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1. PRELIMINIARY

Throught out this note, all rings are assumed commutative, associative with identity.

1.1. Base change. Given a ring homomorphism f : R → S, we have a base change functor B = S ⊗R from
R-modules to S-modules. It has following properties:

• Proerpties of the Functor
– The functor B is right exact
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– The functor B commutes with arbitrary direct sums and with arbitrary direct limits
– Given two homomorphisms R → S and S → T, the base change functor BR→T is the composi-

tion of BR→S and BS→T .
• Properties of Modules

– The functor B takes Rn to Sn and free modules to free modules
– The functor B takes projective R-modules to projective S-modules
– The functor B takes flat R-modules to flat S-modules
– The functor B takes faithfully flat R-modules to faithfully flat S-modules.
– The functor B takes finitely generated R-modules to finitely generated S-modules.

• Properties of Elements
– The functor B takes the cokernel of the matrix (rij) to the cokernel of the matrix

(
f (rij)

)
– The functor B takes R/I to S/IS.

• If we denote the restriction-of-scalar functor as R, then there is a natural transformation from the
identity functor toR ◦ B, i.e. for any R-module M, there is a natural R-linear map:

M→ S ⊗R M
ru 7→ f (r)⊗ u

1.2. Characteristic of a ring. The characteristic of a ring is the smallest integer such that 1 times it gets 0. If
we have a homomorphism R → S, then the characteristic of S must divides the characteristic of R. A quick
example is that Z/nZ has characteristic n. So the characteristic of a ring doesn’t need to be prime.

If the ring is assumed to be without zerodivisors, then its characteristic must be either 0 or a prime number.
This situation applies to fields, integral domains and division rings.

1.3. Frobenius functor. Suppose R has characteristic p, the Frobenius map

F : R→ R

r 7→ rp

induces a base change functor F from R-modules to R-modules. It certainly has all the properties listed
above. We may also consider the e-fold iterated composition of this functor with itself, which we denote F e.
This is the same functor induced by the e-fold iterated composition of the Frobenius map Fe.

Let q = pe, then F e takes cokernel of (rij) to the cokernel of (rq
ij). And F e takes R/I to R/I[q] where

I[q] = {aq|a ∈ I}R

(It’s different from Iq, where we take all products of q elements, here we only allow the qth power).

For every module M, the natural map is

M→ F e(M)

ru 7→ 1⊗ (ru) = rq ⊗ u

If we write 1⊗u as uq, then the map takes ru to rquq, which matches the form of a Forbenius map in the ring
case.

Given N ⊆ M, the map F e(N) → F e(M) is not necessarily injective, we denote the image of this map by
N[q] or N[q]

M . It’s quite easy to see that N[q] is spanned by uq where u ∈ N in F e(M). When N = I an ideal of
M = R, the map takes a ∈ I to 1⊗ a = aq ⊗ 1 in R. So it takes I to I[q].

Remark 1.1. The module N[q] is a submodule of F e(M), not of M itself.

2. TIGHT CLOSURE

2.1. Definition. Let R be a Noetherian ring of prime characteristic p > 0.



TIGHT CLOSURE 3

Definition 2.1 (Tight Closure for Modules). Given two R-modules N ⊆ M, the tight closure N∗M of N in M
is the set of elements u ∈ M such that there is some c ∈ R◦ (depending on u)

cuq ∈ N[q]
M

for all large enough q.

Remark 2.2. Here R◦ is the set of elements not contained in any minimal prime of R, i.e. R◦ = R−∪P minimalP

An ideal I of R is also a submodule of R, therefore take N to be I and M to be R, we obatin the notion of
tight closure I∗ of an ideal I.

2.2. Basic properties. Let R be a Noetherian ring of prime characteristic p > 0 and let M, N, Q be R-
modules.

Proposition 2.3. N∗M is an R-module.

