TIGHT CLOSURE

ZHAN JIANG

CONTENTS

1. I	Preliminiary	1
1.1.	Base change	1
1.2.	Characteristic of a ring	2
1.3.	Frobenius functor	2
2.	Fight Closure	2
2.1.	Definition	2
2.2.	Basic properties	3
2.3.	Behaviour under R-linear map	3
2.4.	Behaviour under base change	4
2.5.	The main theorem	4
2.6.	Iteration of tight closure	5
2.7.	One more proposition	5
3. I	Briançon-Skoda Theorem	5
3.1.	Preliminary	5
3.2.	The theorem	6
3.3.	Application	6
4. (Colon-capturing	7
4.1.	Height of ideals	7
4.2.	The theorem	7
5. I	Relations to Other Closures	9
5.1.	Plus Closure	9

1. Preliminiary

Throught out this note, all rings are assumed commutative, associative with identity.

1.1. **Base change.** Given a ring homomorphism $f : R \to S$, we have a base change functor $\mathcal{B} = S \otimes_{R} I$ from *R*-modules to *S*-modules. It has following properties:

- Proerpties of the Functor
 - The functor \mathcal{B} is right exact

ZHAN JIANG

- The functor \mathcal{B} commutes with arbitrary direct sums and with arbitrary direct limits
- Given two homomorphisms $R \to S$ and $S \to T$, the base change functor $\mathcal{B}_{R \to T}$ is the composition of $\mathcal{B}_{R \to S}$ and $\mathcal{B}_{S \to T}$.
- Properties of Modules
 - The functor \mathcal{B} takes \mathbb{R}^n to \mathbb{S}^n and free modules to free modules
 - The functor *B* takes projective *R*-modules to projective *S*-modules
 - The functor \mathcal{B} takes flat *R*-modules to flat *S*-modules
 - The functor *B* takes faithfully flat *R*-modules to faithfully flat *S*-modules.
 - The functor *B* takes finitely generated *R*-modules to finitely generated *S*-modules.
- Properties of Elements
 - The functor \mathcal{B} takes the cokernel of the matrix (r_{ij}) to the cokernel of the matrix $(f(r_{ij}))$
 - The functor \mathcal{B} takes R/I to S/IS.
- If we denote the restriction-of-scalar functor as *R*, then there is a natural transformation from the identity functor to *R* ∘ *B*, i.e. for any *R*-module *M*, there is a natural *R*-linear map:

$$M \to S \otimes_R M$$
$$ru \mapsto f(r) \otimes u$$

1.2. **Characteristic of a ring.** The characteristic of a ring is the smallest integer such that 1 times it gets 0. If we have a homomorphism $R \rightarrow S$, then the characteristic of *S* must divides the characteristic of *R*. A quick example is that $\mathbb{Z}/n\mathbb{Z}$ has characteristic *n*. So the characteristic of a ring doesn't need to be prime.

If the ring is assumed to be without zerodivisors, then its characteristic must be either 0 or a prime number. This situation applies to fields, integral domains and division rings.

1.3. **Frobenius functor.** Suppose *R* has characteristic *p*, the Frobenius map

$$F: R \to R$$
$$r \mapsto r^p$$

induces a base change functor \mathcal{F} from *R*-modules to *R*-modules. It certainly has all the properties listed above. We may also consider the *e*-fold iterated composition of this functor with itself, which we denote \mathcal{F}^e . This is the same functor induced by the *e*-fold iterated composition of the Frobenius map F^e .

Let $q = p^e$, then \mathcal{F}^e takes cokernel of (r_{ij}) to the cokernel of (r_{ij}^q) . And \mathcal{F}^e takes R/I to $R/I^{[q]}$ where

$$I^{[q]} = \{a^q | a \in I\}R$$

(It's different from I^q , where we take all products of q elements, here we only allow the qth power).

For every module *M*, the natural map is

$$M \to \mathcal{F}^e(M)$$

 $ru \mapsto 1 \otimes (ru) = r^q \otimes u$

If we write $1 \otimes u$ as u^q , then the map takes ru to $r^q u^q$, which matches the form of a Forbenius map in the ring case.

