TEST ELEMETS

ZHAN JIANG

CONTENTS

1.	Test Elements	1
1.1.	Definition	1
1.2.	Basic properties	1
2.	Test Ideals	2
2.1.	Definition	2
3.	Existence of Test Elements	3
3.1.	F-finite and reduced case	3
3.2.	Excellent Case	4

1. TEST ELEMENTS

1.1. Definition.

Definition 1.1. Let *R* be a Noetherian ring of prime characteristic p > 0.

- An element $c \in R^{\circ}$ is called a **test element** for *R* if for every inclusion of finitely generated modules
- $N \subseteq M$ and every $u \in M$, we have: $u \in N_M^*$ if and only if $cu^q \in N_M^{[q]}$ for every $q = p^e \ge 1$ An element $c \in R^\circ$ is called a **big test element** for *R* if the above assertion is true for any *R*-modules $N \subseteq M$.
- A (big) test element is called **locally stable** if it is a (big) test element in every localization of *R*.
- A (big) test element is called **completely stable** if it is a (big) test element in the completion of every local ring of R.

1.2. Basic properties.

Proposition 1.2. Let R be a Noetherian ring of prime characteristic p > 0 and let $c \in R$. Then:

- *c* is a big test element for R if and only if c ∈ R° and cN^{*}_M ⊆ N for any modules N ⊆ M. *c* is a test element for R if and only if c ∈ R° and cN^{*}_M ⊆ N for any finitely generated modules N ⊆ M.

Proof. The "only if" part comes from the definition by choosing *q* to be 1. For the "if" part, if $u \in N_M^*$, then $u^q \in (N^{[q]})^*_{\mathcal{F}^e(M)}$ for any q. But then $cu^q \in N^{[q]}$ for any q.

Next proposition tells us that test elements behave well under faithfully flat morphisms:

Proposition 1.3. Let R be a Noetherian ring of prime characteristic p > 0 and let $c \in R^{\circ}$. S is faithfully flat over R.

- (1) If *c* is a (big) test element for *S*, then it is a (big) test element for *R*
- (2) If c is a completely stable (big) test element for S, then it is a completely stable (big) test element for R.

Proof. (1):Suppose $u \in N^*$, want to show that $cu \in N$. First we notice that

$$c(1 \otimes u) \in c(S \otimes N^*) \subseteq c((S \otimes N)^*) \subseteq S \otimes N$$

So $1 \otimes (cu) \in S \otimes N$. Consider the module (N + Rcu)/N, after tensor with S we get $(S \otimes N + S(1 \otimes cu))/S \otimes N$, this is zero since $1 \otimes cu \in S \otimes N$. Therefore (N + Ru)/N = 0 as S is faithfully flat, but then $u \in N$.

(2):It follows from (1), for any prime *P* of *R*, there is a prime ideal *Q* lying over *P* in *S*. Then $R_P \to S_Q$ is still faithfully flat, so is their completion $\widehat{R_P} \to \widehat{S_Q}$. Since *c* is a (big) test element for $\widehat{S_Q}$, it is a (big) test element in $\widehat{R_P}$.

Now we can give following criterion: test element could be checked localizing at every maximal ideal.

Proposition 1.4. Let *R* be a Noetherian ring of prime characteristic p > 0 and let $c \in R^{\circ}$. If *c* is a (big) test element in R_m for every maximal ideal *m*, then *c* is a (big) test element for *R*.

Proof. If we have a counterexample, i.e. for some $N \subseteq M$, there is an element $u \in N^*$ such that $cu \notin N$. Then choose *m* to be the maximal ideal in the support of (N + Ru)/N, then pass to R_m the counterexample still holds (because $((N + Ru)/N)_m \neq 0$).

We have following corollary:

Corollary 1.5. Let *R* be a Noetherian ring of prime characteristic p > 0 and let $c \in R^\circ$. If *c* is a (big) test element in R_P for every prime ideal *P*, then *c* is a locally stable (big) test element for *R*.

Proof. Since any localization at maximal ideals of $W^{-1}R$ is a localization of R at some prime ideal. The result follows from Proposition 1.4

Now we have a furthur corollary which reveals the connection between "completely stable" and "locally stable".

