity-free square may have more than 3 singularities on its boundary.

Let \mathscr{B} be a basis for $H_1(M, \Sigma; \mathbb{Z})$ whose members are all edges of the triangulation. Then:

- The lengths and widths of the e ∈ ℬ form a system of local coordinates about M ∈ H(κ), called period coordinates.
- The condition that neither (i) nor (ii) above occurs is expressible as a system of linear inequalities in these coordinates (a polytope!).

Let $\mathcal{D}(\kappa) \subset \mathcal{H}(\kappa)$ denote the set of translation surfaces that admit an L^{∞} -Delaunay triangulation. Then $\mathcal{D}(\kappa)$ is an open dense subset, and decomposes as a finite union of polytopes

$$\mathcal{D}(\kappa) = \prod \mathcal{P},$$

where each \mathcal{P} is a polytope given by the system of linear inequalities described previously, which guarantee [F18] that each translation surface $M \in \mathcal{P}$ has the "same" L^{∞} -Delaunay triangulation.

Let $\mathcal{D}(\kappa) \subset \mathcal{H}(\kappa)$ denote the set of translation surfaces that admit an L^{∞} -Delaunay triangulation. Then $\mathcal{D}(\kappa)$ is an open dense subset, and decomposes as a finite union of polytopes

$$\mathcal{D}(\kappa) = \prod \mathcal{P},$$

where each \mathcal{P} is a polytope given by the system of linear inequalities described previously, which guarantee [F18] that each translation surface $M \in \mathcal{P}$ has the "same" L^{∞} -Delaunay triangulation.

Definition (Isodelaunay polytopes)

We call each \mathcal{P} an isodelaunay polytope in $\mathcal{H}(\kappa)$.

Pictured is one of the codimension 1 faces for an isodelaunay polytope \mathcal{P} in $\mathcal{H}(0)$. What happens if we walk through it to the neighboring isodelaunay polytope \mathcal{P}' ?

Usually we enter the neighboring polytope through a codimension 1 face of its own. That is to say, the surface $M \in \partial \mathcal{P} \cap \partial \mathcal{P}'$ fails precisely one of the inequalities that define \mathcal{P} , and also one of the inequalities that define \mathcal{P}' .

Sometimes, even though $M \in \partial \mathcal{P} \cap \partial \mathcal{P}'$ fails one of the inequalities that define \mathcal{P} , it actually happens to fail two of the inequalities that define \mathcal{P}' , and hence lies on a codimension 2 face of \mathcal{P}' .

Traveling a bit further on, we find another segment where $M \in \partial \mathcal{P} \cap \partial \mathcal{P}'$ fails one of the \mathcal{P} -inequalities, but *two* of the \mathcal{P}' -inequalities. In fact, it is the same extra \mathcal{P}' -inequality that is failed both times.

We keep traveling, and we hit the same codimension 2 face of \mathcal{P}' yet again! In fact, as we continue traveling down this unbounded wedge-shaped face of \mathcal{P} , we will hit that codimension 2 face infinitely many times!

Recall $\mathcal{D}(\kappa) = \coprod \mathcal{P}$ is open and dense in $\mathcal{H}(\kappa)$. It follows that

$$\mathcal{H}(\kappa) \smallsetminus \mathcal{D}(\kappa) = \bigcup \partial \mathcal{P}$$

Recall $\mathcal{D}(\kappa) = \coprod \mathcal{P}$ is open and dense in $\mathcal{H}(\kappa)$. It follows that

$$\mathcal{H}(\kappa) \smallsetminus \mathcal{D}(\kappa) = \bigcup \partial \mathcal{P}$$
$$= \bigcup_{\mathcal{F} \text{ a face of some } \mathcal{P}} \mathcal{F}$$

Recall $\mathcal{D}(\kappa) = \coprod \mathcal{P}$ is open and dense in $\mathcal{H}(\kappa)$. It follows that

$$\mathcal{H}(\kappa)\smallsetminus\mathcal{D}(\kappa)=igcup_{\mathcal{F}}\partial\mathcal{P}$$
 $=igcup_{\mathcal{F}}igcup_{ ext{ a face of some }\mathcal{P}}\mathcal{F}$

The faces \mathcal{F} subdivide each other along their adjacencies: The union $\bigcup \mathcal{F}$ may be refined to a disjoint union

$$\mathcal{H}(\kappa) \smallsetminus \mathcal{D}(\kappa) = \coprod \mathcal{F}',$$

where each polytope \mathcal{F}' is is equal to a connected component of some maximal nonempty intersection of faces \mathcal{F} .

Recall $\mathcal{D}(\kappa) = \coprod \mathcal{P}$ is open and dense in $\mathcal{H}(\kappa)$. It follows that

$$\mathcal{H}(\kappa) \smallsetminus \mathcal{D}(\kappa) = \bigcup \partial \mathcal{P}$$

= $\bigcup_{\mathcal{F} \text{ a face of some } \mathcal{P}} \mathcal{F}$

The faces \mathcal{F} subdivide each other along their adjacencies: The union $\bigcup \mathcal{F}$ may be refined to a disjoint union

$$\mathcal{H}(\kappa) \smallsetminus \mathcal{D}(\kappa) = \coprod \mathcal{F}',$$

where each polytope \mathcal{F}' is is equal to a connected component of some maximal nonempty intersection of faces \mathcal{F} .