Given $N \subseteq M$, the map $\mathcal{F}^{e}(N) \to \mathcal{F}^{e}(M)$ is not necessarily injective, we denote the image of this map by $N^{[q]}$ or $N^{[q]}_{M}$. It's quite easy to see that $N^{[q]}$ is spanned by u^{q} where $u \in N$ in $\mathcal{F}^{e}(M)$. When N = I an ideal of M = R, the map takes $a \in I$ to $1 \otimes a = a^{q} \otimes 1$ in R. So it takes I to $I^{[q]}$.

Remark 1.1. The module $N^{[q]}$ is a submodule of $\mathcal{F}^{e}(M)$, not of M itself.

2. TIGHT CLOSURE

2.1. **Definition.** Let *R* be a Noetherian ring of prime characteristic p > 0.

Definition 2.1 (Tight Closure for Modules). Given two *R*-modules $N \subseteq M$, the **tight closure** N_M^* of *N* in *M* is the set of elements $u \in M$ such that there is some $c \in R^\circ$ (depending on u)

 $cu^q \in N_M^{[q]}$

for all large enough q.

Remark 2.2. Here R° is the set of elements not contained in any minimal prime of R, i.e. $R^{\circ} = R - \bigcup_{P \text{ minimal}} P$

An ideal *I* of *R* is also a submodule of *R*, therefore take *N* to be *I* and *M* to be *R*, we obtain the notion of tight closure I^* of an ideal *I*.

2.2. Basic properties. Let *R* be a Noetherian ring of prime characteristic p > 0 and let *M*, *N*, *Q* be *R*-modules.

Proposition 2.3. N_M^* is an *R*-module.

Proof. For any $u \in N_M^*$ and $r \in R$, we need to show that $ru \in N_M^*$. We know that there is some $c \in R^\circ$ such that $cu^q \in N_M^{[q]}$ for q >> 0. But then $c(ru)^q \in N_M^{[q]}$ for q >> 0. Therefore $ru \in N_M^*$.

Proposition 2.4. *If* $N \subseteq M \subseteq Q$ *, then*

(1) $N_Q^* \subseteq M_Q^*$ (2) $N_M^* \subseteq N_Q^*$

Proof. The first statement is true because $N_Q^{[q]} \subseteq M_Q^{[q]}$ for all q. The second statement is true because the map $\mathcal{F}^e(M) \to \mathcal{F}^e(Q)$ takes $N_M^{[q]}$ into $N_Q^{[q]}$.

Proposition 2.5. If *I* is an ideal of *R*, then $I^*N_M^* \subseteq (IN)_M^*$

Proof. Only need to show that every product au where $a \in I^*$ and $u \in N_M^*$ is in the right hand side. There is some $c_a \in R^\circ$ such that $c_a a^q \in I^{[q]}$ for all q >> 0 and some $c_u \in R^\circ$ such that $c_u u^q \in N_M^{[q]}$ for all q >> 0. Notice that $I^{[q]}N^{[q]} = (IN)^{[q]}$ for any q(both sides are generated by qth power of products). so we have $c_a c_u (au)^q \in (IN)_M^{[q]}$ for all q >> 0. Therefore $au \in (IN)_M^*$.

Tight closure behaves well under arbitrary direct sum and finite product.

Proposition 2.6. If $N_{\lambda} \subseteq M_{\lambda}$ is any family of inclusions, let $N = \bigoplus_{\lambda} N_{\lambda}$ and $M = \bigoplus_{\lambda} M_{\lambda}$, then $N_{M}^{*} = \bigoplus_{\lambda} (N_{\lambda})_{M_{\lambda}}^{*}$.

Proof. Any element in N_M^* is a sum of finitely many elements in those M_λ , therefore when considering a particular element, we could pass to the finite case. Since $N_M^{[q]} = \bigoplus_\lambda (N_\lambda)_{M_\lambda}^{[q]}$ as direct sum commutes with tensor product, the result is now clear.

