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Translation Surfaces

Let Sg be a closed surface of genus g , and let Σ ⊂ Sg be a finite subset.

Definition (Translation surface)

The structure of a translation surface M with underlying surface (Sg ,Σ) is
an atlas of charts to C such that

1 The changes-of-coordinates are Euclidean translations z 7→ z + α,
where α ∈ C, and hence induce a Euclidean metric on Sg r Σ,

2 The points of Σ are cone singularities of the Euclidean metric whose
angles are an integer multiples of 2π.
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Strata of Translation Surfaces

The angles 2π · (kj + 1) of the cone singularities of a genus g translation
surface satisfy ∑

kj = 2g − 2.

Definition (Stratum of translation surfaces)

Let κ = (k1, . . . , kn) satisfy
∑

kj = 2g − 2. We denote by H(κ) the
topological space that parametrizes all translation surfaces with cone
singularities with angles 2π · (kj + 1).

Caveat: Throughout, we will talk about H(κ) when really we should be
talking about an arbitrary finite orbifold cover of H(κ) that is a manifold.

H(0), the stratum of flat tori with one marked point

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 4 / 14



Strata of Translation Surfaces

The angles 2π · (kj + 1) of the cone singularities of a genus g translation
surface satisfy ∑

kj = 2g − 2.

Definition (Stratum of translation surfaces)

Let κ = (k1, . . . , kn) satisfy
∑

kj = 2g − 2. We denote by H(κ) the
topological space that parametrizes all translation surfaces with cone
singularities with angles 2π · (kj + 1).

Caveat: Throughout, we will talk about H(κ) when really we should be
talking about an arbitrary finite orbifold cover of H(κ) that is a manifold.

H(0), the stratum of flat tori with one marked point

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 4 / 14



Strata of Translation Surfaces

The angles 2π · (kj + 1) of the cone singularities of a genus g translation
surface satisfy ∑

kj = 2g − 2.

Definition (Stratum of translation surfaces)

Let κ = (k1, . . . , kn) satisfy
∑

kj = 2g − 2. We denote by H(κ) the
topological space that parametrizes all translation surfaces with cone
singularities with angles 2π · (kj + 1).

Caveat: Throughout, we will talk about H(κ) when really we should be
talking about an arbitrary finite orbifold cover of H(κ) that is a manifold.

H(0), the stratum of flat tori with one marked point

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 4 / 14



Strata of Translation Surfaces

The angles 2π · (kj + 1) of the cone singularities of a genus g translation
surface satisfy ∑

kj = 2g − 2.

Definition (Stratum of translation surfaces)

Let κ = (k1, . . . , kn) satisfy
∑

kj = 2g − 2. We denote by H(κ) the
topological space that parametrizes all translation surfaces with cone
singularities with angles 2π · (kj + 1).

We allow for some kj = 0 (“nonsingular singularities,” i.e. marked points),
so the most simple example is:

H(0), the stratum of flat tori with one marked point

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 4 / 14



Strata of Translation Surfaces

The angles 2π · (kj + 1) of the cone singularities of a genus g translation
surface satisfy ∑

kj = 2g − 2.

Definition (Stratum of translation surfaces)

Let κ = (k1, . . . , kn) satisfy
∑

kj = 2g − 2. We denote by H(κ) the
topological space that parametrizes all translation surfaces with cone
singularities with angles 2π · (kj + 1).

We allow for some kj = 0 (“nonsingular singularities,” i.e. marked points),
so the most simple example is:

H(0), the stratum of flat tori with one marked point

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 4 / 14



The Stratum H(0) of Flat Tori

Each point M ∈ H(0) may be expressed as M = R2/Λ for some lattice
Λ ⊂ R2, where the marked point is the equivalence class of 0 ∈ R2.

Construction

Find a maximal square in R2 that contains no lattice points.
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The Stratum H(κ)

Each point M ∈ H(κ) has a well-defined “up,” “right,” etc. direction.
Therefore we may speak of squares (rather than, say, diamonds) in M.

Construction

Find a maximal square in R2 that contains no lattice points.

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 5 / 14



The Stratum H(κ)

Each point M ∈ H(κ) has a well-defined “up,” “right,” etc. direction.
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L∞-Delaunay Triangulations

Definition (L∞-Delaunay triangulation)

If all the of the maximal singularity-free squares in a translation surface M
have at most 3 singularities on their boundaries, then we may form line
segments inside these squares connecting these singularities to form a
triangulation of M.

We call this the L∞-Delaunay triangulation of M if
none of the edges are horizontal or vertical.
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Degenerating Triangulations

If we begin with an L∞-Delaunay triangulated surface M, we may obtain
new translation surfaces by varying the edges of the triangulation. There
are two ways in which the triangulation on the new surface may fail to be
L∞-Delaunay:

(i) One of the edges may be horizontal or vertical.

(ii) A maximal singularity-free square may have more than 3 singularities
on its boundary.

Let B be a basis for H1(M,Σ;Z) whose members are all edges of the
triangulation. Then:

The lengths and widths of the e ∈ B form a system of local
coordinates about M ∈ H(κ), called period coordinates.