Proof. For any u ∈ N∗M and r ∈ R, we need to show that ru ∈ N∗M. We know that there is some c ∈ R◦ such
that cuq ∈ N[q]

M for q >> 0. But then c(ru)q ∈ N[q]
M for q >> 0. Therefore ru ∈ N∗M. �

Proposition 2.4. If N ⊆ M ⊆ Q, then

(1) N∗Q ⊆ M∗Q
(2) N∗M ⊆ N∗Q

Proof. The first statement is true because N[q]
Q ⊆ M[q]

Q for all q. The second statement is true because the map

F e(M)→ F e(Q) takes N[q]
M into N[q]

Q . �

Proposition 2.5. If I is an ideal of R, then I∗N∗M ⊆ (IN)∗M

Proof. Only need to show that every product au where a ∈ I∗ and u ∈ N∗M is in the right hand side. There
is some ca ∈ R◦ such that caaq ∈ I[q] for all q >> 0 and some cu ∈ R◦ such that cuuq ∈ N[q]

M for all q >> 0.
Notice that I[q]N[q] = (IN)[q] for any q(both sides are generated by qth power of products). so we have
cacu(au)q ∈ (IN)[q]

M for all q >> 0. Therefore au ∈ (IN)∗M. �

Tight closure behaves well under arbitrary direct sum and finite product.

Proposition 2.6. If Nλ ⊆ Mλ is any family of inclusions, let N = ⊕λ Nλ and M = ⊕λ Mλ, then N∗M = ⊕λ(Nλ)∗Mλ
.

Proof. Any element in N∗M is a sum of finitely many elements in those Mλ, therefore when considering a
particular element, we could pass to the finite case. Since N[q]

M = ⊕λ(Nλ)[q]
Mλ

as direct sum commutes with
tensor product, the result is now clear. �

Proposition 2.7. If R = R1 × · · · × Rn and Ni ⊆ Mi are Ri-modules (1 ≤ i ≤ n). Let M = M1 × · · · × Mn and
N = N1 × · · · × Nn, then N∗M = (N1)∗M1

× · · · × (Nn)∗Mn
.

Proof. Notice that R◦ = R◦1 × · · · × R◦n. The result is clear. �

2.3. Behaviour under R-linear map. Next we want to discuss the behaviour of tight closure under R-linear
maps.

Proposition 2.8. If N ⊆ M and U ⊆ V are R-modues and f : M → V is an R-linear map such that f (N) ⊆ U,
then f (N∗M) ⊆ U∗V .

Proof. Let u ∈ N∗M, then there is an element c ∈ R◦ such that cuq ∈ N[q]
M for all q >> 0. But f (N[q]

M ) ⊆ U[q]
V , so

c( f (u)q) ∈ U[q]
V for all q >> 0, therefore f (u) ∈ U∗V . �
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Proposition 2.9. An element u ∈ N∗M if and only if the image ū ∈ 0∗M/N . Hence if G maps into M and let H be the
preimage of N. Let v be a preimage of u, then u ∈ N∗M if and only if v ∈ H∗G.

Proof. By the right exactness of tensor products, F e(M/N) ∼= F e(M)/N[q]. Therefore an elment cuq ∈ N[q] iff
cūq = 0 in F e(M/N). �

Remark 2.10. By the proposition above (PROP 2.9), we could always map a free module G onto M and then
take the preimage H of N, therefore the problem of N∗M becomes a problem of H∗M. If G is of rank n, we
could choose a free basis and identify G with Rn. If we write u = r1 ⊕ · · · ⊕ rn ∈ H, then H[q]

G is generated
by uq = rq

1 ⊕ · · · ⊕ rq
n. So we could explicitly define the tight closure like the ideal case. However we have to

prove that this definition is independent of those choices we made.

2.4. Behaviour under base change. Suppose R and S are two Noetherian rings with prime characteristic
p > 0. Let f : R → S be a ring homomorphism. We want to know what happens under the base change
functor S ⊗R . We have following proposition:

Proposition 2.11. Suppose f : R→ S maps R◦ into S◦, then the image of S⊗R N∗M is contained in the tight closure
of S ⊗R N in S ⊗R M.

Before giving the proof, notice that the Frobenius map commutes with any ring homomorphism, i.e. f ◦Fe
R =

Fe
S ◦ f , which is saying f (rq) = ( f (r))q. Therefore we have following observation:

Observation 2.12. For every R-module M, we have a natural isomorphism S ⊗R F e(M) ∼= F e(S ⊗R M).