Proposition 2.7. If $R = R_1 \times \cdots \times R_n$ and $N_i \subseteq M_i$ are R_i -modules $(1 \le i \le n)$. Let $M = M_1 \times \cdots \times M_n$ and $N = N_1 \times \cdots \times N_n$, then $N_M^* = (N_1)_{M_1}^* \times \cdots \times (N_n)_{M_n}^*$.

Proof. Notice that $R^{\circ} = R_1^{\circ} \times \cdots \times R_n^{\circ}$. The result is clear.

2.3. **Behaviour under** *R***-linear map.** Next we want to discuss the behaviour of tight closure under *R*-linear maps.

Proposition 2.8. If $N \subseteq M$ and $U \subseteq V$ are *R*-modues and $f : M \to V$ is an *R*-linear map such that $f(N) \subseteq U$, then $f(N_M^*) \subseteq U_V^*$.

Proof. Let $u \in N_M^*$, then there is an element $c \in \mathbb{R}^\circ$ such that $cu^q \in N_M^{[q]}$ for all q >> 0. But $f(N_M^{[q]}) \subseteq U_V^{[q]}$, so $c(f(u)^q) \in U_V^{[q]}$ for all q >> 0, therefore $f(u) \in U_V^*$.

Proposition 2.9. An element $u \in N_M^*$ if and only if the image $\bar{u} \in 0^*_{M/N}$. Hence if G maps into M and let H be the preimage of N. Let v be a preimage of u, then $u \in N_M^*$ if and only if $v \in H_G^*$.

Proof. By the right exactness of tensor products, $\mathcal{F}^{e}(M/N) \cong \mathcal{F}^{e}(M)/N^{[q]}$. Therefore an elment $cu^{q} \in N^{[q]}$ iff $c\bar{u}^{q} = 0$ in $\mathcal{F}^{e}(M/N)$.

Remark 2.10. By the proposition above (PROP 2.9), we could always map a free module *G* onto *M* and then take the preimage *H* of *N*, therefore the problem of N_M^* becomes a problem of H_M^* . If *G* is of rank *n*, we could choose a free basis and identify *G* with R^n . If we write $u = r_1 \oplus \cdots \oplus r_n \in H$, then $H_G^{[q]}$ is generated by $u^q = r_1^q \oplus \cdots \oplus r_n^q$. So we could explicitly define the tight closure like the ideal case. However we have to prove that this definition is independent of those choices we made.

2.4. **Behaviour under base change.** Suppose *R* and *S* are two Noetherian rings with prime characteristic p > 0. Let $f : R \to S$ be a ring homomorphism. We want to know what happens under the base change functor $S \otimes_{R-}$. We have following proposition:

Proposition 2.11. Suppose $f : R \to S$ maps R° into S° , then the image of $S \otimes_R N_M^*$ is contained in the tight closure of $S \otimes_R N$ in $S \otimes_R M$.

Before giving the proof, notice that the Frobenius map commutes with any ring homomorphism, i.e. $f \circ F_R^e = F_S^e \circ f$, which is saying $f(r^q) = (f(r))^q$. Therefore we have following observation:

Observation 2.12. For every *R*-module *M*, we have a natural isomorphism $S \otimes_R \mathcal{F}^e(M) \cong \mathcal{F}^e(S \otimes_R M)$.

Proof. We have to show that for any $u \in N_M^*$, we have $1 \otimes u \in (S \otimes_R N)^*$. First of all we know that there is an element $c \in R^\circ$ such that $cu^q \in N_M^{[q]}$ for all q >> 0. So $f(c) \otimes u^q \in S \otimes_R N_M^{[q]} \subseteq S \otimes_R \mathcal{F}^e(M) \cong \mathcal{F}^e(S \otimes_R M)$ and clearly $f(c) \otimes u^q = f(c)(1 \otimes u)^q$. So $1 \otimes u \in (S \otimes_R N)^*$.

