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1. COMPLETE LOCAL RINGS

1.1. Local rings. A local ring R contains a field iff char(R) = char(K):

• If char(K) = 0, then it’s clearly that R does. Therefore R contains a copy of Z. Every integer has a
nonzero image in R/m, therefore they are units in R, then Q injects into R. If R contains a field of
characteristic 0, then every prime integer is invertible, therefore char(K) = 0.
• If char(K) = p, char(R) = p. Then R contains Z/pZ. If R contains a copy of Z/pZ, then char(K) = p.

So we have following definition

Definition 1.1. A local ring (R,m, K) is equicharacteristic if R contains a field. A local ring (R,m, K) is mixed
characteristic if it’s not equicharacteristic.

Now we know that this definition is equivalent to the condition that R and K has the same characteristic.
This suggests why we use the term ”equicharacteristic”.
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Remark 1.2. The residue field K of a mixed characteristic local ring R always has characteristic p while R has
characteristic either 0 or a power of p: If char(R) 6= 0, then pick an integer a which is zero in R. If a has more
than one prime factor, then write a = bc where b, c > 1 are relatively prime integers. Then bc = 0 implies that
one of them is in the maximal ideal. If both are in the maximal ideal, then 1 ∈ m, a contradiction. Therefore
one of them is not in m, which will be a unit. So we can pass to a smaller integer with less prime factors.
Repeat this until we reach a integer of prime power. That will be the characteristic of R.

1.2. Hensel’s Lemma.

Lemma 1.3 (Hensel). Let (R,m, K) be a m-adically separated, complete quasilocal ring. Let f ∈ R[x] be a monic
polynomial of degree d and let F = f be the image of f in K[x] (Here the map is induced by R→ K modulo m).

If F = GH where G, H are polynomials in K[x] and are monic of degree s, t respectively (Clearly s + t = d). And G
and H are relatively prime in K[x]. Then there are unique monic polynomials g, h ∈ R[x] of degree s, t respectively
such that f = gh and g = G, h = H.

Proof. Let Fn be the image of f in (R/mn)[x], we recursively construct monic polynomials Gn, Hn ∈ (R/mn)[x]
of degree s, t respectively such that Fn = Gn Hn. We shall also show that Gn(Hn) maps to Gn−1(Hn−1) and all
of them are unique. Then (G1, G2, ...) will define g and (H1, H2, ...) will defien h. We have f−gh ∈ ∩im

i = {0}.

Now let G1 = G and H1 = H and assume that Gn−1 and Hn−1 are given. Construct two monic polynomials
G′n, H′n ∈ (R/mn)[x] by lifting every coefficient of Gn and Hn respectively. Then G′n has degree s and H′n has
degree t. And we have

Fn − G′n H′n = 0 mod mn−1R[x]

We want to show that there are unique G̃n of degree at most s−1 and H̃n of degree at most t−1 in mn−1R[x]
such that

Fn − (G′n + G̃n)(H′n + H̃n) = 0
So let Dn = Fn − G′n H′n ∈ mn−1R[x], then we aim to find such polynomials such that

Dn − G′n H̃n − G̃n H′n − G̃n H̃n = 0

But note that we are working in (R/mn)[x] and G̃n H̃n ∈ m2n−2R[x]. So we are looking for G̃n and H̃n such
that

Dn = G′n H̃n + G̃n H′n

Now we have to use the condition that G and H are relatively prime in K[x]. So G, H generates the unit
ideal in K[x] and ((R/mn)[x])red is K[x]. Therefore G′n and H′n shall generate the unit ideal as well. We can
find A, B ∈ (R/mn)[x] such that 1 = AG′n + BH′n. Then we have

Dn = (Dn A)G′n + (DnB)H′n
Now divide Dn A by H′n, we have

Dn A = H′nQ + H̃n

where deg(H̃n) ≤ t − 1. So
0 = Hn−1Q + H̃n mod mn−1R[x]

H̃n has smaller degree than Hn−1Q, therefore H̃n, Q must be zero, i.e. must be in mn−1R[x]. Now we have

Dn = H̃nG′n + (DnB − QG′n)H′n

where both Dn and H̃nG′n has degree < n, which forces DnB − QG′n, which we denote G̃n, to be of degree
≤ s − 1.

Now we want to show that H̃n and G̃n are unique. If we have a different choice for these two polynomial.
Take the difference then we have αG′n + βH′n = 0 with deg(α) ≤ t − 1 and deg(β) ≤ s − 1. G′n is a unit if we
modulo H′n, then α is divisible by H′n, but H′n is monic. This implies that α = 0 therefore β = 0.

