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1. TEST ELEMENTS

1.1. Definition.

Definition 1.1. Let R be a Noetherian ring of prime characteristic p > 0.

• An element c ∈ R◦ is called a test element for R if for every inclusion of finitely generated modules
N ⊆ M and every u ∈ M, we have: u ∈ N∗M if and only if cuq ∈ N[q]

M for every q = pe ≥ 1
• An element c ∈ R◦ is called a big test element for R if the above assertion is true for any R-modules

N ⊆ M.
• A (big) test element is called locally stable if it is a (big) test element in every localization of R.
• A (big) test element is called completely stable if it is a (big) test element in the completion of every

local ring of R.

1.2. Basic properties.

Proposition 1.2. Let R be a Noetherian ring of prime characteristic p > 0 and let c ∈ R. Then:

• c is a big test element for R if and only if c ∈ R◦ and cN∗M ⊆ N for any modules N ⊆ M.
• c is a test element for R if and only if c ∈ R◦ and cN∗M ⊆ N for any finitely generated modules N ⊆ M.

Proof. The ”only if” part comes from the definition by choosing q to be 1. For the ”if” part, if u ∈ N∗M, then
uq ∈ (N[q])∗F e(M) for any q. But then cuq ∈ N[q] for any q. �

Next proposition tells us that test elements behave well under faithfully flat morphisms:

Proposition 1.3. Let R be a Noetherian ring of prime characteristic p > 0 and let c ∈ R◦. S is faithfully flat over R.

(1) If c is a (big) test element for S, then it is a (big) test element for R
(2) If c is a completely stable (big) test element for S, then it is a completely stable (big) test element for R.
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Proof. (1):Suppose u ∈ N∗, want to show that cu ∈ N. First we notice that

c(1⊗ u) ∈ c(S ⊗ N∗) ⊆ c((S ⊗ N)∗) ⊆ S ⊗ N

So 1⊗ (cu) ∈ S⊗N. Consider the module (N + Rcu)/N, after tensor with S we get (S⊗N + S(1⊗ cu))/S⊗N,
this is zero since 1⊗ cu ∈ S ⊗ N. Therefore (N + Ru)/N = 0 as S is faithfully flat, but then u ∈ N.

(2):It follows from (1), for any prime P of R, there is a prime ideal Q lying over P in S. Then RP → SQ is still
faithfully flat, so is their completion R̂P → ŜQ. Since c is a (big) test element for ŜQ, it is a (big) test element
in R̂P. �

Now we can give following criterion: test element could be checked localizing at every maximal ideal.

Proposition 1.4. Let R be a Noetherian ring of prime characteristic p > 0 and let c ∈ R◦. If c is a (big) test element
in Rm for every maximal ideal m, then c is a (big) test element for R.

Proof. If we have a counterexample, i.e. for some N ⊆ M, there is an element u ∈ N∗ such that cu 6∈ N.
Then choose m to be the maximal ideal in the support of (N + Ru)/N, then pass to Rm the counterexample
still holds (because ((N + Ru)/N)m 6= 0). �

We have following corollary:

Corollary 1.5. Let R be a Noetherian ring of prime characteristic p > 0 and let c ∈ R◦. If c is a (big) test element in
RP for every prime ideal P, then c is a locally stable (big) test element for R.

Proof. Since any localization at maximal ideals of W−1R is a localization of R at some prime ideal. The result
follows from Proposition 1.4 �

Now we have a furthur corollary which reveals the connection between ”completely stable” and ”locally
stable”.

Corollary 1.6. Let R be a Noetherian ring of prime characteristic p > 0 and let c ∈ R◦. If c is a completely stable
(big) test element for R, then it is a locally stable (big) test element for R

Proof. This is immediate from Proposition 1.3 and Corollary 1.5 and the fact that RP → R̂P is faithfully
flat. �

2. TEST IDEALS

2.1. Definition.

Definition 2.1. Let R be a Noetherian ring of prime characteristic p > 0 and reduced. We define the test
ideal τ(R) to be the set of elements c ∈ R such that cN∗M ⊆ N for all finitely generated R-modules N ⊆ M.

Similarily we define τb(R) to be the set of elements c ∈ R such that cN∗M ⊆ N for all R-modules N ⊆ M.

Alternatively, we could write

τ(R) = ∩N⊆M f.g. modulesN :R N∗M = ∩N⊆M f.g. modules AnnR(N∗M/N)

and
τb(R) = ∩N⊆M N :R N∗M = ∩N⊆M AnnR(N∗M/N)

We immediate have following propositions:

Proposition 2.2. Let R be a Noetherian ring of prime characteristic p > 0 and reduced.

(1) τb(R) ⊆ τ(R)
(2) τb(R) ∩ R◦ is the set of big test elements for R
(3) τ(R) ∩ R◦ is the set of test elements for R



TEST ELEMETS 3

Proof. All are clear from the definition and properties of (big) test elements. �

Next we want to observe following

Proposition 2.3. Let R be a Noetherian ring of prime characteristic p > 0 and reduced. If R has at least one (big)
test element, then τ(R) (τb(R)) is generated by all (big) test elements.