Remark 2.13. The condition " R° maps into S° " holds when

- (1) $R \subseteq S$ are domains
- (2) $R \rightarrow S$ is flat
- (3) S = R/P where *P* is a minimal ideal of *R*

Here both (1) and (3) are quite clear. For (2), note that for any minimal prime Q of S, the contraction $Q^c = P$ is a prime ideal of R and we have a map $R_P \rightarrow S_Q$. This is a local flat map of local rings, therefore faithfully flat. Then it's injection.(See [faithfully flat notes]) Since Q is minimal, QS_Q is nilpotent, which implies that PR_P is nilpotent. So P is minimal in R. Therefore R° maps into S° .

2.5. **The main theorem.** Tight closure can be checked modulo every minimal prime of *R*.

Theorem 2.14. Consider following settings:

- Let *R* be a Noetherian ring of prime characteristic p > 0 and $N \subseteq M$ are *R*-modules.
- Let P_1, \dots, P_n be minimal primes of R and let $D_i = R/P_i$.
- Let $M_i = M \otimes D_i = M/P_i M$ and let N_i be the image of $D_i \otimes N$ in M_i .
- Suppose $u \in M$ and let u_i be the image of u in M_i

Then $u \in N_M^*$ over R if and only if for all $1 \le i \le n$, $u_i \in (N_i)_{M_i}^*$ over D_i .

Proof. The "only if" part follows from proposition 2.11 applying to the case $S = R/P_i$. It remains to prove the "if" part:

For every *i* there is some $c_i \in R - P_i$ such that for all q >> 0, we have $\bar{c}_i u_i^q \in N_i^{[q]}$. Here $N_i^{[q]}$ is the image of $\mathcal{F}^e(N_i)$ in $\mathcal{F}^e(M_i) = \mathcal{F}^e(M \otimes R/P_i)$. Since Frobenius functor commutes with tensor, we have

$$\mathcal{F}^{e}(M \otimes R/P_{i}) = R/P_{i} \otimes \mathcal{F}^{e}(M) = \mathcal{F}^{e}(M)/P_{i}\mathcal{F}^{e}(M)$$

So the image could be identified as the image of $N_M^{[q]}$. Thus

$$c_i u^q \in N^{[q]} + P_i \mathcal{F}^e(M)$$

Choose d_i in all P_j but not in P_i , and let J be the intersection of all P_i . Then J is nilpotent and

$$d_i c_i u^q \in N^{[q]} + J \mathcal{F}^e(M)$$

since every $d_i P_i \subseteq J$.

Let $c = \sum_{i} c_i d_i$, then *c* is not contained in any P_i . And we have

$$cu^q \in N^{[q]} + I\mathcal{F}^e(M)$$

for all q >> 0, say $q \ge q_0$. Choose q_1 such that $J^{[q_1]} = 0$. Then $c^{q_1}u^{qq_1} \in N^{[qq_1]}$ for all $q \ge q_0$. But then $c^{q_1}u^q \in N^{[q]}$ for all $q \ge q_0q_1$.

Remark 2.15. If M = R and N = I in the theorem above (THM 2.14), then an element $r \in I^*$ iff $\bar{u} \in (IR/P_i)^*$ for every *i*. So we could pass to the reduced ring $R_{red} = R/J$

Let *J* be the intersection of minimal primes $P_1, ..., P_n$ of *R*, then $(R/J)/(P_i/J) \cong R/P_i$ so we have the following corollary:

Corollary 2.16. Let *R* be a Noetherian ring of prime characteristic p > 0 and *J* be the nilpotent ideal of *R*. Let $N \subseteq M$ be *R*-modules and let $u \in M$. Then $u \in N_M^*$ if and only if the image of *u* in *M*/*JM* is in the tight closure of the image of *N*/*JN* over *R*/*J*.

2.6. Iteration of tight closure. We have following theorem

Theorem 2.17. *Let R be a Noetherian ring of prime characteristic* p > 0 *and let* $N \subseteq M$ *be R-modules. Consider the following condition:*

There exists an element $c \in \mathbb{R}^{\circ}$ and $q_0 = p^{e_0}$ such that for all $u \in \mathbb{N}^*$, $cu^q \in \mathbb{N}^{[q]}$ for all $q \ge q_0$.

