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1 Completion of Rings

1.1 Definition

Definition 1.1. Let R be a ring and I ⊆ R an ideal. Then the completion R̂I of R with respect to I is Lim(R/It)

This is called I-adic completion of R. If we have ∩t It = {0}, then R is called I-adically seperated. If R → R̂I

is an isomorphism, then R is I-adically complete. Note that if R is I-adically complete, then R is I-adically
seperated: Choose r ∈ ∩t It, then the image of r is zero in R̂I , which implies that r = 0.

1.2 Properties

Proposition 1.2. Let J = Ker(R̂I → R/I), then J is contained in the Jacobson ideal of R̂I .

Proof. We only need to show that for any unit u and any j ∈ J, u + j is a unit. But we have u + j = u(1 + u−1 j).
So it’s enough to show this for 1 + j.

Let r0, r1, ... be a Cauchy sequence represents j, consider the sequence 1−r0, 1−r1 +r2
1, ..., 1−rn +r2

n−r3
n + · · ·+

(−1)n−1rn+1
n , .... Call its nth term vn. First it is a Cauchy sequence since vn+1 − vn = (rn+1 − rn)(...) + (−1)nrn+2

n+1,
so if rn and rn+1 differ by an element of It, then vn and vn+1 differ by an element in It + In+2.
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1 COMPLETION OF RINGS 1.3 Completion as metric space

But then v = (v0, v1, ...) is an inverse for 1 + j: nth term of v(1 + j) − 1 is a power of rn, therefore this Cauchy
sequence converges to zero.

Note that the map R̂I → R/I is a surjection, therefore maximal ideals of R/I contracts to maximal ideals
of R̂I . From Proposition 1.2 above, we see that there is a bijection between maximal ideals of R̂I and R/I.
This observation is extremely useful when we are in the quasilocal case, which we record in the following
remark

Remark 1.3. If R/I is a quasilocal ring, then so is R̂I . In particular, this holds if R is quasilocal.

We have following observation:

If R1 → R2 maps I1 into I2, then a Cauchy sequence in R1 with respect to I1 maps to a Cauchy sequence in

R2 with respect to I2. Therefore we have a ring homomorphism R̂1
I1 → R̂2

I2
.

This construction is clearly functorial: If we have a third ring R3 with R2 → R3 mapping I2 into I3. Then

R̂1
I1 → R̂3

I3
is the composition of R̂1

I1 → R̂2
I2

and R̂2
I2 → R̂3

I3
.

If the map R1 → R2 is surjection and I1 maps onto I2, then the map R̂1
I1 → R̂2

I2
is surjection: we can pick a

preimage for each term in the Cauchy sequence.

Example 1.4. If S = R[x1, ..., xn] and I = (x1, ..., xn)S, then ŜI = R[[x1, ..., xn]].

This example enables us to prove following theorem

Theorem 1.5. If R is Noetherian ring and I is an ideal of R, then R̂I is Noetherian

Proof. Suppose that I = ( f1, ..., fn)R, then we can construct a map

S = R[x1, ..., xn]→ R
xi 7→ fi

Then J = (x1, ..., xn)S maps onto I, therefore ŜJ → R̂I is surjection. But we have already seen that ŜJ =
R[[x1, ..., xn]], which is Noetherian.

1.3 Completion as metric space

Suppose R is a I-adically seperated, then we can choose a metric on R as following:

d(r, s) =

{
0, r = s
εn r − s ∈ In and r − s 6∈ In+1

where ε is a real number between 0 and 1, i.e. 0 < ε < 1. To show that d(−,−) is a metric, we just need to
show triangle inequality:

Let r1, r2, r3 be three elements of R: if any of two are equal, then the triangle inequality clearly holds. If
not, let n12, n23, n31 be the lagest power of I containing r1 − r2, r2 − r3, r3 − r1 respectively. Since r1 − r2 =
−(r2 − r3)− (r3 − r1). Therefore r12 ≥ min{r23, r31}. If r12 is the smallest, then either r23 or r31 must equal r12.
Therfore the two largest sides are equal, hence triangle inequality is automatic.

R̂I is literally the completion of R as a metric space with repsect to this metric.
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2 COMPLETION OF MODULES

2 Completion of Modules

2.1 Definition

Definition 2.1. The completion M̂I of M with respect to an ideal I ⊆ R is Lim M/It M.

Similarily, M is called I-adically seperated if ∩t It M = 0. M is called I-adically complete if M → M̂I is
isomoprhism.

Completion ∗̂I is a covariant functor from R-modules to R̂I-modules, which we denote C.

Then C preserves epimorphism: If M → N is surjection, then so is M̂I → N̂ I . Any element in N̂ I is repre-
sented by a partial sum u1 + u2 + · · · such that uk ∈ Ik N. Since Ik M surjects onto Ik N we have a vk ∈ Ik M
maps to uk. Then v1 + v2 + · · · maps onto the given elements.

There is natural transformation from the base change functor B = R̂I⊗R to the completion functor C. This
natrual transformation is an isomorphism if we restrict to the category of finitey generated modules.

The I-adically completion functor is exact if restricted to the finitely generated functors. We shall prove all
these in the next section

2.2 Artin-Rees Lemma

Lemma 2.2 (Artin-Rees). Let N ⊆ M be Noetherian modules over the Noetherian ring R and let I be an ideal of R.
Then there is a positive integer c such that for all n ≥ c,

In M ∩ N = In−c(Ic M ∩ N)

Proof. We consider the module R[t]⊗M. Within this module:

M = M + IMt + I2 Mt2 + · · · + Ik Mtk + · · ·

is a finitely generated module over R[It]. It’s generated by generators for M over R. Therefore it’s Noethe-
rian over R[It]. Consider the submodule

N = N + (IM ∩ N)t + (I2 M ∩ N)t3 + · · · + (Ik M ∩ N)tk + · · ·

it’s finitely generated over R[It], so we can choose a set of generators with degree at most c.