Proof. We have to show that for any u ∈ N∗M, we have 1 ⊗ u ∈ (S ⊗R N)∗. First of all we know that there is
an element c ∈ R◦ such that cuq ∈ N[q]

M for all q >> 0. So f (c)⊗ uq ∈ S⊗R N[q]
M ⊆ S⊗R F e(M) ∼= F e(S⊗R M)

and clearly f (c)⊗ uq = f (c)(1⊗ u)q. So 1⊗ u ∈ (S ⊗R N)∗. �

Remark 2.13. The condition ”R◦ maps into S◦” holds when

(1) R ⊆ S are domains
(2) R→ S is flat
(3) S = R/P where P is a minimal ideal of R

Here both (1) and (3) are quite clear. For (2), note that for any minimal prime Q of S, the contraction Qc = P
is a prime ideal of R and we have a map RP → SQ. This is a local flat map of local rings, therefore faithfully
flat. Then it’s injection.(See [faithfully flat notes]) Since Q is minimal, QSQ is nilpotent, which implies that
PRP is nilpotent. So P is minimal in R. Therefore R◦ maps into S◦.

2.5. The main theorem. Tight closure can be checked modulo every minimal prime of R.

Theorem 2.14. Consider following settings:

• Let R be a Noetherian ring of prime characteristic p > 0 and N ⊆ M are R-modules.
• Let P1, · · · , Pn be minimal primes of R and let Di = R/Pi.
• Let Mi = M ⊗ Di = M/Pi M and let Ni be the image of Di ⊗ N in Mi.
• Suppose u ∈ M and let ui be the image of u in Mi

Then u ∈ N∗M over R if and only if for all 1 ≤ i ≤ n, ui ∈ (Ni)∗Mi
over Di.

Proof. The ”only if” part follows from proposition 2.11 applying to the case S = R/Pi. It remains to prove
the ”if” part:

For every i there is some ci ∈ R − Pi such that for all q >> 0, we have c̄iu
q
i ∈ N[q]

i . Here N[q]
i is the image of

F e(Ni) in F e(Mi) = F e(M ⊗ R/Pi). Since Frobenius functor commutes with tensor, we have

F e(M ⊗ R/Pi) = R/Pi ⊗F e(M) = F e(M)/PiF e(M)
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So the image could be identified as the image of N[q]
M . Thus

ciuq ∈ N[q] + PiF e(M)

Choose di in all Pj but not in Pi, and let J be the intersection of all Pi. Then J is nilpotent and

diciuq ∈ N[q] + JF e(M)

since every diPi ⊆ J.

Let c =
∑

i cidi, then c is not contained in any Pi. And we have

cuq ∈ N[q] + JF e(M)

for all q >> 0, say q ≥ q0. Choose q1 such that J[q1] = 0. Then cq1 uqq1 ∈ N[qq1] for all q ≥ q0. But then
cq1 uq ∈ N[q] for all q ≥ q0q1. �

Remark 2.15. If M = R and N = I in the theorem above (THM 2.14), then an element r ∈ I∗ iff ū ∈ (IR/Pi)∗

for every i. So we could pass to the reduced ring Rred = R/J

Let J be the intersection of minimal primes P1, ..., Pn of R, then (R/J)/(Pi/J) ∼= R/Pi so we have the following
corollary:

Corollary 2.16. Let R be a Noetherian ring of prime characteristic p > 0 and J be the nilpotent ideal of R. Let
N ⊆ M be R-modules and let u ∈ M. Then u ∈ N∗M if and only if the image of u in M/JM is in the tight closure of
the image of N/JN over R/J.

2.6. Iteration of tight closure. We have following theorem

Theorem 2.17. Let R be a Noetherian ring of prime characteristic p > 0 and let N ⊆ M be R-modules. Consider the
following condition:

There exists an element c ∈ R◦ and q0 = pe0 such that for all u ∈ N∗, cuq ∈ N[q] for all q ≥ q0.

If the above condition holds, then (N∗M)∗M = N∗M.

Proof. If the condition holds, then for any u ∈ (N∗)∗, there is some c ∈ R◦ such that cuq ∈ (N∗)[q] for all
q ≥ q0. Therefore cuq is in the R-span of wq for w ∈ N∗. Since there is another c′ such that c′wq ∈ N[q] for all
w ∈ N∗ and all q ≥ q1, multiply cuq by c′ we get c′cuq ∈ N[q] for all q ≥ max{q0, q1}. Thus u ∈ N∗. �

It’s quite easy to see that when N∗/N is finitely generated, the boxed condition is automatic. Furthurmore,
if M is Noetherian, then both N∗ and N are finitely generated, therefore boxed condition holds. So we have
following corollary

Corollary 2.18. Let R be a Noetherian ring of prime characteristic p > 0, and let N ⊆ M be finitely generated
modules. Then (N∗M)∗M = N∗M.