The condition that neither (i) nor (ii) above occurs is expressible as a
system of linear inequalities in these coordinates (a polytope!).
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Isodelaunay Polytopes

Let D(κ) ⊂ H(κ) denote the set of translation surfaces that admit an
L∞-Delaunay triangulation. Then D(κ) is an open dense subset, and
decomposes as a finite union of polytopes

D(κ) =
∐
P,

where each P is a polytope given by the system of linear inequalities
described previously, which guarantee [F18] that each translation surface
M ∈ P has the “same” L∞-Delaunay triangulation.

Definition (Isodelaunay polytopes)

We call each P an isodelaunay polytope in H(κ).

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 8 / 14



Isodelaunay Polytopes

Let D(κ) ⊂ H(κ) denote the set of translation surfaces that admit an
L∞-Delaunay triangulation. Then D(κ) is an open dense subset, and
decomposes as a finite union of polytopes

D(κ) =
∐
P,

where each P is a polytope given by the system of linear inequalities
described previously, which guarantee [F18] that each translation surface
M ∈ P has the “same” L∞-Delaunay triangulation.

Definition (Isodelaunay polytopes)

We call each P an isodelaunay polytope in H(κ).

Bradley Zykoski (UM) Polytopal Decomposition of Strata April 10, 2021 8 / 14



Adjacencies of Isodelaunay Polytopes

Pictured is one of the codimension 1 faces for an isodelaunay polytope P
in H(0). What happens if we walk through it to the neighboring
isodelaunay polytope P ′?
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Adjacencies of Isodelaunay Polytopes

Usually we enter the neighboring polytope through a codimension 1 face of
its own. That is to say, the surface M ∈ ∂P ∩ ∂P ′ fails precisely one of the
inequalities that define P, and also one of the inequalities that define P ′.
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Adjacencies of Isodelaunay Polytopes

Sometimes, even though M ∈ ∂P ∩ ∂P ′ fails one of the inequalities that
define P, it actually happens to fail two of the inequalities that define P ′,
and hence lies on a codimension 2 face of P ′.
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Adjacencies of Isodelaunay Polytopes

Traveling a bit further on, we find another segment where M ∈ ∂P ∩ ∂P ′

fails one of the P-inequalities, but two of the P ′-inequalities. In fact, it is
the same extra P ′-inequality that is failed both times.
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Adjacencies of Isodelaunay Polytopes

We keep traveling, and we hit the same codimension 2 face of P ′ yet
again! In fact, as we continue traveling down this unbounded wedge-
shaped face of P, we will hit that codimension 2 face infinitely many times!
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The Infinite-Adjacency Phenomenon

Recall D(κ) =
∐
P is open and dense in H(κ). It follows that

H(κ) rD(κ) =
⋃
∂P

=
⋃

F a face of some P
F

The faces F subdivide each other along their adjacencies: The union⋃
F may be refined to a disjoint union

H(κ) rD(κ) =
∐
F ′,

where each polytope F ′ is is equal to a connected component of some
maximal nonempty intersection of faces F .

The infinite-adjacency phenomenon

We have seen that, while there are finitely many F , there may be infinitely
many F ′. Frankel [F18] conjectured they can be classified in nice families.
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Classifying the Infinite Adjacencies

H(κ) rD(κ) =
∐
F ′

Definition

A cylinder in a translation surface M is an isometric embedding C ↪→ M,
where

C = R/wZ× (0, h). w , h > 0

The modulus of C is the quotient h/w .

Theorem (Z, 2021)

For all but finitely many F ′, every M ∈ F ′ has a horizontal or vertical
cylinder of modulus � 1.
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Deleting the Infinite Adjacencies

H(κ) rD(κ) =
∐
F ′

Let C(κ) ⊂ H(κ) denote the union of faces F ′ that have a horizontal or
vertical cylinder of modulus � 1. (A slight lie: we use a convenient
combinatorial analogue instead of modulus)

Theorem (Z, 2021)

We have a homotopy equivalence H(κ) ' H(κ) r C(κ).

Idea of proof

Let’s pick a number � 1, say 6, so that all M ∈ C(κ) have a horiz./vert.
cylinder of modulus > 6. Let H3(κ) ⊂ H(κ) denote the set of translation
surfaces where all cylinders have modulus ≤ 3. Then we have a
deformation retraction of H(κ) onto H3(κ) given by shortening cylinders
of modulus > 3. We show that this retraction restricts to H(κ) r C(κ),
and hence this set also retracts onto H3(κ).
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A Polytopal Decomposition of Strata

Theorem (Z, 2021)

For all but finitely many F ′, every M ∈ F ′ has a horizontal or vertical
cylinder of modulus � 1.

Theorem (Z, 2021)

We have a homotopy equivalence H(κ) ' H(κ) r C(κ).

By these two theorems, we find an explicit model for the homotopy type of
H(κ) as a finite union of polytopes

H(κ) r C(κ) =
∐

no M∈F ′ has a horiz./vert.
cylinder of high modulus

F ′,

which may be understood as a finite CW-complex minus some boundary
subcomplex.
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