ABSOLUTE CLOSURE

ZHAN JIANG

Contents

1. Definition

1.1. Definition

1. Definition

1.1. Definition.

Definition 1.1. Let R be an integral domain. The absolute integral closure R^+ is the integral closure of R in the algebraic closure of its fraction field.

It's easy to see that the absolute closure is unique up to nonunique isomorphisms, just like the algebraic closure of a field.

For any S integral extension of R, we have $S \hookrightarrow R^+$ as R-algebras. Therefore R^+ is a maximal domain extension of R that is integral over R.

Definition 1.2. A domain *R* is absolutely integrally closed if $R = R^+$.

Useful criterion: A domain R is absolutely integrally closed iff every monic polynomial in one variable $f \in R[x]$ factors into monic linear factors over R.

Using this criterion, it's easy to see that if R is absolutely integrally closed, then

- A localization at any multiplicative system of R is absolutely integrally closed
- A domain which is also a homomorphic image of R is absolutely integrall closed

Suppose $R \hookrightarrow S$ is an extension of domians, then we have

because $\operatorname{Frac}(S) \supseteq \operatorname{Frac}(R) \Rightarrow$ the integral closure of S contains the integral closure of R.

Now if we have $R \twoheadrightarrow S$, then S = R/P for some prime ideal P. We want to show that there is a surjection $R^+ \twoheadrightarrow S^+$: Since R^+ is integral over R, we have Q lying over P. So $Q \cap R = P \Rightarrow R/P \Rightarrow R^+/Q$. But then R^+/Q is absolutely integral and integral over S = R/P. This shows that $S^+ \cong R^+/Q$, hence

Now we are ready to show following proposition

Proposition 1.3. For any homomorphism $R \rightarrow S$ of integral domains there is a commutative diagram

Proof. Since every domain morphism $R \to S$ factors as $R \twoheadrightarrow T \hookrightarrow S$, now apply our discussion above. \Box