If the above condition holds, then $(N_M^*)_M^* = N_M^*$.

Proof. If the condition holds, then for any $u \in (N^*)^*$, there is some $c \in R^\circ$ such that $cu^q \in (N^*)^{[q]}$ for all $q \ge q_0$. Therefore cu^q is in the *R*-span of w^q for $w \in N^*$. Since there is another c' such that $c'w^q \in N^{[q]}$ for all $w \in N^*$ and all $q \ge q_1$, multiply cu^q by c' we get $c'cu^q \in N^{[q]}$ for all $q \ge \max\{q_0, q_1\}$. Thus $u \in N^*$.

It's quite easy to see that when N^*/N is finitely generated, the boxed condition is automatic. Furthurmore, if *M* is Noetherian, then both N^* and *N* are finitely generated, therefore boxed condition holds. So we have following corollary

Corollary 2.18. Let R be a Noetherian ring of prime characteristic p > 0, and let $N \subseteq M$ be finitely generated modules. Then $(N_M^*)_M^* = N_M^*$.

2.7. One more proposition.

Proposition 2.19. Let R be a Noetherian ring of prime characteristic p > 0. Let $N \subseteq M$ be R-modules. If $u \in N_M^*$, then for any $q_0 = p^{e_0}$, we have $u^{q_0} \in (N^{[q_0]})_{\mathcal{T}^{e_0}(M)}^*$.

Proof. This is immediate from the fact that $(N^{[q_0]})^{[q]} \subseteq \mathcal{F}^e(\mathcal{F}^{e_0}(M))$.

3. BRIANÇON-SKODA THEOREM

3.1. Preliminary.

Proposition 3.1. Let *R* be a Noetherian ring of prime characteristic p > 0. The tight closure of 0 is the ideal J of all nilpotent elements of *R*

Proof. If $u \in 0^*$, then there is some $c \in R^\circ$ such that $cu^q = 0$ for all q >> 0. Since c is not in any minimal prime, we have that u^q is in J therefore u is in J. So $0^* \subseteq J$.

On the other hand, any element *u* in *J* satisfies $u^{q_0} = 0$ for some q_0 , therefore for any $q \ge q_0$, we have $1 \times u^q = 0$. So $J \subseteq 0^*$.

Proposition 3.2. *Let R be a Noetherian ring of prime characteristic* p > 0*. For every ideal I of R, we have* $I^* \subseteq \overline{I} \subseteq \sqrt{I}$.

Remark 3.3. Here \overline{I} is the integral closure of *I* [See Integral-closure-of-an-ideal]

Proof. Suppose $u \in I^*$, to show $u \in \overline{I}$, it suffices to verify this modulo every minimal prime: So we pass to R/P hence we may assume that R is a domain, then we have some $c \neq 0$ such that $cu^q \in I^{[q]}$ for large enough q. This suffices to say that $u \in \overline{I}$.

If $u \in \overline{I}$, then *u* satisfies a monic polynomial

 $u^n + f_1 u^{n-1} + \dots + f_n = 0$

where $f_j \in I^j$. Thus $u^n \in I \Rightarrow u \in \sqrt{I}$.

Then we have an obvious corollary:

Corollary 3.4. Let *R* be a Noetherian ring of prime characteristic p > 0. Then any radical ideal, prime ideal or integrally closed ideal is tightly closed.

3.2. The theorem. Now we are ready to prove this theorem

Theorem 3.5 (Briançon-Skoda). Let *R* be a Noetherian ring of prime characteristic p > 0. Let *I* be an ideal generated by *n* elements, then $\overline{I^n} \subseteq I^*$

Proof. We can work modulo each minimal prime in turn so we assume that *R* is a domain. If $u \in \overline{I^n}$ then there exists $c \neq 0$ such that for all $k \ge 0$, $cu^k \in (I^n)^k = I^{nk}$. If we choose *k* to be $q = p^e$, then

$$u \in I^{nq} \subset I^{[q]}$$

and we're done.