Corollary 1.6. Let *R* be a Noetherian ring of prime characteristic p > 0 and let $c \in R^{\circ}$. If *c* is a completely stable (big) test element for *R*, then it is a locally stable (big) test element for *R*

Proof. This is immediate from Proposition 1.3 and Corollary 1.5 and the fact that $R_P \to \widehat{R_P}$ is faithfully flat.

2. Test Ideals

2.1. Definition.

Definition 2.1. Let *R* be a Noetherian ring of prime characteristic p > 0 and reduced. We define the **test** ideal $\tau(R)$ to be the set of elements $c \in R$ such that $cN_M^* \subseteq N$ for all finitely generated *R*-modules $N \subseteq M$.

Similarly we define $\tau_b(R)$ to be the set of elements $c \in R$ such that $cN_M^* \subseteq N$ for all *R*-modules $N \subseteq M$.

Alternatively, we could write

 $\tau(R) = \bigcap_{N \subseteq M \text{ f.g. modules}} N :_R N^* M = \bigcap_{N \subseteq M \text{ f.g. modules}} \operatorname{Ann}_R(N^*_M/N)$

and

 $\tau_b(R) = \bigcap_{N \subseteq M} N :_R N^* M = \bigcap_{N \subseteq M} \operatorname{Ann}_R(N_M^*/N)$

We immediate have following propositions:

Proposition 2.2. Let *R* be a Noetherian ring of prime characteristic p > 0 and reduced.

(1) $\tau_{\rm b}(R) \subseteq \tau(R)$

(2) $\tau_{b}(R) \cap R^{\circ}$ is the set of big test elements for R

(3) $\tau(R) \cap R^{\circ}$ is the set of test elements for R

Proof. All are clear from the definition and properties of (big) test elements.

Next we want to observe following

Proposition 2.3. Let *R* be a Noetherian ring of prime characteristic p > 0 and reduced. If *R* has at least one (big) test element, then $\tau(R)$ ($\tau_{b}(R)$) is generated by all (big) test elements.

This is immediate from following lemma

Lemma 2.4. Let R be any ring and $P_1, ..., P_k$ finitely many prime ideals of R. Let $W = R - \bigcup_{i=1}^k P_i$. If an ideal $I \cap W \neq \emptyset$, then I is generated by $I \cap W$.

Proof. Let *J* be the ideal generated by $I \cap W$, then $I \subseteq J \cup P_1 \cup \cdots \cup P_k$. By Prime avoidance we know that either $I \subseteq J$ or $I \subseteq P_i$ for some *i*. But if $I \subseteq P_i$, then $I \cap W = \emptyset$. Therefore $I \subseteq J \subseteq I$.

3. EXISTENCE OF TEST ELEMENTS IN F-FINITE AND REDUCED CASE

Lemma 3.1. Let *R* be a reduced *F*-finite ring and suppose that there exists an *R*-linear map θ : $R^{1/p} \to R$ such that $\theta(1) = c \in R^{\circ}$. Then for every $q = p^{e}$, there exists an *R*-linear map $\eta_{q} : R^{1/q} \to R$ such that $\eta_{q}(1) = c^{2}$.

Proof. If q = 1, take η_q to be c^2 times the identity map.

If q = p, take η_q to be $c\theta$.

Now suppose that η_q has been constructed, let $\eta_{pq}(u) = \theta\left(c^{(p-2)/p}\eta_q^{1/p}(u)\right)$. Then

$$\eta_{pq}(1) = \theta \left(c^{(p-2)/p} \eta_q^{1/p}(1) \right) = \theta \left(c^{(p-2)/p} c^{2/p} \right) = \theta(c) = c^2$$

Theorem 3.2. Let *R* be *F*-finite and reduced. If $c \in R^{\circ}$ and R_c is strongly *F*-regular, then *c* has a power that is a big test element

If there exists an R-linear map $\theta : \mathbb{R}^{1/p} \to \mathbb{R}$ such that $\theta(1) = c$, then c^3 is a big test element.