2.7. One more proposition.

Proposition 2.19. Let R be a Noetherian ring of prime characteristic p > 0. Let N ⊆ M be R-modules. If u ∈ N∗M,
then for any q0 = pe0 , we have uq0 ∈ (N[q0])∗F e0 (M).

Proof. This is immediate from the fact that (N[q0])[q] ⊆ F e(F e0 (M)). �

3. BRIANÇON-SKODA THEOREM

3.1. Preliminary.

Proposition 3.1. Let R be a Noetherian ring of prime characteristic p > 0. The tight closure of 0 is the ideal J of all
nilpotent elements of R



6 ZHAN JIANG

Proof. If u ∈ 0∗, then there is some c ∈ R◦ such that cuq = 0 for all q >> 0. Since c is not in any minimal
prime, we have that uq is in J therefore u is in J. So 0∗ ⊆ J.

On the other hand, any element u in J satisfies uq0 = 0 for some q0, therefore for any q ≥ q0, we have
1× uq = 0. So J ⊆ 0∗. �

Proposition 3.2. Let R be a Noetherian ring of prime characteristic p > 0. For every ideal I of R, we have I∗ ⊆ I ⊆√
I.

Remark 3.3. Here I is the integral closure of I [See Integral-closure-of-an-ideal]

Proof. Suppose u ∈ I∗,to show u ∈ I, it suffices to verify this modulo every minimal prime: So we pass to
R/P hence we may assume that R is a domain, then we have some c 6= 0 such that cuq ∈ I[q] for large enough
q. This suffices to say that u ∈ I.

If u ∈ I, then u satisfies a monic polynomial

un + f1un−1 + · · · + fn = 0

where f j ∈ I j. Thus un ∈ I ⇒ u ∈
√

I. �

Then we have an obvious corollary:

Corollary 3.4. Let R be a Noetherian ring of prime characteristic p > 0. Then any radical ideal, prime ideal or
integrally closed ideal is tightly closed.

3.2. The theorem. Now we are ready to prove this theorem

Theorem 3.5 (Briançon-Skoda). Let R be a Noetherian ring of prime characteristic p > 0. Let I be an ideal generated
by n elements, then In ⊆ I∗

Proof. We can work modulo each minimal prime in turn so we assume that R is a domain. If u ∈ In then
there exists c 6= 0 such that for all k ≥ 0, cuk ∈ (In)k = Ink. If we choose k to be q = pe, then

u ∈ Inq ⊆ I[q]

and we’re done. �

Corollary 3.6. Let R be a Noetherian ring of prime characteristic p > 0. Let I be a principal ideal, then I = I∗.

3.3. Application.

Proposition 3.7. Let R be a Noetherian domain of prime characteristic p > 0. If the ideal (0) and those pincipal ideals
generated by NZDs are tightly closed, then R is normal.

Proof. Suppose f
g ∈ R is algebraic over R, then we have an equation

( f /g)s + r1( f /g)s−1 + · · · + rs = 0

with rj ∈ R. Multiplying by gs we obtain

f s + r1 f s−1g + · · · + rsgs = 0

So f is in the integral closure of gR, which is (gR)∗ = gR. Then f = gr ⇒ f
g = r, so R is normal. �

Theorem 3.8 (Symbolic Power Theorem). Let P be a prime ideal of height h in a regular ring R of prime charac-
teristic p. Then for every integer n ≥ 1, we have P(hn) ⊆ Pn

To prove the theore, we need two preliminary results:

Lemma 3.9. Let P be a prime ideal of height h in a regular ring R of prime characteristic p. Then

(1) P[q] is primary to P
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(2) P(qh) ⊆ P[q]

Proof. (1): Clearly
√

P[q] = P, we only need to show that every f ∈ R − P is an NZD on R/P[q]. Since

0→ R/P→ f R/P

is exact, it stays exact after applying the Forbenius functor F , hence

0→ F e(R/P)→ f q
F e(R/P)

so f q is a NZD on R/P[q], hence is f .

