Integral Closure of An Ideal

Zhan Jiang

July 12, 2017

Contents

1 Definition

Definition 1.1. Let $I \subseteq R$ be an ideal and $u \in R$, the **integral closure** \overline{I} of I is the set of elements u such that for some n, it satisfies a monic polynomial

$$x^{n} + r_{1}x^{n-1} + r_{2}x^{n-2} + \cdots + r_{n} = 0$$

where $r_j \in I^j$ for $1 \le j \le n$.

We have an alternative description: One forms the Rees ring

$$R[It] = R + It + I^2t^2 + \dots + I^nt^n + \dots \subseteq R[t]$$

where t is an indeterminate, the integral closure of R[It] in R[t] has the form

$$R + J_1t + J_2t^2 + \cdots + J_nt^n + \cdots$$

where $J_n \subseteq R$ is an ideal. Then $J_k = \overline{I^k}$ for any k. In particular, J_1 is the integral closure of I.