Proof. Since R_c is strongly F-regular, it is F-split. We claim that there is a map $\theta : R^{1/p} \to R$ sending $1 \mapsto c^N$ for some N: First we can choose a split map $\beta : R_c^{1/p} \to R_c$ sending $1 \mapsto 1$. Since $\operatorname{Hom}_{R_c}(R_c^{1/p}, R_c) = (\operatorname{Hom}_R(R^{1/p}, R))_c$, we have $\beta = \frac{\alpha}{c^N}$ for some N. Now α is what we want.

By the second part, c^{3N} will be a big test element. So it sufficies to prove the second part and it sufficies to show that if $u \in N^*$, then $c^3u \in N$.

The idea is as following: First we map a free module *G* onto *M*, let *H* be the inverse image of *N* and let *v* be a preimage of *u*. Then we show that $v \in H^* \Rightarrow c^3 v \in H$. Since $v \in H^*$, there is some $d \in R^\circ$ such that $dv^q \in H^{[q]}$ for all sufficiently large *q*, which, if we write out, is

$$dv^q = \sum_{i=1}^n r_i h_i^q$$

Now tensor *G* with $R^{1/q}$ and we can take q^{th} root of (3.1) and get

(3.2)
$$d^{1/q}v = \sum_{i=1}^{n} r_i^{1/q} h_i$$

Once we obtain a map $R^{1/q} \rightarrow R$ such that sending $d^{1/q}$ to c^3 , apply that map to (3.2) and we are done.

Since R_c is strongly F-regular, we have q_d such that $R \to R^{1/q_d}$ sending $1 \mapsto d^{1/q_d}$ splits. Choose q_d large enough such that $dv^{q_d} \in H^{[q_d]}$. Let β be the split map, again we have $\beta = \frac{\alpha}{c^q}$. Hence $\alpha = c^q \beta$ and $\alpha(d^{1/q_d}) = c^q$.

Take q^{th} root of this we have $\alpha^{1/q} : R^{1/qq_d} \to R^{1/q}$ such that $d^{1/qq_d} \mapsto c$. Now by Lemma 3.1 we know that there exists a map $\theta : R^{1/q} \to R$ sending $1 \mapsto c^2$. So we have

$$egin{array}{lll} heta \circ lpha^{1/q} : R^{1/qq_d} o R^{1/q} o R \ d^{1/qq_d} \mapsto c \mapsto c^3 \end{array}$$

Now we are done.

Note that F-finite rings are execellent and execellent rings has an element $c \in R^{\circ}$ such that R_c is regular, hence, strongly F-regular. See[E.Knuz *Characterizations of regular local rings of characteristic p*, Amer. J. Math. 91(1969) 772-784]. So we have proved

Corollary 3.3. *If R is reduced and F-finite, then R has a big test element.*

Actually we can prove a stronger statement, provided following theorem, see[F-regularity]

Theorem 3.4. If $R \to S$ is geometrically regular map of *F*-finite rings and *R* is strongly *F*-regular, then so is *S*.

Then we can prove following:

Theorem 3.5. Let R be a reduced F-finite ring and let $c \in R^{\circ}$ such that R_c is strongly F-regular. Assume further that there is an R-linear map $R^{1/p} \to R$ that sends 1 to c. If S is F-finite and $R \to S$ is geometrically regular map, then c^3 is a big test element for S

In particular, c^3 is a completely stable big test element.

Proof. Since the map is flat, we know that $c \in S^{\circ}$. We only need to show that S_c is strongly F-regular and the map $S \to S^{1/p}$ sending $1 \mapsto c$ splits.

Now since R_c is strongly F-regular and $R_c \rightarrow S_c$ is still geometrically regular, we know that S_c is strongly F-regular.

We have an *R*-linear split map $R^{1/p} \to R$. Tensor with *S* we get $R^{1/p} \otimes S \to S$. Compose it with the split map $S^{1/p} \to R^{1/p} \otimes S$ we get what we want.

Note $R \to R_P$ is geometrically regular. F-finite rings are excellent and the map from an excellent local ring to is completion is geometrically regular.

4. EXISTENCE OF TEST ELEMENTS IN EXCELLENT CASE

We aim to prove following result

Theorem 4.1. Let R be a Noetherian ring. Suppose that R is a reduced algebra essentially of finite type over excellent semilocal ring B. Then there are elements $c \in R^{\circ}$ such that R_c is regular and any such c has a power that is a completely stable big test element.

MORE DETAIL LATER.