This is immediate from following lemma

Lemma 2.4. Let R be any ring and P1, ..., Pk finitely many prime ideals of R. Let W = R − ∪k
i=1Pi. If an ideal

I ∩W 6= ∅, then I is generated by I ∩W.

Proof. Let J be the ideal generated by I ∩W, then I ⊆ J ∪ P1 ∪ · · · ∪ Pk. By Prime avoidance we know that
either I ⊆ J or I ⊆ Pi for some i. But if I ⊆ Pi, then I ∩W = ∅. Therefore I ⊆ J ⊆ I. �

3. EXISTENCE OF TEST ELEMENTS IN F-FINITE AND REDUCED CASE

Lemma 3.1. Let R be a reduced F-finite ring and suppose that there exists an R-linear map θ : R1/p → R such that
θ(1) = c ∈ R◦. Then for every q = pe, there exists an R-linear map ηq : R1/q → R such that ηq(1) = c2.

Proof. If q = 1, take ηq to be c2 times the identity map.

If q = p, take ηq to be cθ.

Now suppose that ηq has been constructed, let ηpq(u) = θ
(

c(p−2)/pη
1/p
q (u)

)
. Then

ηpq(1) = θ
(

c(p−2)/pη
1/p
q (1)

)
= θ
(

c(p−2)/pc2/p
)

= θ(c) = c2

�

Theorem 3.2. Let R be F-finite and reduced. If c ∈ R◦ and Rc is strongly F-regular, then c has a power that is a big
test element

If there exists an R-linear map θ : R1/p → R such that θ(1) = c, then c3 is a big test element.

Proof. Since Rc is strongly F-regular, it is F-split. We claim that there is a map θ : R1/p → R sending 1 7→ cN

for some N: First we can choose a split map β : R1/p
c → Rc sending 1 7→ 1. Since HomRc (R

1/p
c , Rc) =

(HomR(R1/p, R))c, we have β = α
cN for some N. Now α is what we want.

By the second part, c3N will be a big test element. So it sufficies to prove the second part and it sufficies to
show that if u ∈ N∗, then c3u ∈ N.

The idea is as following: First we map a free module G onto M, let H be the inverse image of N and let v
be a preimage of u. Then we show that v ∈ H∗ ⇒ c3v ∈ H. Since v ∈ H∗, there is some d ∈ R◦ such that
dvq ∈ H[q] for all sufficiently large q, which, if we write out, is

(3.1) dvq =
n∑

i=1

rih
q
i

Now tensor G with R1/q and we can take qth root of (3.1) and get

(3.2) d1/qv =
n∑

i=1

r1/q
i hi

Once we obtain a map R1/q → R such that sending d1/q to c3, apply that map to (3.2) and we are done.

Since Rc is strongly F-regular, we have qd such that R → R1/qd sending 1 7→ d1/qd splits. Choose qd large
enough such that dvqd ∈ H[qd]. Let β be the split map, again we have β = α

cq . Hence α = cqβ and α(d1/qd ) = cq.
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Take qth root of this we have α1/q : R1/qqd → R1/q such that d1/qqd 7→ c. Now by Lemma 3.1 we know that
there exists a map θ : R1/q → R sending 1 7→ c2. So we have

θ ◦ α1/q : R1/qqd → R1/q → R

d1/qqd 7→ c 7→ c3

Now we are done. �

Note that F-finite rings are execellent and execellent rings has an element c ∈ R◦ such that Rc is regular,
hence, strongly F-regular. See[E.Knuz Characterizations of regular local rings of characteristic p, Amer. J. Math.
91(1969) 772-784]. So we have proved

Corollary 3.3. If R is reduced and F-finite, then R has a big test element.

Actually we can prove a stronger statement, provided following theorem, see[F-regularity]

Theorem 3.4. If R→ S is geometrically regular map of F-finite rings and R is strongly F-regular, then so is S.

Then we can prove following:

Theorem 3.5. Let R be a reduced F-finite ring and let c ∈ R◦ such that Rc is strongly F-regular. Assume further that
there is an R-linear map R1/p → R that sends 1 to c. If S is F-finite and R → S is geometrically regular map, then c3

is a big test element for S

In particular, c3 is a completely stable big test element.

Proof. Since the map is flat, we know that c ∈ S◦. We only need to show that Sc is strongly F-regular and the
map S→ S1/p sending 1 7→ c splits.

Now since Rc is strongly F-regular and Rc → Sc is still geometrically regular, we know that Sc is strongly
F-regular.

We have an R-linear split map R1/p → R. Tensor with S we get R1/p⊗ S→ S. Compose it with the split map
S1/p → R1/p ⊗ S we get what we want.

Note R → RP is geometrically regular. F-finite rings are excellent and the map from an excellent local ring
to is completion is geometrically regular. �

4. EXISTENCE OF TEST ELEMENTS IN EXCELLENT CASE

We aim to prove following result

Theorem 4.1. Let R be a Noetherian ring. Suppose that R is a reduced algebra essentially of finite type over excellent
semilocal ring B. Then there are elements c ∈ R◦ such that Rc is regular and any such c has a power that is a
completely stable big test element.

MORE DETAIL LATER.


