Injective Modules and Injective Hulls

Zhan Jiang

July 12, 2017

Contents

1	Injective Modules·····		1
	1.1	Definition · · · · · · · · · · · · · · · · · · ·	1
	1.2	Divisible Module · · · · · · · · · · · · · · · · · · ·	2
	1.3	Enough injectives · · · · · · · · · · · · · · · · · · ·	2
2	Injective Hulls · · · · · · · · · · · · · · · · · ·		2
	2.1	Essential extensions	2

1 Injective Modules

1.1 Definition

Definition 1.1. *An R-module E is injective if equivalently,*

- $\operatorname{Hom}_R(_, E)$ is an exact functor.
- For any injection $N \to M$, the map $\operatorname{Hom}_R(M, E) \to \operatorname{Hom}_R(N, E)$ is surjection.

In other words, every R-linear map from a submodule N of M to E can be extended to a map of all of M to E.

Proposition 1.2. An R-module E is injective iff for every ideal I of R and R-linear map $\phi: I \to E$ extends to a map $R \to E$.

Proof. "Only if" part is clear. We only need to prove "if" part: Let $N \subseteq M$ and $f : N \to E$ be given. we want to extend f to all of M.

First of all let Λ be the set of R-linear maps from submodules of M to E. We define a partial order on Λ : $g \ge h$ if the domain of h is contained in the domain of h is a restriction of h. The set h consisting of all h-linear maps larger than or equal to h has a maximal element: we can take the union of a chain and define the h-linear map in the obvious way. Then by Zorn's lemma, there is a maximal element (h', h').

If $N' \neq M$, we can pick an element $x \in M - N'$ and define $I = \{r \in R : rx \in N'\}$. Define a map

$$\phi: I \to E$$
$$r \mapsto f'(rx)$$

Then we can extend this to a map $\psi: R \to E$. Therefore there is a map $f' \oplus \psi: N' \oplus Rx \to E$. We have a surjection $N' \oplus Rx \to N' + Rx$ and we claim that $f' \oplus \psi$ kills the kernel: If $u \oplus rx \mapsto 0$, then $u + rx = 0 \Rightarrow r \in I$. Then $f' \oplus \psi(u, rx) = f'(u) + \psi(r) = f'(u) + f'(rx) = f'(u) + f'(-u) = 0$. So this induces a map $N' \oplus Rx \to E$ which extends f', a contradiction!

1.2 Divisible Module

Definition 1.3. *A module M is divisible if, equivalently:*

- rM = M for all $r \in R \{0\}$.
- For all $u \in M$ and $r \in R \{0\}$, there exists $u' \in M$ such that u = ru'.

Corollary 1.4. We have following

- Over a domain R, every injective module is divisible.
- Over a PID R, a module is injective iff it is divisible.

Proof. TO BE ADDED □

1.3 Enough injectives

2 Injective Hulls

2.1 Essential extensions

Definition 2.1. Let R be a ring, a homomorphism $f: N \to M$ is called an **essential extension** if it's an injection and every nonzero submodule of M has a nonzero intersection with f(N).