The infinite-adjacency phenomenon

We have seen that, while there are finitely many \mathcal{F} , there may be infinitely many \mathcal{F}' . Frankel [F18] conjectured they can be classified in nice families.

Bradley Zykoski (UM)

Classifying the Infinite Adjacencies

$$\mathcal{H}(\kappa)\smallsetminus\mathcal{D}(\kappa)=\coprod\mathcal{F}'$$

Definition

A cylinder in a translation surface M is an isometric embedding $C \hookrightarrow M$, where

$$C = \mathbb{R}/w\mathbb{Z} \times (0, h).$$
 $w, h > 0$

The modulus of *C* is the quotient h/w.

Classifying the Infinite Adjacencies

$$\mathcal{H}(\kappa)\smallsetminus\mathcal{D}(\kappa)=\coprod\mathcal{F}'$$

Definition

A cylinder in a translation surface M is an isometric embedding $C \hookrightarrow M$, where

$$C = \mathbb{R}/w\mathbb{Z} \times (0, h).$$
 $w, h > 0$

The modulus of *C* is the quotient h/w.

Theorem (Z, 2021)

For all but finitely many \mathcal{F}' , every $M \in \mathcal{F}'$ has a horizontal or vertical cylinder of modulus $\gg 1$.

$$\mathcal{H}(\kappa)\smallsetminus\mathcal{D}(\kappa)=\coprod\mathcal{F}'$$

Let $C(\kappa) \subset \mathcal{H}(\kappa)$ denote the union of faces \mathcal{F}' that have a horizontal or vertical cylinder of modulus $\gg 1$. (A slight lie: we use a convenient combinatorial analogue instead of modulus)

$$\mathcal{H}(\kappa)\smallsetminus\mathcal{D}(\kappa)=\coprod\mathcal{F}'$$

Let $C(\kappa) \subset \mathcal{H}(\kappa)$ denote the union of faces \mathcal{F}' that have a horizontal or vertical cylinder of modulus $\gg 1$.

Theorem (Z, 2021)

We have a homotopy equivalence $\mathcal{H}(\kappa) \simeq \mathcal{H}(\kappa) \smallsetminus \mathcal{C}(\kappa)$.

$$\mathcal{H}(\kappa)\smallsetminus\mathcal{D}(\kappa)=\coprod\mathcal{F}'$$

Let $C(\kappa) \subset \mathcal{H}(\kappa)$ denote the union of faces \mathcal{F}' that have a horizontal or vertical cylinder of modulus $\gg 1$.

Theorem (Z, 2021)

We have a homotopy equivalence $\mathcal{H}(\kappa) \simeq \mathcal{H}(\kappa) \smallsetminus \mathcal{C}(\kappa)$.

Idea of proof

Let's pick a number $\gg 1$, say 6, so that all $M \in C(\kappa)$ have a horiz./vert. cylinder of modulus > 6. Let $\mathcal{H}_3(\kappa) \subset \mathcal{H}(\kappa)$ denote the set of translation surfaces where all cylinders have modulus ≤ 3 . Then we have a deformation retraction of $\mathcal{H}(\kappa)$ onto $\mathcal{H}_3(\kappa)$ given by shortening cylinders of modulus > 3. We show that this retraction restricts to $\mathcal{H}(\kappa) \setminus C(\kappa)$, and hence this set also retracts onto $\mathcal{H}_3(\kappa)$.

Theorem (Z, 2021)

For all but finitely many \mathcal{F}' , every $M \in \mathcal{F}'$ has a horizontal or vertical cylinder of modulus $\gg 1$.

Theorem (Z, 2021)

We have a homotopy equivalence $\mathcal{H}(\kappa) \simeq \mathcal{H}(\kappa) \smallsetminus \mathcal{C}(\kappa)$.

By these two theorems, we find an explicit model for the homotopy type of $\mathcal{H}(\kappa)$ as a finite union of polytopes

$$\mathcal{H}(\kappa)\smallsetminus\mathcal{C}(\kappa)=\coprod_{\substack{\mathsf{no}\ M\in\mathcal{F}'\ \mathsf{has a horiz./vert.}\ \mathsf{cylinder of high modulus}}}\mathcal{F}',$$

which may be understood as a finite CW-complex minus some boundary subcomplex.

Cited here:

F18 Frankel, Ian. "CAT(-1)-Type Properties for Teichmüller Space." arXiv preprint arXiv: 1808.10022 (2018).

Important references:

- Frankel, Ian. "A Comparison of Period Coordinates and Teichmüller Distance." *arXiv preprint arXiv: 1712.00140* (2017).
- Guéritaud, François. "Veering Triangulations and Cannon-Thurston Maps." *Journal of Topology* 9.3 (2016): 957-983.