Corollary 3.6. Let R be a Noetherian ring of prime characteristic p > 0. Let I be a principal ideal, then $\overline{I} = I^*$.

3.3. Application.

Proposition 3.7. *Let* R *be a Noetherian domain of prime characteristic* p > 0*. If the ideal* (0) *and those pincipal ideals generated by NZDs are tightly closed, then* R *is normal.*

Proof. Suppose $\frac{f}{g} \in R$ is algebraic over *R*, then we have an equation

$$(f/g)^{s} + r_{1}(f/g)^{s-1} + \dots + r_{s} = 0$$

with $r_i \in R$. Multiplying by g^s we obtain

 $f^s + r_1 f^{s-1} g + \dots + r_s g^s = 0$

So *f* is in the integral closure of *gR*, which is $(gR)^* = gR$. Then $f = gr \Rightarrow \frac{f}{g} = r$, so *R* is normal.

Theorem 3.8 (Symbolic Power Theorem). Let *P* be a prime ideal of height *h* in a regular ring *R* of prime characteristic *p*. Then for every integer $n \ge 1$, we have $P^{(hn)} \subseteq P^n$

To prove the theore, we need two preliminary results:

Lemma 3.9. Let P be a prime ideal of height h in a regular ring R of prime characteristic p. Then

(1) $P^{[q]}$ is primary to P

(2) $P^{(qh)} \subseteq P^{[q]}$

Proof. (1): Clearly $\sqrt{P^{[q]}} = P$, we only need to show that every $f \in R - P$ is an NZD on $R/P^{[q]}$. Since

$$0 \rightarrow R/P \rightarrow^f R/P$$

is exact, it stays exact after applying the Forbenius functor \mathcal{F} , hence

$$0 \to \mathcal{F}^e(R/P) \to^{f^q} \mathcal{F}^e(R/P)$$

so f^q is a NZD on $R/P^{[q]}$, hence is f.

(2): Suppose $u \in P^{(qh)}$. Make a base change to R_P , then the image of u is in $P^{qh}R_P$. Now PR_P is generated by h elements, so $P^{[q]}R_P \supseteq P^{(qh)}R_P$ hence $u \in P^{[q]}R_P$. Since R - P elements are NZD on $R/P^{[q]}$, we see that $u \in P^{[q]}$.

4. COLON-CAPTURING

4.1. Height of ideals. First we need some results for Cohen-Macaulay rings

Proposition 4.1. Let *R* be a Noetherian ring and let $x_1, ..., x_d$ generate a proper ideal *I* of height *d*. Then there exists elements $y_1, ..., y_d \in R$ such that for every *i*

- $y_i \in x_i + (x_{i+1}, ..., x_d)R$
- *y*₁, ..., *y*_{*i*} generates an ideal of height *i*

and moreover, $(y_1, ..., y_d)R = I$ and $y_d = x_d$.

If *R* is CM, then $y_1, ..., y_d$ is a regular sequence.

Proof. First we see that $x_1 + (x_2, ..., x_d)R$ is not contained in the union of all minimal primes of R by the coset form of prime avoidace lemma: otherwise ht(I) = 0. So we can choose $x_1 + \delta_1$ not in any minimal prime. Hence $y_1 = x_1 + \delta_1$ is a NZD in R. So $ht(y_1) = 1$ and $(y_1, x_2, ..., x_d)R = I$. Now we apply induction to R/y_1R .

Proposition 4.2. Let *R* be a Noetherian ring and let *P* be a minimal prime of *R*. Let $x_1, ..., x_d$ be elements of *R* such that $(x_1, ..., x_i)(R/P)$ has height *i*. Then there exists $\delta_i \in P$ such that let $y_i = x_i + \delta_i$, then $(y_1, ..., y_i)R$ has height *i*.