(2): Suppose u ∈ P(qh). Make a base change to RP, then the image of u is in PqhRP. Now PRP is generated
by h elements, so P[q]RP ⊇ P(qh)RP hence u ∈ P[q]RP. Since R − P elements are NZD on R/P[q], we see that
u ∈ P[q]. �

4. COLON-CAPTURING

4.1. Height of ideals. First we need some results for Cohen-Macaulay rings

Proposition 4.1. Let R be a Noetherian ring and let x1, ..., xd generate a proper ideal I of height d. Then there exists
elements y1, ..., yd ∈ R such that for every i

• yi ∈ xi + (xi+1, ..., xd)R
• y1, ..., yi generates an ideal of height i

and moreover, (y1, ..., yd)R = I and yd = xd.

If R is CM, then y1, ..., yd is a regular sequence.

Proof. First we see that x1 + (x2, ..., xd)R is not contained in the union of all minimal primes of R by the
coset form of prime avoidace lemma: otherwise ht(I) = 0. So we can choose x1 + δ1 not in any minimal
prime. Hence y1 = x1 + δ1 is a NZD in R. So ht(y1) = 1 and (y1, x2, ..., xd)R = I. Now we apply induction to
R/y1R. �

Proposition 4.2. Let R be a Noetherian ring and let P be a minimal prime of R. Let x1, ..., xd be elements of R such
that (x1, ..., xi)(R/P) has height i. Then there exists δi ∈ P such that let yi = xi + δi, then (y1, ..., yi)R has height i.

Proof. We construct δi recursively: Let δ1, ..., δt be chosen. If t < d, we cannot have xt+1 + P contained in the
union of minimal primes of the ideal (y1, ..., yt)R. Otherwise by prime avoidance we have xt+1 +P ⊆ Q. Then
on one hand ht(Q) ≤ t. On the other hand, after modulo P, we get (x1, ..., xt+1)R/P ⊆ QR/P⇒ ht(QR/P) ≥
t + 1, a contradiction! Then we can choose δt+1 ∈ xt+1 + P not in any minimal prime of (y1, ..., yt)R. �

4.2. The theorem. First we have a lemma:

Lemma 4.3. Let P be a minimal ideal of height n in a Cohen-Macaulay ring S. Let x1, ..., xk+1 be elements of R = S/P
such that ht(x1, ..., xk)R = k in R while ht(x1, ..., xk+1)R = k + 1. Then we can choose elements y1, ..., yn ∈ P and
z1, ..., zk+1 ∈ S such that:

(1) y1, ..., yn, z1, ..., zk+1 is a regular sequence in S
(2) The image of z1, ..., zk in R generates the ideal (x1, ..., xk)R.
(3) The image of zk+1 in R is xk+1.

Proof. By PROP 4.1 we may assume WLOG that x1, ..., xi generate an ideal of height i in R, 1 ≤ i ≤ k. We
also know this for i = k + 1.

Choose zi arbitrarily such that zi maps to xi for 1 ≤ i ≤ k + 1. Choose a regular sequence y1, ..., yh of length
h in P. Then P is minimal over (y1, ..., yh)S. By applying PROP 4.2 to the image of zi in S/(y1, ..., yh)S with
minimal prime P/(y1, ..., yh), we may alter the zi by adding elements of P so that the height of the image of
the ideal generated by the images of z1, ..., zi in S/(y1, ..., yh)S is i for 1 ≤ i ≤ k + 1.
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Since S/(y1, ..., yh)S is again Cohen-Macaulay, it follows from PROP 4.1 that the images of z1, ..., zk+1 modulo
(y1, ..., yh)S form a regular sequence, which shows that y1, ..., yh, z1, ..., zk+1 form a regular sequence. �

We can now prove this colon-capturing property:

Theorem 4.4. Let R be a reduced Noetherian ring of prime characteristic p. Assume that R is a homomorphic image
of a C-M ring. Let x1, ..., xk+1 be elements of R and let Ii = (x1, ..., xi)R. Suppose that the image of Ik has height k
modulo every minimal prime of R and the image of Ik+1 has height k + 1 modulo every minimal prime of R. Then:

(1) Ik :R xk+1 ⊆ I∗k
(2) If R has a test element, then I∗k :R xk+1 ⊆ I∗k

Proof. To prove the first statement, it sufficies to prove it modulo every minimal prime of R, hence we may
assume that R is a domain and R = S/P where S is C-M. By LEM 4.3 above we can choose a regular sequence
y1, ..., yh, z1, ..., zk+1 such that y1, ..., yh ∈ P where h = ht(P). We may also replace these xi by the image of zi.

