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1. NOETHER NORMALIZATION THEOREM

Lemma 1.1. Let D be a domain and f € D[x, ..., x,]. Let N > 1 be an integer that bounds all the exponents of x;’s
in f. Let ¢ be the automorphism:

DI[x1,...,x4] = D[x1, ..., x4]

X1F—>X1+an
2

n—1
Xp—1+— X1+ X,I:]

Xy — Xp

Then the image ¢(f) is a polynomial whose highest degree term involving x, has the form cx}!, where c is a nonzero
element of D.

Proof. Consider any nonzero term of f, which has the form c,x%, ..., x* where & = (x4, ...,a,) and ¢, is a
1 n
nonzero element in D.

The image of this term under ¢ is
2 n—1
Ca(xr + XY (e + )2 (g )

and this contains a unique highest degree term: it is the product of the highest degree terms coming from
all the factors, and it is

2 -1 2, ... n—1
o)) () e (T = g e

The exponents that one gets on x, in these largest degree terms coming from distinct terms of f are all
distinct, because of uniqueness of representation of integers in base N. Thus no two exponents are the same
and no two of them can cancel. O

Let R be an A-algebra and zj, ...,z; € R. We shall say that the elements z;, ..., z; are algebraically indepen-
dent over A if the monomials zi” P zg" as (a1, ..., a4) varies in N¥ are all distinct and span a free A-submodule
of R.

Theorem 1.2 (Noether normalization theorem). Let D be an integral domain and let R be any finitely generated
D-algebra which is an algebra extension of D. Then there is some element ¢ # 0 in D and elements z1, ...,z; in R,
algebraically independent over D, such that R, is module-finite over the subring D.[z1, ..., z4].
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Proof. We use induction on the number 7 of generators of R over D. If n = 0, then R = D and we can choose
d = 0. Now assume that R = D[f3, ..., 0,] has n generators. If all the 6; are algebraically independent over K
then we're done. Therefore we may assume that there is a relation f(0, ..., 6,) = 0. Apply the automorphism
¢ from Lemma 1.1 and localize at one element we see that ¢(f) = g is monic in 6,. So 6, is algebraic over
R’ = D6, ...,6,_1]. But R’ is generated by one fewer elements over D, so by induction hypothesis we
can localize at on more element b making R; module-finite over Dy[x1, ..., x;[d]] for some d. Hence Ry, is
module-finite over Dy.[z1, ..., z4] as well. O

Corollary 1.3 (Zariski’s Lemma). Let R be a finitely generated algebra over a field K and suppose that R is a field.
Then R is a finite algebraic extension of K.

Proof. By the Noetherian normalization theorem, R is module-finite over K]z, ..., z;], which is of Krull di-
mension d. Since R is a field, d = 0 and R is module-finite over K. O

Corollary 1.4. Let K be algebraically closed field, let R be a finitely generated K-algebra. Let m be a maximal ideal of
R. Then the composite map K — R — R/m is an isomorphism

2. HILBERT'S NULLSTELLENSATZ

From now on we always assume that K is algebraically closed, and R = K[xj, ..., x,] is the polynomial ring
over K.

Corollary 2.1 (1st weak form). Every maximal ideal m of R is of the form (x1 — A1, ..., Xy — Ay).

Proof. Since R/m = K for any maximal ideal m, it must be of the form (x1 — Ay, ..., X, — Ay). O

Corollary 2.2 (2nd weak form). Let fi, ..., f; be polynomials in R, then the f;’s generate the unit ideal iff the algebraic
set V(fl, ...,fl) = @

Theorem 2.3 (Hilbert’s Nullstellensatz, strong form). In the polynomial ring R, for any ideal I C R, we have

Vi= ] m

I1Cm maximal ideal

Proof. The C is obvious, for the other direction, we use a proof called Rabinowitsch’s trick: Let f1, ..., fi
be a set of generators of I and let g be in the other side. Introduce an extra variable z and consider the
polynomials fi, ..., fu, 1 — gz € K[x1, ..., X, z]. For any point (y1, ..., Yu+1) in K™*1, if all polynomials vanish at
that point, then all f; vanish at (y1, ..., ¥»), which implies that 1 — gz is 1—0 at that point in K" contradiction!
So they generates a unit ideal in K[n;, ..., 1, z]. So we have

1=Hi@)fi+ -+ Huy@)f, + Hz)1 — g2)

where Hi(z), ..., Hy(z), H(z) are polynomials in K[nj, ..., n,z]. Now we can assign é to z and clear the denom-
inators, we have

gN=G1f1+"'+ann
where G;’s are polynomials in K[x1, ..., x,]. So g € V1. a

Corollary 2.4. Let R — S be a homomorphism of finitely generated K-algebras, then every maximal ideal of S
contracts to a maximal ideal of R.

Proof. Suppose that m C S contracts to P C R, then we have K C R/P C S/m where S/m is a module-finite
extension of K. So R/P is also a module-finite extension of K, hence P is an maximal ideal. O