Proof. We construct δ_i recursively: Let $\delta_1, ..., \delta_t$ be chosen. If t < d, we cannot have $x_{t+1} + P$ contained in the union of minimal primes of the ideal $(y_1, ..., y_t)R$. Otherwise by prime avoidance we have $x_{t+1} + P \subseteq Q$. Then on one hand $ht(Q) \le t$. On the other hand, after modulo P, we get $(x_1, ..., x_{t+1})R/P \subseteq QR/P \Rightarrow ht(QR/P) \ge t + 1$, a contradiction! Then we can choose $\delta_{t+1} \in x_{t+1} + P$ not in any minimal prime of $(y_1, ..., y_t)R$.

4.2. **The theorem.** First we have a lemma:

Lemma 4.3. Let *P* be a minimal ideal of height *n* in a Cohen-Macaulay ring *S*. Let $x_1, ..., x_{k+1}$ be elements of R = S/P such that $ht(x_1, ..., x_k)R = k$ in *R* while $ht(x_1, ..., x_{k+1})R = k + 1$. Then we can choose elements $y_1, ..., y_n \in P$ and $z_1, ..., z_{k+1} \in S$ such that:

(1) $y_1, ..., y_n, z_1, ..., z_{k+1}$ is a regular sequence in S

(2) The image of $z_1, ..., z_k$ in R generates the ideal $(x_1, ..., x_k)R$.

(3) The image of z_{k+1} in R is x_{k+1} .

Proof. By PROP 4.1 we may assume WLOG that $x_1, ..., x_i$ generate an ideal of height i in $R, 1 \le i \le k$. We also know this for i = k + 1.

Choose z_i arbitrarily such that z_i maps to x_i for $1 \le i \le k + 1$. Choose a regular sequence $y_1, ..., y_h$ of length h in P. Then P is minimal over $(y_1, ..., y_h)S$. By applying PROP 4.2 to the image of z_i in $S/(y_1, ..., y_h)S$ with minimal prime $P/(y_1, ..., y_h)$, we may alter the z_i by adding elements of P so that the height of the image of the ideal generated by the images of $z_1, ..., z_i$ in $S/(y_1, ..., y_h)S$ is i for $1 \le i \le k + 1$.

Since $S/(y_1, ..., y_h)S$ is again Cohen-Macaulay, it follows from PROP 4.1 that the images of $z_1, ..., z_{k+1}$ modulo $(y_1, ..., y_h)S$ form a regular sequence, which shows that $y_1, ..., y_h, z_1, ..., z_{k+1}$ form a regular sequence.

We can now prove this colon-capturing property:

Theorem 4.4. Let *R* be a reduced Noetherian ring of prime characteristic *p*. Assume that *R* is a homomorphic image of a C-M ring. Let $x_1, ..., x_{k+1}$ be elements of *R* and let $I_i = (x_1, ..., x_i)R$. Suppose that the image of I_k has height *k* modulo every minimal prime of *R* and the image of I_{k+1} has height k + 1 modulo every minimal prime of *R*. Then:

(1) $I_k :_R x_{k+1} \subseteq I_k^*$ (2) If R has a test element, then $I_k^* :_R x_{k+1} \subseteq I_k^*$

Proof. To prove the first statement, it sufficies to prove it modulo every minimal prime of R, hence we may assume that R is a domain and R = S/P where S is C-M. By LEM 4.3 above we can choose a regular sequence $y_1, ..., y_h, z_1, ..., z_{k+1}$ such that $y_1, ..., y_h \in P$ where h = ht(P). We may also replace these x_i by the image of z_i .

Let $J = (y_1, ..., y_h)S$, then *P* is nilpotent over $J \Rightarrow$ there is some $c \in S - P$ such that $cP^{[q_0]} \subseteq J$.