So we set Gn = G′n + G̃n and Hn = H′n + H̃n. If we have a different choice for Gn and Hn, then their difference
will be our G̃n and H̃m, which will be unqiue, i.e. 0. So Gn and Hn are unique. �
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1.3. Complete local rings. A local ring (R,m, K) is complete if it’s complete with respect to its maximal
ideal m.

2. THE EQUICHARACTERISTIC CASE

2.1. Coefficient fields.

2.1.1. Char = 0.

Definition 2.1. A field in a local ring such that maps onto the residue field is called a coefficient field of R.

We shall prove that a complete local ring always contains a coefficient field. Once R contains such a field,
we can write R = K ⊕K m. We shall prove the existence of a coefficient field in equicharacteristic case:

Theorem 2.2 (Char=0). Let (R,m, K) be an equicharacteristic complete local ring of characteristic 0. Then R has a
coefficient.

Proof. Let Λ be the set of all subrings of R that happens to be fields. By hypothesis, Λ is not empty. The
union of any chain of elements in Λ will again be a subring of R that is a field. By Zorn’s lemma, Λ will
have a maximal element, call it K0.

Now we have a map K0 ⊆ R → K, this is an injection from K0 to K. To finish the proof, we only need to
show that this map is surjection. Denote the image of K0 in K by K1.

Suppose that the map is not surjection, pick an element α ∈ K − K1. There are two cases:

(1):Suppose α is transdental over K1. Let a be the perimage of α in R. Then a is clearly transdental over K0.
Therefore K0[a] is a polynomial subring in R and every nonzero element is a unit in R: otherwise a would
be algebraic over K0. Then we have K0(a) ⊆ R, which is a larger subfield of R containing K0.

(2):Suppose α is algebraic over K1. Let F be the minimal polynomial of α in K1 and let f be the preimage
of F with coefficients in K0. Since F(x) ∈ K[x] factors as (x − t)H(x) and the two factors are relatively
prime (Because char(K) = 0 ⇒ K is a perfect field). Now we can apply Hensel’s lemma and conculde that
f (x) = (x − a)h(x) where a maps to α. Now we show that K0[a] maps onto K1[α]. We only need to show
surjectivity. If P(x) ∈ K0[x] kills a then f |P therefore P(α) = 0. So K0[a] ∼= K1[α]. Therefore K0[a] is a larger
subfield of R containing K0. �

Remark 2.3. From the proof we see that any maximal subfield is a coefficient field. The proof also shows that
in char(R) = char(K) = p case, the maximal subfield can only be a purely inseperable algebraic extension of
K.

2.1.2. Char = p, K is perfect. Now we want to write down the similar theorem for the case where R is charac-
teristic p and K is perfet. We shall give a different prove. Note that the existence of a coefficient field already
holds by the Remark 2.3 above.

Theorem 2.4 (Char = p, K is perfect). Let (R,m, K) be an equicharacteristic complete local ring of prime character-
istic p > 0. If K is perfect, then R has a unique coefficient field, which is K0 = ∩nFn(R) where F is the Frobenius
map.

Proof. Let L be a coefficient field for R. Since F is an isomorphism on L. So L ∼= F(L) ∼= F2(L) ∼= · · · .
Therefore L ⊆ K0. Once we show that K0 is a field, by the construction of L, we know that L = K0.

Now we want to show that K0 is a field. First we show that K0 ∩m = {0}: Pick u ∈ K0 ∩m, then for any n we
have u = Fn(v) for some v ∈ m. Therefore u ∈ mpn ⇒ u ∈ ∩nm

pn
= (0).

So every element of K0 − {0} is a unit of R, it follows that K0 is a coefficient field. �

Remark 2.5. We can given an alternative argument without using Zorn’s lemma: We can still show that K0
is a field by the proof above, next we have to show that K0 ⊆ R→ K is surjection:
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Proof of the Remark. For any element α ∈ K, let an ∈ R be the element maps to α1/pn ∈ K, then apn

n maps to α.
We claim that {apn

n } is a Cauchy sequence in R: Since rn and rp
n+1 both maps to α1/pn

, we have rn − rp
n+1 ∈ m

so rpn

n − rpn+1

n+1 ∈ mpn
.

Denote the limit of the sequence above by a, then it’s obvious that a maps to α. In order to show that a ∈ L0,
we need to show that a ∈ Rpn

for every n. This comes from that we can pass to a subsequence and take pnth
root of the sequence rn, rp

n+1, .... It’s again Cauchy and has a limit b, but then bpn
= a so a ∈ Rpn

. �

2.1.3. Char = p, K is not perfect. Here we deal with the final case, the positive prime characteristic case with
residue field not perfect. This time the coefficient is again not unqiue.