Now look at utn ∈ In M ∩ N where n ≥ c, it’s a R[It] linear combination of generators in (I j M ∩ N)tj where
j ≤ c. Clearly we only need those homogeneous terms and we can take out tn. Therefore we end up with

u =
∑

j

an−jtn−jvjtj

where an−j ∈ In−j and vj ∈ (I j M ∩ N), but since Ic−j(I j M ∩ N) ⊆ Ic M ∩ N. So we have In−j(I j M ∩ N) ⊆
In−c(Ic M ∩ N).

Next we prove those assertions

Proposition 2.3. Let R be a Noetherian ring and I ⊆ R an ideal of R, then C is an exact functor on the category of
finitely generated R-modules.

Proof. Let 0 → N → M → Q → 0 be an exact sequence, we have to prove exactness at N, M, Q. The
surjection is already proved. So M→ Q→ 0 remains exact.
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3 COMPLETION OF LOCAL RINGS

The exactness at M̂: If u is in the kernel of M̂ → Q̂, then assume that u is the limit of (u1, u2, ...) where
ui − ui+1 ∈ Ii M. Since the image is zero in Q = M/N, we may assume WLOG that ui ∈ Ii(M/N), which is
ui ∈ Ii M + N. Let ui = wi + vi where wi ∈ Ii M and vi ∈ N. Then vi is a Cauchy sequence in N whose image
is u in M: vi − vi+1 ∈ Ii M ∩ N for all i. Therefore it’s a Cauchy sequence by Artin-Rees lemma.

The injectivity is proved by Artin-Rees lemma: if a Cauchy sequence converges to zero in M, then it has to
converge to zero in N.

Proposition 2.4. For finitely generated module M, the natural transformation R̂ ⊗R M→ M̂ is an isomoprhism.

Proof. Take a finite presentation Rm → Rn → M → 0 of M, and apply both functors and the natural trans-
formation to them:

R̂I ⊗R Rn // R̂ ⊗R Rm // R̂ ⊗R M // 0

R̂n
I

OO

// R̂m
I

OO

// M̂I

OO

// 0

The first two vertical arrows are isomorphism by the fact that both functors commutes with direct sum and
they are identity on R. By five lemma, the third vertical arrow must be an isomorphism.

Finally, we want to show that C is actually an exact functor, this comes from the criterion for flatness:

Lemma 2.5. Let M be an R-module, if for any finitely generated modules N ⊆ Q we have an injection M ⊗ N →
M ⊗ Q, then M is flat over R.

Then the exactness follows from above lemma.

3 Completion of Local Rings

For a local ring (R, m, K), the map R→ R̂m is faithfully flat: Consider the exact sequence

0→ m→ R→ K → 0

Since tensor with R̂ is an exact functor and get identified with completion on finitely generated modules,
we have an exact sequence:

0→ m ⊗ R̂→ R̂→ K → 0

In particular, mR̂ is not zero. Therefore R̂ is faithfully flat over R. This also proves following proposition.

Proposition 3.1. The maximal ideal of R̂ is the expansion of m.

Next we note following: For every ideal I of R, there are three operations:

(1) The expansion IR̂

(2) The tensor product I ⊗ R̂

(3) The completion Î as a module over R

The first two are idetified because R̂ is flat. The latter two get identified if I is finitely generated. Therefore
in the case of local ring, we know that (1) and (3) are identified.

Now it’s resonable to write the maximal ideal of R̂ as m̂ as it will not cause confusion in any sense. It follows
quite easily that m̂n = mnR̂, which is true for any expansion of an ideal.

We also have following lemma due to the flatness of completion:
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3 COMPLETION OF LOCAL RINGS 3.1 Regularity

Lemma 3.2. For any ideal I of R, we have R̂/I = R̂/ Î

Proof. Completion preserves the exactness of 0→ I → R→ R/I → 0.

We already know that the completion of K is still K itself. But this easy fact enables us to prove following:

Proposition 3.3. If M is an R-module of finite length, then M̂ = M.

Proof. Choose a filtraion for M and each factor is a finite copy of K, therefore invariant under completion.
Now the conclusion follows.

Proposition 3.3 enables us to show following proposition

Proposition 3.4. Expansion and contraction gives a bijection between m-primary ideals in R and m̂-primary ideals
in R̂.

Proof. Note that m-primary ideals always contains some power of m. Those ideals containing mn corre-
sponds bijectively to ideals in R/mn. But R/mn ∼= R̂/mn ∼= R̂/m̂n = R̂/m̂n. And the result follows.

3.1 Regularity

We already know that dim(R̂) ≥ dim(R), but we can prove more:

Proposition 3.5. Every system of parameters in R is a system of parameters in R̂. Therefore dim(R̂) = dim(R).

Proof. Let x1, ..., xn be a system of parameters for R, then mN ⊆ (x1, ..., xn)R and so that m̂N ⊆ (x1, ..., xn)R̂.
Therefore x1, ..., xn remains a system of parameters. And we have dim(R̂) ≤ n.

Now we can prove following theorem about regularity:

Theorem 3.6. A local ring (R, m, K) is regular iff its completion R̂ is regular

Proof. We just one more equality:the embedded dimension of R equals the embedded dimension of R̂. This
comes from the fact that m/m2 is a finite-length module over R.
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