Now suppose we have a relation

 $rx_{k+1} = r_1x_1 + \cdots + r_kx_k$

in *R*. Then we can lift $r, r_1, ..., r_k$ to elements $s, s_1, ..., s_k \in S$ such that

$$sz_{k+1} = s_1 z_1 + \dots + s_k z_k + v$$

for some $v \in P$. Raise both side to q^{th} power and multiply by *c* to get

$$cs^q z_{k+1}^q = cs_1^q z_1^q + \dots + cs_k^q z_k^q + cv^q$$

Notice that we have $cv^q \in (y_1, ..., y_h)$. Therefore

$$cs^{q}z_{k+1}^{q} \in (z_{1}^{q}, cdots, z_{k}^{q}, y_{1}, ..., y_{h})S$$

But $y_1, ..., y_h, z_1^q, ..., z_{k+1}^q$ form a regular sequence in *S*, so

$$zs^{q} \in (z_{1}^{q}, cdots, z_{k}^{q}, y_{1}, ..., y_{h})S$$

Let \bar{c} be the image of c in R, then $\bar{c} \in R^{\circ}$. Modulo P we have

$$\bar{c}r^q \in (x_1, ..., x_k)^{[q]}$$

for all $q \ge q_0$. Hence $r \in (x_1, ..., x_k)^*$ in *R*. This completes the proof of the first part.

For the second part: Suppose *R* has a test element $d \in R^\circ$, that $r \in R$ and that $rx_{k+1} \in I_k^*$. Then there exists $c \in R^\circ$ such that $c(rx_{k+1})^q \in (I_k^*)^{[q]}$ for all q >> 0. Note that $(I_k^*)^{[q]} \subseteq (I_k^{[q]})^*$. So we have

$$c(rx_{k+1})^q \in (I_k^{[q]})^* \Rightarrow dcr^q x_{k+1}^q \in I_k^{[q]}$$

Now apply part 1 we get

$$dcr^q \in (I_k^{[q]})^* \Rightarrow d^2cr^q \in I_k^{[q]} \Rightarrow r \in I_k^*$$

Corollary 4.5. Let *R* be a holomorphic image of a C-M ring and assume that *R* is weakly *F*-regular, then *R* is C-M.

Proof. Consider R_m where *m* is a maximal ideal of *R*, it's still weakly F-regular, hence it's normal. So we may assume that (*R*, *m*) is local domain. Now choose a system of parameters and apply the colon capturing theorem.

TIGHT CLOSURE

5. Relations to Other Closures

5.1. **Plus Closure.** We note following lemma:

Lemma 5.1. Let D be a domain and let M be a finitely generated torsion-free module over D. Then

- *M* can be embedded in \mathbb{R}^n where *n* is the torsion-free rank of *M*
- For any nonzero element $u \in M$, there is an R-linear map $\theta : M \to R$ such that $\theta(u) \neq 0$.

Proof. We can choose *n* elements $v_1, ..., v_n$ of *M* that are linearly independent over Frac(R) and let $u_1, ..., u_n$ be a set of generators of *M*. Then each u_i is a Frac(D)-linear combination of v_i 's. So we can clear the denominator and assume that $c_i u_i \in D^n$. Let $c = c_1 \cdots c_n$, then $cu_i \in D^n$. So $cM \subseteq D^n$, but $M \cong cM$.

If $u \neq 0$, then the image of u in D^n is not zero, i.e. some coordinate is nonzero. Let θ be the composition of $M \rightarrow D^n$ with the projection.

Theorem 5.2. Let *R* be a Noetherian ring and $R \subseteq S$ is an integral extension. Let $I \subseteq R$ be an ideal of *R*, then $IS \cap R \subseteq I^*$

Proof. Let $r \in IS \cap R$, again we can work modulo every minimal prime *P* of *R* in turn. Let *Q* be the prime of *S* lying over *P*, then $R/P \hookrightarrow S/Q$ and the image of *r* in R/P is in IS/Q. We hence assume that *R* and *S* are domains.

Let $f_1, ..., f_h$ generate *I* so we can write

$r = s_1 f_1 + \dots + s_h f_h$

where $s_i \in S$. Now we can replace *S* by $R[f_1, ..., f_h]$ and assume that *S* is module-finite over *R*. By the lemma above (LEM 5.1) we know that *S* is a solid algebra, now the result is easy to prove.