We have to use the technique of p-base, here is definition

Definition 2.6. Let K be a field of prime characteristic p. Finitely many elements λ1, ..., λn in K − Kp are
called p-independent if [Kp[λ1, ..., λn] : Kp] = pn. An infinitely subset of K − Kp is p-independent if every
finite subset is p-independent.

This is equivalent to TO BE ADDED

A maximal p-independent subset of K − Kp is a p-base for K over Kp. Its existence is guranteed by Zorn’s
lemma: since the union of a chain of p-independent sets is still p-independent.

It’s easy to see that K = Kp[Λ]. So Λ is a p-base iff every element of K is an unique polynomial in elements
in Λ over Kp with exponents in every element is at most p − 1.

For any q = pn, the set Λq = {λq : λ ∈ Λ} is a p-base for Kq over Kpq. In particular, Λp is a p-base for Kp over
Kp2

and by multiplying two bases we see that the monomials in the elements of Λ of degree at most p2 − 1
are a basis for K over Kp2

. Inductively we see that monomials in the elements of Λ of degree at most pn − 1
are a basis for K over Kpn

. Therefore K = Kpn
[Λ].

Theorem 2.7. Let (R,m, K) be a complete local ring of prime characteristic p. Let Λ be a p-base for K and let T be a
lifting of Λ to R. Then there is a unique coefficient field for R containing T, namely, K0 = ∩nRn[T] where Rn = Rpn

.

Proof. Any coefficient field must contain some lifting of Λ. We note that K0 is already a subring containing
T. If L is a coefficient field containing T, then T is a p-base for L. Therefore for any n, L = Lpn

[T] ⊆ Rn[T].
So L ⊆ K0. Once we show that K0 is a coefficient field, the uniqueness will follow.

Call a polynomial is a pn-polynomial if every variable has exponent at most pn−1. Therefore every element
in Rn[T] could be expressed as a pn-polynomial in elements of T and every element in Kpn

[Λ] is a pn-
polynomial in elements of Λ.

Next we observe that
Rn[T] ∩m ⊆ mpn

Any pn-polynomial in m will have zero image in Kpn
, therefore every coefficient of the polynomial is zero.

Then every coefficient is in m and is in mpn
. Then the inclusion follows.

But now we see that K0 ∩ m = ∩n(Rn[T] ∩ m) ⊆ ∩nm
pn

= {0}. We can conclude that K0 injects into K. It
sufficies to show that Ko → K is surjection.

Let α ∈ K be given. Since K = Kpn
[Λ], we can map Rn[T] onto K so we can choose an ∈ Rn[T], but then

an+1− an ∈ Rn[T]∩m ⊆ mpn
. So a1, a2, ... form a Cauchy sequence and has a limit, call it a. Then a maps to α.

a is independent of the choice of the Cauchy sequence: If we have one more sequence a′1, a′2, ... with a′n ∈
Rn[T] and each maps to α. Then ai − a′i ∈ Rn[T] ∩m ⊆ mpn

. So they have the same limit.

Next we want to show that a ∈ Rn[T] for every n, which will complete our proof. We fix n and write α as a
pn-polynomial in elements of Λ over Kpn

.
α =

∑
µ

β
pn

µ µ
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where µ are monomials in Λ and βµ ∈ K. Replace each µ by corresponding monomial in T, which we denote
µ̃. For each βµ, we can construct a sequence bk,µ as above.Then

ak =
∑

µ

bpn

k,µµ̃

form a Cauchy sequence and converges to a as each ak maps to α and ak ∈ Rk[T]. But we also note that

lim
k

ak =
∑

µ

(lim
k

bk,µ)pn
µ̃

a =
∑

µ

bpn

µ µ̃ ∈ Rn[T]

�

2.2. Structure theorem. Once we know that existence of a coefficient field in a complete local ring R, we
can show that it is a holomorphic image of a power series ring in finitely many variables over a field, and is
also a module-finite extension of such a ring.

We first prove following general result:

Proposition 2.8. Suppose I ⊆ R is a fintely generated ideal and R is I-adically complete. Let m be an I-adically
separated R-module. Let u1, ..., un ∈ M have images that span M/IM over R/I, then u1, ..., un spans m over R.

Proof. Since m = Ru1 + Ru2 + · · · + Run + IM, given any element u ∈ M, we can write

u = r(0)
1 u1 + · · · + r(0)

n un + v(1)

But we can also write IM = Iu1 + · · · + Iun + I2 M, so we can expand v(1) ∈ IM to

u = r(0)
1 u1 + · · · + r(0)

n un + v(1)

= (r(0)
1 + r(1)

1 )u1 + · · · + (r(0)
n + r(1)

n )un + v(2).