Let J = (y1, ..., yh)S, then P is nilpotent over J ⇒ there is some c ∈ S − P such that cP[q0] ⊆ J.

Now suppose we have a relation

rxk+1 = r1x1 + · · · + rkxk

in R. Then we can lift r, r1, ..., rk to elements s, s1, ..., sk ∈ S such that

szk+1 = s1z1 + · · · + skzk + v

for some v ∈ P. Raise both side to qth power and multiply by c to get

csqzq
k+1 = csq

1zq
1 + · · · + csq

kzq
k + cvq

Notice that we have cvq ∈ (y1, ..., yh). Therefore

csqzq
k+1 ∈ (zq

1, cdots, zq
k , y1, ..., yh)S

But y1, ..., yh, zq
1, ..., zq

k+1 form a regular sequence in S, so

csq ∈ (zq
1, cdots, zq

k , y1, ..., yh)S

Let c̄ be the image of c in R, then c̄ ∈ R◦. Modulo P we have

c̄rq ∈ (x1, ..., xk)[q]

for all q ≥ q0. Hence r ∈ (x1, ..., xk)∗ in R. This completes the proof of the first part.

For the second part: Suppose R has a test element d ∈ R◦, that r ∈ R and that rxk+1 ∈ I∗k . Then there exists
c ∈ R◦ such that c(rxk+1)q ∈ (I∗k )[q] for all q >> 0. Note that (I∗K)[q] ⊆ (I[q]

k )∗. So we have

c(rxk+1)q ∈ (I[q]
k )∗ ⇒ dcrqxq

k+1 ∈ I[q]
k

Now apply part 1 we get

dcrq ∈ (I[q]
k )∗ ⇒ d2crq ∈ I[q]

k ⇒ r ∈ I∗k

�

Corollary 4.5. Let R be a holomorphic image of a C-M ring and assume that R is weakly F-regular, then R is C-M.

Proof. Consider Rm where m is a maximal ideal of R, it’s still weakly F-regular, hence it’s normal. So we
may assume that (R, m) is local domain. Now choose a system of parameters and apply the colon capturing
theorem. �



TIGHT CLOSURE 9

5. RELATIONS TO OTHER CLOSURES

5.1. Plus Closure. We note following lemma:

Lemma 5.1. Let D be a domain and let M be a finitely generated torsion-free module over D. Then

• M can be embedded in Rn where n is the torsion-free rank of M
• For any nonzero element u ∈ M, there is an R-linear map θ : M→ R such that θ(u) 6= 0.

Proof. We can choose n elements v1, ...., vn of M that are linearly independent over Frac(R) and let u1, ..., un
be a set of generators of M. Then each ui is a Frac(D)-linear combination of vi’s. So we can clear the
denominator and assume that ciui ∈ Dn. Let c = c1 · · · cn, then cui ∈ Dn. So cM ⊆ Dn, but M ∼= cM.

If u 6= 0, then the image of u in Dn is not zero, i.e. some coordinate is nonzero. Let θ be the composition of
M→ Dn with the projection. �

Theorem 5.2. Let R be a Noetherian ring and R ⊆ S is an integral extension. Let I ⊆ R be an ideal of R, then
IS ∩ R ⊆ I∗

Proof. Let r ∈ IS∩ R, again we can work modulo every minimal prime P of R in turn. Let Q be the prime of
S lying over P, then R/P ↪→ S/Q and the image of r in R/P is in IS/Q. We hence assume that R and S are
domains.

Let f1, ..., fh generate I so we can write
r = s1 f1 + · · · + sh fh

where si ∈ S. Now we can replace S by R[ f1, ..., fh] and assume that S is module-finite over R. By the lemma
above (LEM 5.1) we know that S is a solid algebra, now the result is easy to prove. �


