Spectral Sequences

Zhan Jiang

October 21, 2017

Contents

1	Gene	ral Spectral Sequence · · · · · · · · · · · · · · · · · · ·	1
	1.1	Definition · · · · · · · · · · · · · · · · · · ·	1
	1.2	Filtration · · · · · · · · · · · · · · · · · · ·	2
	1.3	Double Complex· · · · · · · · · · · · · · · · · · ·	2
2	Groth	endieck Spectral Sequence · · · · · · · · · · · · · · · · · · ·	3
	2.1	Cartan-Eilenberg resolution · · · · · · · · · · · · · · · · · · ·	3
	2.2	Grothendieck spectral sequence · · · · · · · · · · · · · · · · · · ·	3

1 General Spectral Sequence

1.1 Definition

Definition 1.1. Let A be an abelian category. A **spectral sequence** in A is a collection of following datas for every $p, q \in \mathbb{Z}$ and $r \geq 0$.

- (1) An object $E_r^{p,q}$.
- (2) A morphism $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ such that $d_r^{p+r,q-r+1} \circ d_r^{p,q} = 0$.
- (3) If we set $Z_{r+1}(E_r^{p,q}) = \text{Ker}\left(d_r^{p,q}\right)$ and $B_{r+1}(E_r^{p,q}) = \text{Im}\left(d_r^{p-r,q+r-1}\right)$, then an isomorphism $\alpha_r^{p,q}: Z_{r+1}(E_r^{p,q})/B_{r+1}(E_r^{p,q}) \to E_{r+1}^{p,q}$.

Consider following diagram:

$$E_r^{p,q} \longrightarrow E_r^{p,q}/B_{r+1}(E_r^{p,q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z_{r+1}(E_r^{p,q})/B_{r+1}(E_r^{p,q}) \longrightarrow E_{r+1}^{p,q}$$

For any k > 0, if $B_{r+k}(E_{r+1}^{p,q}) \subseteq Z_{r+k}(E_{r+1}^{p,q})$ are submodules of $E_{r+1}^{p,q}$, we can take the preimage of each in $E_r^{p,q}$, denote $B_{r+k}(E_r^{p,q})$, $Z_{r+k}(E_r^{p,q})$ respectively. Clearly we have a pullback:

$$B_{r+k}(E_r^{p,q}) \hookrightarrow Z_{r+k}(E_r^{p,q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B_{r+k}(E_{r+1}^{p,q}) \hookrightarrow Z_{r+k}(E_{r+1}^{p,q})$$

which induces an isomorphism on the cokernel of each horizontal map, i.e. $Z_{r+k}(E_r^{p,q})/B_{r+k}(E_r^{p,q}) \to Z_{r+k}(E_{r+1}^{p,q})/B_{r+k}(E_{r+1}^{p,q})$. This shows that we have canonical isomprohisms

$$Z_{r+k}(E_r^{p,q})/B_{r+k}(E_r^{p,q}) \to E_{r+k}^{p,q}$$

The picture is that we have inclusion of submodules

$$0 \subseteq B_r(E_r^{p,q}) \subseteq B_{r+1}(E_r^{p,q}) \subseteq B_{r+2}(E_r^{p,q}) \subseteq \cdots$$
$$\cdots \subseteq Z_{r+2}(E_r^{p,q}) \subseteq Z_{r+1}(E_r^{p,q}) \subseteq Z_r(E_r^{p,q}) \subseteq E_r^{p,q}$$

where the quotient $(E_{r+k}^{p,q})$ becomes smaller and smaller.

By saying that a spectral sequence convergent to $\{E^n\}_{n\in\mathbb{Z}}$, we mean a filtration $F^p(E^n)$ such that $E^{p,q}_{\infty}\cong F^p(E^{p+q})/F^{p+1}(E^{p+q})$

A spectral sequence is degenerate on page r > a if for every p, q the morphism $d_r^{p,q} = 0$, follows from which we have $E_r^{p,q} \cong E_{r+1}^{p,q} \cong \cdots \cong E_{\infty}^{p,q}$.

1.2 Filtration

Proposition 1.2. Let A be an abelian category and C a complex in A with a decreasing filtration $\{F^p(C)\}_{p\in\mathbb{Z}}$. Then there is a canonical spectral sequence $(E_r^{p,q}, E^n)$ starting on page zero, with

$$E_0^{p,q} = (F^pC)^{p+q}/(F^{p+1}C)^{p+q}$$

 $E^n = H^n(C)$

In other words, $E_r^{p,q} \Rightarrow H^{p+q}(C)$.

1.3 Double Complex

Let $C^{i,j}$ be a double complex and let d_I and d_{II} be the vertical and horizontal differential respectively,

The we can take cohomology with respect to d_I and get $H_I^{i,j}(C)$, which is a double complex with zero vertical maps. We can continue to take cohomology of $H_I^{i,j}(C)$ with respect to the induced map of d_{II} . Then we end up with $H_{II}(H_I(C))$.

We can also take the total complex $T(C)^n = \bigoplus_{i+j=n} C^{i,j}$ and take the cohomology of that.

Consider a filtration of the total complex T(C) by $F_I^p(T(C))^n = \bigoplus_{r \geq p} C^{r,n-r}$. Then the zeroth page $E_0^{i,j}$ is canonically $C^{i,j}$ and we have $E_2^{i,j} = H_I^{i,j}(H_{II}(C))$. And we know this converges to $H^n(T(C))$.

Similarly, we have $E_2^{i,j} = H_{II}^{j,i}(H_I(C))$ converges to $H^n(T(C))$ because if we switch i, j, the total complex doesn't change. Therefore we have following proposition

Proposition 1.3. Let $C^{\bullet,\bullet}$ be a double complex, then we have two spectral sequences converge to $H^n(T(C^{\bullet,\bullet}))$:

$$E_2^{p,q} = H_{II}^{p,q}(H_I(C^{\bullet,\bullet})) \Rightarrow H^n(T(C^{\bullet,\bullet}))$$

$$E_2^{q,p} = H_I^{q,p}(H_{II}(C^{\bullet,\bullet})) \Rightarrow H^n(T(C^{\bullet,\bullet}))$$

where n = p + q.

2 Grothendieck Spectral Sequence

2.1 Cartan-Eilenberg resolution

Let A be an abelian category with enough injectives, and C a complex in A. An injective resolution of C is a commutative diagram

For each *n* we have complexes:

$$0 \to Z^{n}(C) \to Z^{n}(I^{0,\bullet}) \to Z^{n}(I^{1,\bullet}) \to \cdots$$

$$0 \to B^{n}(C) \to B^{n}(I^{0,\bullet}) \to B^{n}(I^{1,\bullet}) \to \cdots$$

$$0 \to H^{n}(C) \to H^{n}(I^{0,\bullet}) \to H^{n}(I^{1,\bullet}) \to \cdots$$

The resolution is fully injective if all complexes above are injective resolutions.

If A has enough injectives, then every complex C in A has a fully injective resolution. This is obtained by choosing injective resolutions of $H^n(C)$ and $B^n(C)$, then extend to injective resolutions of $Z^n(C)$ and C^n by following exact sequences:

$$0 \to Z^{n}(C) \to C^{n} \to B^{n+1}(C) \to 0$$

$$0 \to B^{n}(C) \to Z^{n}(C) \to H^{n}(C) \to 0$$

This is called Horseshoe lemma. The resolution obtained from this way is called a Cartan-Eilenberg resolution.

2.2 Grothendieck spectral sequence

Theorem 2.1. Let $F: A \to B$ and $G: B \to C$ be additive functors between abelian categories where A, B have enough injectives and C is complete. Suppose F sends injectives to G-acyclics. Then for any object $A \in A$ there is a spectral sequence starting on page zero such that

$$E_2^{p,q} = R^p G(R^q F(A)) \Rightarrow R^{p+q}(GF)(A)$$

Proof. Let A be an object in \mathcal{A} , let $A \to J_0 \to J_1 \to \cdots$ be an injective resolution of A, and let $I^{p,q}$ be a Cartan-Eilenberg resolution of $F(J^{\bullet})$ in \mathcal{B} . Consider the complex $G(I^{\bullet,\bullet})$. We know that there are two spectral sequences with E_2 pages $H_{II}(H_I(G(I^{\bullet,\bullet})))$ and $H_I(H_{II}(G(I^{\bullet,\bullet})))$ respectively, converge to E_{∞} .

Look at $H_I(G(I^{\bullet,\bullet}))$, it is $R^pG(F(J^{\bullet}))$. But J^{\bullet} is injective so $F(J^{\bullet})$ is G-acyclic. Therefore all are zero but p=0, hence the only survive term is $GF(J^{\bullet})$. Once take H_{II} , we have $E_2^{p,q}=R^q(GF)(A)$. Therefore $E_{\infty}^n=R^n(GF)(A)$.

Now look at $H_{II}(G(I^{\bullet,\bullet}))$, notice that we have a fully injective resolution, so

$$0 \to Z^{p}(FC) \to Z^{p,0} \to Z^{p,1} \to \cdots$$

$$0 \to B^{p}(FC) \to B^{p,0} \to B^{p,1} \to \cdots$$

$$0 \to H^{p}(FC) \to H^{p,0}_{II}(I^{\bullet,\bullet}) \to H^{p,1}_{II}(I^{\bullet,\bullet}) \to \cdots$$

and exact sequences

$$0 \to Z^{p,q} \to I^{p,q} \to B^{p+1,q} \to 0$$
$$0 \to B^{p,q} \to Z^{p,q} \to H^{p,q} \to 0$$

which all split because everything is sight splits. So it remains split after applying G, therefore we have $G(H_{II}(I^{\bullet,\bullet})) = H_{II}(G(I^{\bullet,\bullet}))$. But $H_{II}(I^{\bullet,\bullet})$ is an injective resoltion of $H(F(J^{\bullet})) = R^q F(A)$. So after taking cohomology H_I we have $R^p G(R^q F(A))$. Now we're done.

						• • •
$E_2^{5,0}$	$E_2^{5,1}$	$E_2^{5,2}$	E ₂ ^{5,3}	$E_2^{5,4}$	$E_2^{5,5}$	
E ₂ ^{4,0}	$E_2^{4,1}$	E ₂ ^{4,2}	$E_2^{4,3}$	E ₂ ^{4,4}	$E_2^{4,5}$	•••
E ₂ ^{3,0}	$E_2^{3,1}$	$E_2^{3,2}$	$E_2^{3,3}$	$E_2^{3,4}$	$E_2^{3,5}$	
$E_2^{2,0}$	E ₂ ,1	E ₂ ,2	E ₂ ,3	$E_2^{2,4}$	$E_2^{2,5}$	
$E_2^{1,0}$	$E_2^{1,1}$	$E_2^{1,2}$	$E_2^{1,3}$	$E_2^{1,4}$	$E_2^{1,5}$	
$E_2^{0,0}$	$E_2^{0,1}$	$E_2^{0,2}$	$E_2^{0,3}$	$E_2^{0,4}$	$E_2^{0,5}$	
						• • •
$E_3^{5,0}$	E ₃ ^{5,1}	E ₃ ^{5,2}	$E_3^{5,3}$	$E_3^{5,4}$	$E_3^{5,5}$	
$E_3^{5,0}$ $E_3^{4,0}$	$E_3^{5,1}$ $E_3^{4,1}$	$E_3^{5,2}$ $E_3^{4,2}$	$E_3^{5,3}$ $E_3^{4,3}$	$E_3^{5,4}$ $E_3^{4,4}$	$E_3^{5,5}$ $E_3^{4,5}$	
	$E_3^{4,1}$	$E_3^{4,2}$	$E_{3}^{4,3}$			
E ₃ ^{4,0}	$E_3^{4,1}$ $E_3^{3,1}$	$E_3^{4,2}$ $E_3^{3,2}$	$E_3^{4,3}$ $E_3^{3,3}$	E ₃ ^{4,4}	E ₃ ^{4,5}	
E ₃ ,0	$E_3^{4,1}$ $E_3^{3,1}$	$E_3^{4,2}$ $E_3^{3,2}$	E ₃ ,3,3	$E_3^{4,4}$ $E_3^{3,4}$	$E_3^{4,5}$ $E_3^{3,5}$	