Now we can replace v(2) ∈ I2 M be the expansion I2 M = I2u1 + · · · + I2un + I3 M. Therefore inductively we
have

u = (r(0)
1 + · · · + r(k)

1 )u1 + · · · + (r(0)
n + · · · + r(k)

n )un + v(k+1)

where r(j)
∗ ∈ I j and vj+1 ∈ I j+1 M. For eveery j, we see that

∑∞
j=0 r(j)

i represents an element si in R. We claim
that u = s1u1 + · · · + snun.

The point is that we have

u − (r(0)
1 + · · · + r(k)

1 )u1 − · · · − (r(0)
n + · · · + r(k)

n )un ∈ Ik+1 M

s1u1 + · · · + snun − (r(0)
1 + · · · + r(k)

1 )u1 − · · · − (r(0)
n + · · · + r(k)

n )un ∈ Ik+1 M

So
u − s1u1 − · · · − snun ∈ Ik+1 M

for every k, hence the difference is in ∩k Ik M = {0}. �

Remark 2.9. We tacitly used the fact that the infinite sum r(k)
i + r(k+1)

i + · · · ∈ Ik M. This actually requires a
proof, which we record here:

Since I is finitely generated (That’s why we need this condition in the proposition) then Ik is generated by
monomials in these generators of degree k. We denote these monomials g1, ..., gm. Then for every j we have

r(k+j)
i = q(j)

1 g1 + · · · + q(j)
m gm

where qj
∗ ∈ I j since Ik+j = Ik(I j). Thus

r(k)
i + r(k+1)

i + · · · = (q(k)
1 + q(k+1)

1 + · · · )g1 + · · · + (q(k)
m + q(k+1)

m + · · · )gm

Each infinite sum will converge to an element in R and the conclusion holds.
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We have following proposition:

Proposition 2.10. Let (S, n, L) → (R,m, K) be a local map of complete local rings. Suppose that r1, ..., rk ∈ m
together with nR generate an m-primary ideal, then there is a unique continuous map SJX1, ..., XkK → R induced by
mapping Xi to ri in S[X1, ..., Xn]→ R.

(1) If K is a finite algebraic extension over L, then R is module finite over the image of SJX1, ..., XkK
(2) If L→ K is an isomorphism and nR + (r1, ..., rk)R = m, then the map SJX1, ..., XkK→ R is a surjection.

Proof. (1): Let R̃ = SJX1, ..., XkK and m̃ = (X1, ..., Xk)R̃ + nR̃. We first show that R is module-finite over the
image of R̃: the image of m̃, which we denote m̃R, is m-primary, which contains a power of m. So R/m̃R is
of finite length over K and it follows that R/m̃R is a finite-dimensional vector space over K. But since K is a
finite extension of L. This continues to be a finite dimensional vector space over L = R̃/m̃. We can choose a
finite set of generators for R/m̃R over R̃/m̃, and by Proposition 2.8 we see that this set will generate R over
(the image of) R̃.

(2):We can carry out the same argument and find that R/m̃R is a finite-dimensional vector space over R̃/m̃.
But this time the dimension is 1. Therefore we can generate R over R̃ by 1, which means that the map is
surjection. �

Now R is complete and contains a coefficient field K0 and let r1, ..., rk be k elements in m. Then we can map
K0[X1, ..., Xk] to R by mapping Xi to ri. Then this will induce a unique map K0JX1, ..., XkK→ R.

Now we are ready to prove the structure theorem for complete local rings:

Theorem 2.11. Let (R,m, K) be a complete local ring with coefficient field K0. Let f1, ..., fd be a system of parameters
for R where d = dim(R). Extend them to be a set of generators r1, ..., rd, rd+1, ..., rn for m where n is the embedded
dimension of R. Then

(1) The unique map K0JX1, ..., XdK→ R is injective and R is module-finite over the image.
(2) The unique map K0JX1, ..., XnK→ R is surjective.

Proof. (1): Let R̃ = K0JX1, ..., XdK and m̃ = (X1, ..., Xd)R̃. By Proposition 2.10 above, R is module-finite over
the image of R̃. We only need to show injectivity. Let I be the kernel of R̃ → R, then killing I will lower the
dimension, but the dimension of the image has to be d = dim(R). So I must be zero.

(2): This is a direct corollary of Proposition 2.10 �

Remark 2.12. From part (1) of the theorem above we see that the set of system of parameters r1, ..., rd together
with the coefficient field generates a formal power series ring inside R, therefore any former power series
in r1, ..., rd is zero iff all coefficients are zero. This fact is usually referred to as analytic independence of a
system of parameters.

From the proof, we immediately have following corollary:

Corollary 2.13. A complete regular local ring with a coefficient field is a formal power series ring over its coefficient
field.

Proof. Just notice that the set of system of parameters are also a set of generators of m. So the map K0JX1, ..., XdK→
R is injective as well as surjective. �

3. THE WEIERSTRASS PERPARATION THEOREM

3.1. The theorem. Let (R,m, K) be a complete local ring and let x be a formal indeterminate over R. let
f =

∑∞
i=0 aixi ∈ RJxK. We have following definition

Definition 3.1. f is said to be regular in x of order n if an 6∈ m while ai ∈ m for all i < n.
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So basically, if f is regular in x of order n, then f = f̃ + xnu where f̃ is a polynomial in m[x] (all coefficients
in m) and u is a unit in RJxK.

Theorem 3.2 (Weierstrass Preparation Theorem). Let (R,m, K) be a complete local ring and let x be a formal
indeterminate over R. Let f ∈ RJxK be regular in x of order n. Then RJxK/ f RJxK is spanned by a free basis
1, x, ..., xn−1 over R. Every element g ∈ RJxK can be written uniquely in the form q f + r where q ∈ RJxK and
r ∈ R[x] is a polynomial of degree at most n − 1.

Proof. Let m = RJxK/( f ) be a finitely generated module over RJxK. First of all we note that M/mM ∼=
KJxK/( f ) where f is the image of f under the map RJxK→ KJxK. Note that f = uxn where u continues to be
a unit. So KJxK/( f ) ∼= KJxK/(xn), which is a K-vector space where 1, x, ..., xn−1 form a K-basis.

Now we want to apply Proposition 2.8. In order to do that, we need M to be m-adically separated. But this
follows from the fact that m is finitely generated over RJxK. Therefore it’s (m, x)-adically separated and so
m-adically separated. Now 1, x, ..., xn−1 spans M/mM over R/m. So they will span M over R.

Next we want to show that q′ f + r′ is another such representation. Then (r′ − r) = (q− q′) f , so we only need
to show that if we have r = q f where r is a polynomial of degree at most n − 1, then q = 0.

Suppose otherwise. Since some coefficient of q is not 0, we can choose t such that q is not 0 in RJxK/mtRJxK.
Choose such a t as small as possible and fix it. Now working in RJxK/mtRJxK: assume that q = axd+higher
degree terms. Note that every coefficient (including a) now in q will be in mt−1. Also all terms of f of degree
smaller than n will have coefficient in m, hence, they will kill q. Once we multiply by f there is one and only
one nozero term of degree n + d. But then deg(q f ) ≥ d + n > n − 1, a contradiction! �

Corollary 3.3. Let RJxK and f be as stated in the above theorem and f is regular of order n in x. Then f has a unique
multiple q f which is a monic polynomial in R[x] of degree n. The q is a unit and q f has all non-leading coefficients in
m.

Proof. We apply the Weierstrss Preparation Theorem to g = xn, we get xn = q f + r, which is xn − r = q f . The
uniqueness part follows from the uniqueness of the theorem.

Now work in RJxK/mRJxK, then xh−r = q f . f is a unit u times xh. So r is necessarily 0 and we have xh = xhuq.
Cancelling xn we get q is a unit in KJxK and it follows that q is a unit in RJxK. �

Remark 3.4. The polynomial q f is called the unique monic associate of f .

The result is usually applied to the formal power series ring in k variables KJx1, ..., xkK: One may take
R = KJx1, ..., xk−1K and let x = xn. In this case f is regular in xn if and only if it involves a term cxn

k
where c ∈ K − {0}. The regularity of f of order n in xk is equivalent to the assertion that under the map
KJx1, ..., xkK→ KJxkK which kills x1, ..., xk−1, the image of f is a unit times xn.

Any nonzero element can be made regular in xk by a change of variables:

• If K is infinite: We write f as f0 + f1 + f2 + · · · where f j is homogeneous in x1, ..., xk of degree j. Let
suppose G = f j involves xk. Apply a degree-preserving map xi 7→ xi + λixk for i < k and xk 7→ λkxk,
then the image of G will be a polynomial with a term G(λ1, ..., λk)xj

k. Notice that G is nonzero and K
is infinite, we can choose some λ1, ..., λk such that G(λ1, ..., λk) 6= 0.
• If K is finite, we will apply the map xi 7→ xi + xNi

k for 1 ≤ i ≤ k − 1 and keeps xk unchanged. Choose
a monomial order xa1

1 xa2
2 · · · x

ak
k < xb1

1 xb2
2 · · · x

bk
k if a1 = b1, ..., ai = bi and ai+1 < bi+1. Now let xd1

1 · · · x
dk
k

be the smallest monomial with nonzero coefficient in f and let d = max{d1, ..., dn}. Let Ni = (kd)k−i.
We claim that the image of f is regular in xn: After killing x1, ..., xk−1 we get

f (xN1
k , xN2

k , ..., xNk−1
k , xk)

And there is a term xd1 N1+···+dk−1 Nk−1+dn
k coming from the smallest term. We just need to show that this

term won’t be cancelled by other terms.
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For any other term xe1
1 · · · x

ek
k . The image of this is xe1 N1+···+ek−1 Nk−1+en

k . So we just need to show that

e1N1 + · · · + ek−1Nk−1 + en > d1N1 + · · · + dk−1Nk−1 + dn

Assume that ej = dj for j < i and ei > di. Then it’s equivalent to show that

(ei − di)Ni +
∑
j>i

(ej − dj)Nj > 0

which is

(ei − di)Ni +
∑
j>i

(ej − dj)Nj > Ni −
∑
j>i

djNj

> Ni − d
∑
j>i

Nj

= (kd)k−i − d
∑
j>i

(kd)k−j

= (kd)k−i − d(kd)k−i−1(k − i)

> (kd)k−i − (kd)(kd)k−i−1 = 0

So the image of f is regular in xk.

3.2. Application. Now we are ready to prove that every power series ring in finitely many variables over a
field is an UFD. In fact this is true for any regular local rings.

Theorem 3.5. Let K be a field and let R = KJx1, ..., xnK be the formal power series ring in n variables over K. Then R
is a UFD.

Proof. Let Rn = KJx1, ..., xnK and mn be the ideal of Rn. If n = 0 then Rn = K is a field and the conclusino
follows. If n = 1, then Rn is a DVR therefore it’s a UFD.

Suppose n > 1. It sufficies to prove that if f ∈ mn is irreducible then it’s prime. Suppose that f |gh where
g, h ∈ m. If g or h is a unit, then the assumption is meaningless. We have an equation q f = gh. Since f is
irreducible, we have that q ∈ m. We may make a change of variables so that f , q, g, h are regular in xn. Then
we can multiply both sides by some units to make f , g, h into their unique monic associated polynomials.
Then we have the same equation with f , g, h ∈ Rn−1[xn].

We can divide gh by f in Rn−1[xn] and get gh = q f + r where deg(r) < deg( f ). The Weierstrass Preparation
Theorem guarantees that the representation is unique in Rn−1JxnK. Therefore r = 0 and q is also a polynomial
in Rn−1[xn].

By induciton hypothesis, we know that Rn−1 is UFD hence Rn−1[xn] is UFD. Once we know that f continues
to be irreducible in Rn−1[xn], then we will have f |g or f |h. If not, write f = f1 f2 with deg( f1) < deg( f ) and
deg( f2) < deg( f ). Modulo mn−1 we have that xd

n = f 1 f 2. So each of them is a monic polynomial with all
non-leading coefficients in mn−1. Thus they are not units in Rn. A contradiction! �

4. THE MIXED CHARACTERISTIC CASE

4.1. Coefficient rings.

Definition 4.1. A coefficient ring is either a field or a complete local ring (V, pV, K) where K has character-
istic p > 0. If R is complete local, then V is a coefficient ring for R if V ⊆ R is a coefficient ring, V → R is
local and the induced map of residue fields is an isomorphism.

In the mixed characteristic case, there are basically two possibilities: R has characteristic 0 or R has charac-
teristic pn. The second case is where p is nilpotent, and it will be the essential case
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4.2. Char = pn. First of all we have a lemma holds for any local ring.

Lemma 4.2. Let (R,m, K) be local with K of prime characteristic p. If r ≡ s mod m and n is an integer. Then for
any N ≥ n − 1, let q = pN , we have rq ≡ sq mod mn

Proof. This is true when n = 1 and we prove by induction. Assume that it’s true for some N ≥ n − 1, we
have to show that it’s true for N + 1 ≥ n.

Since rq − sq = t ∈ mn, we have that rpq = (sq + t)p = spq + ptw but then pt ∈ mn+1. So rpq − spq ∈ mn+1. �

Notice that this lemma will be very useful when m is nilpotent: We can choose n such that mn = 0. Then
rq = sq if r ≡ s mod m. Therefore Rq maps bijectively onto Kq.

Let Λ be a p-base for K over Kp and let T be a lifting of Λ in R. Then elements of K will be q-polynomials in
elements of Λ over Kq. Let SN be the set of q-polynomials in elements of T over Rq.

Now we have following theorem

Theorem 4.3. Let (R,m, K) be an Artinian local ring with char(K) = p, i.e. mn = 0. For any lifting T of a p-base Λ
in K, there is a unique coefficient ring V ⊆ R containing T.

Proof. Let V = SN + pSN + · · · + pn−1SN . We shall prove that this is a coefficient ring and it’s unique.

First we show that it’s a ring: Let V′ be the addition closure of V, then V′ is clearly a ring (multiplication
is obvisouly closed in V). We prove that V is a ring by proving V = V′. In order to show that, we prove
pjV = pjV′ by reverse induction on j.

This holds when j = n as pn = 0. Now assume pj+1V = pj+1V′. For any two elements v1, v2 ∈ pjSN , we want
to show that there is some v3 ∈ pjSN such that v1 + v2 − v3 ∈ pj+1V = pj+1V′ since pj+1V′ is spanned by pjSN

over pj+1V′. Write

v1 = pj
∑

µ

rq
1,µµ

v2 = pj
∑

µ

rq
2,µµ

where r∗,µ ∈ R and µ ∈ SN . Let

v3 = pj
∑

µ

(r1,µ + r2,µ)qµ

Then
v1 + v2 − v3 = pj+1

∑
µ

GN(r1,µ, r2,µ)µ

where GN(x, y) := ((x + y)q − xq − yq)/p in which q = pN . Notice that SN maps onto K and rq only depends
on the image of r in K by the lemma. We may choose all r∗,µ to be in SN . Then v1 + v2 − v3 ∈ pj+1V′. So we
have V = V′.

Now suppose Ṽ is another coefficient ring containing T and Rq, then since V is generated by T and Rq

we must have V ⊆ Ṽ. On the other hand, any element u ∈ Ṽ could be written as u = s1 + u1 where
s1 ∈ SN and u1 ∈ m ∩ Ṽ = pṼ. But then we can repeat this precedure and write u1 = p(s2 + u2). Therefore
Ṽ ⊆ SN + pSN + · · · + pn−1SN = V. Therefore V is the only possible coefficient ring.

Finally we want to prove that V is a DVR. First we note that V − pV has nonzero image in K therefore
V ∩ m = pV and V is local with maximal ideal pV. We also know that V/pV ∼= K by the construction of V.
So V is a coefficient ring for R �

From the proof we see that V is actually determined by SN , or equivalently, by Rq and T. We make this more
explicit by following theorem.
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Theorem 4.4. Let (V, pV, K) and (V′, pV′, K′) be two coefficient rings of the same characteristic pn. Let Λ(Λ′) be
p-base for K over Kp(for K′ over K′p) and let T(T′) be a lifting in R(R′). Suppose that there is an isomorphism K → K′

such that maps Λ to Λ′ and so it extens to a bijection from T to T′. Then it extends uniquely to an isomorphism from
V to V′

Proof. We notice that the map K → K′ extends to a bijection SN → S′N , but then we know V = SN + pSN +
· · · + pn−1SN . So the conclusion follows. �

4.3. Char = 0. Let (V, pV, K) be a coefficient rings. V is of characteristic pn while K is of characteristic p.
Then trivially we have AnnV pjV = pn−jV, 0 ≤ j ≤ n.

Suppose that there is another coefficient ring (W, pW, K) with the residue field, char(W) = pk and W → V is
an surjection. Then V = W/pn. This comes from the fact that every ideal in W is of the form psW.

Lemma 4.5. Let K be a field of characteristic p > 0 and let (Vt, pVt, K) be a sequence of coefficient rings. Suppose
that

V0 V1oooo V2oooo · · ·oooo

is an inverse limit system of coefficient rings and surjective maps. Suppose that the characteristic of Vt is pn(t), then
there are two cases:

• t(n) is eventually constant and the map is eventually an isomoprhism
• t(n) goes to infinity and the inverse limit is a coefficient ring with characteristic 0.

Proof. The first case is trivial by our observation above: if Vt+1 → Vt is surjection and n(t + 1) = n(t). Then
the map is necessarily isomoprhism. Now assume that n(t) goes to infinity, we may pass to a subsequence
and assume that n(t) is strictly increasing.

We want to show that the maximal ideal of this local ring is generated by p. Every element in the inverse
limit is a sequence (v1, v2, ...) where vi ∈ Vi. And it’s obvious that one vi is a unit iff all vi’s are units. So we
assume that all vi are not units, i.e. vi = pwi. Then this is an element in the maximal ideal, so we want to
show that it is p times some element. Let fi+1 : Vi+1 → Vi be the surjection. We do this by replace all wi with
w′i = fi+1(wi+1).

We have to show two things:

• vi = pw′i : this comes from vi = fi+1(pwi+1) = p fi+1(wi+1) = pw′i
• fi(w′i) = w′i−1: Since pwi = vi = pw′i , we have p(wi − w′i) = 0 so wi − w′i ∈ pn(i)−1Vi. Note that

n(i)− 1 ≥ n(i − 1) therefore this ideal is killed by fi. Then fi(wi) = fi(w′i)

Now we can conclude that the inverse limit is a local ring (V, pV, K). The fact that the ring arises as an
inverse limit implies that it’s complete. �

Now we are ready to prove the existence of a coefficient ring:

Theorem 4.6 (I.S.Cohen). If (R,m, K) is a complete local ring and K has a p-base Λ, then there is a unique coefficient
ring containing the lifting T of Λ.

Proof. We now only need to deal with char(R) = 0. Any coefficient ring for R containing T maps onto a
coefficient ring for Rn = R/mn containing the image of T. There is a unique coefficient ring Vn ⊆ Rn. We
may choose q large enough such that this q works in the construction of Vn and Vn+1. Then the surjection
Rn+1 → Rn clearly induces surjection Vn+1 → Vn. Then the Limit Limn Vn is a coefficient ring for R. �

4.4. Structure Theorem. All the hard work has been done. Since we know the existence of a coefficient
ring, we immediately have following:

Theorem 4.7. A complete local ring (R,m, K) of mixed characteristic is a holomorphic image of a complete regular
local ring VJX1, ..., XnK where V is a coefficient ring.
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Proof. We know that R has a coefficient ring V or of the form V/pnV. Let p, r1, ..., rn be a set of generators
for m. Then let VJX1, ..., XnK → R by induced by V[X1, ..., Xn] → R sending Xi to ri. Then by Proposition
2.10, we see that the map is surjection. �

Theorem 4.8. Let (R,m, K) be a complete local ring of mixed characteristic. Let r1, ..., rd−1 be a system of parameters
for R/pR. Then R is module-finite over the image of VJX1, ..., Xd−1K where V is a coefficient ring.

Proof. This is a corollary of Propisition 2.10. �

Unlike the equicharacteristic case, we don’t always have that R is module-fintie over some formal power
series ring. For example, R = VJxK/(px). V is the coefficient ring while R is not module-finite over V. But in
some nice cases we do have following:

Theorem 4.9. If p is part of a system of parameters for R, then V is a DVR and R is module-finite over VJX1, ..., Xd−1K.

Proof. Again we only need to prove injectivity: If I is the kernel, then R/I will have smaller dimension than
R, which is a contradiction! �

A regular local ring (R,m, K) of mixed characteristic p is unramified if equivalently:

(1) p 6∈ m2

(2) R/pR is regular

A quotient of a regular ring by an ideal I is regular iff I is generated by part of a minimal set of generators
for the maximal ideal m: If I is generated by the correct set of elements, then every time we kill an element
in I, both the Krull dimension and embedded dimension drops by 1. The result follows by induction. If R/I
is regular. Suppose that I ⊆ m2, then killing I drops the Krull dimension without changing the embedded
dimension. Therefore there is an element in I not in m2. Kill it then the result follows by induction on
dim(R).

Note that in an unramified ring, suppose Q is a prime ideal of R. There are two cases: If p 6∈ Q, then RQ is
an equicharacteristic 0 regular local ring. If p ∈ Q, then RQ is again unramified as RQ/pRQ is a localization
of R/pR.

Now we are ready to give the structure theorem of complete regular local ring with mixed characteristic:

Theorem 4.10. Let (R,m, K) be a complete regular local ring of Krull dimension d with mixed characteristic. Then

(1) R is unramified iff R ∼= VJX1, ..., Xd−1K.
(2) R is ramified iff R ∼= VJX1, ..., XdK/(p− a) where a is in the maximal ideal of VJX1, ..., XdK but not contained

in pVJX1, ...., XdK

Proof. The unramified case is equivalent to the ”field” case.

Now assume that p ∈ m2, we still have a surjection R̃ = VJX1, ..., XdK → R. The kernel is a height 1 ideal
while R̃ is regular hence UFD. So I is principal. Since m̃2 maps onto m2, some elmenet must be mapped onto
p, call it a. Then p − a ∈ I. If a = pa′, then p − a = p(1 − a′) where 1 − a′ is a unit. So p ∈ I ⇒ p = 0 in
R. A contradiction! So a 6∈ pR̃. Then p − a ∈ m̃ − m̃2 so the ideal generated by p − a is of height 1. Thus
R = R̃/(p − a). �

4.5. Remark.

Theorem 4.11. Let K be a field of characteristic p > 0. Then there exists a complete Noetherian valuation domain
(V, pV, K) with residue class field K.

Proof. TO BE ADDED �
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