NOTHER NORMALIZATION AND HILBERT'S NULLSTELLENSTAZ

ZHAN JIANG

CONTENTS

1. Noether normalization theorem12. Hilbert's Nullstellensatz2

1. NOETHER NORMALIZATION THEOREM

Lemma 1.1. Let *D* be a domain and $f \in D[x_1, ..., x_n]$. Let $N \ge 1$ be an integer that bounds all the exponents of x_i 's in *f*. Let ϕ be the automorphism:

$$D[x_1, ..., x_n] \rightarrow D[x_1, ..., x_n]$$
$$x_1 \mapsto x_1 + x_n^N$$
$$x_2 \mapsto x_1 + x_n^{N^2}$$
$$\dots$$
$$x_{n-1} \mapsto x_1 + x_n^{N^{n-1}}$$
$$x_n \mapsto x_n$$

Then the image $\phi(f)$ is a polynomial whose highest degree term involving x_n has the form cx_n^m , where *c* is a nonzero element of *D*.

Proof. Consider any nonzero term of f, which has the form $c_{\alpha}x_{1}^{\alpha_{1}}, ..., x_{n}^{\alpha_{n}}$ where $\alpha = (\alpha_{1}, ..., \alpha_{n})$ and c_{α} is a nonzero element in D.

The image of this term under ϕ is

$$c_{\alpha}(x_1+x_n^N)^{\alpha_1}(x_2+x_n^{N^2})^{\alpha_2}\cdots(x_{n-1}+x_n^{N^{n-1}})^{\alpha_{n-1}}x_n^{\alpha_n}$$

and this contains a unique highest degree term: it is the product of the highest degree terms coming from all the factors, and it is

$$c_{\alpha}(x_{n}^{N})^{\alpha_{1}}(x_{n}^{N^{2}})^{\alpha_{2}}\cdots(x_{n}^{N^{n-1}})^{\alpha_{n-1}}x_{n}^{\alpha_{n}}=c_{\alpha}x_{n}^{\alpha_{n}+\alpha_{1}N+\alpha_{2}N^{2}+\cdots+\alpha_{n-1}N^{n-1}}$$

The exponents that one gets on x_n in these largest degree terms coming from distinct terms of f are all distinct, because of uniqueness of representation of integers in base N. Thus no two exponents are the same and no two of them can cancel.

Let *R* be an *A*-algebra and $z_1, ..., z_d \in R$. We shall say that the elements $z_1, ..., z_d$ are algebraically independent over *A* if the monomials $z_1^{a_1}, ..., z_d^{a_d}$ as $(a_1, ..., a_d)$ varies in \mathbb{N}^d are all distinct and span a free *A*-submodule of *R*.

Theorem 1.2 (Noether normalization theorem). Let *D* be an integral domain and let *R* be any finitely generated *D*-algebra which is an algebra extension of *D*. Then there is some element $c \neq 0$ in *D* and elements $z_1, ..., z_d$ in R_c algebraically independent over D_c such that R_c is module-finite over the subring $D_c[z_1, ..., z_d]$.

ZHAN JIANG

Proof. We use induction on the number *n* of generators of *R* over *D*. If n = 0, then R = D and we can choose d = 0. Now assume that $R = D[\theta_1, ..., \theta_n]$ has *n* generators. If all the θ_i are algebraically independent over *K* then we're done. Therefore we may assume that there is a relation $f(\theta_1, ..., \theta_n) = 0$. Apply the automorphism ϕ from Lemma 1.1 and localize at one element we see that $\phi(f) = g$ is monic in θ_n . So θ_n is algebraic over $R' = D_c[\theta_1, ..., \theta_{n-1}]$. But *R'* is generated by one fewer elements over D_c so by induction hypothesis we can localize at on more element *b* making R'_b module-finite over $D_{bc}[x_1, ..., x_z[d]]$ for some *d*. Hence R_{bc} is module-finite over $D_{bc}[z_1, ..., z_d]$ as well.

Corollary 1.3 (Zariski's Lemma). *Let R be a finitely generated algebra over a field K and suppose that R is a field. Then R is a finite algebraic extension of K.*

Proof. By the Noetherian normalization theorem, *R* is module-finite over $K[z_1, ..., z_d]$, which is of Krull dimension *d*. Since *R* is a field, d = 0 and *R* is module-finite over *K*.

Corollary 1.4. Let *K* be algebraically closed field, let *R* be a finitely generated *K*-algebra. Let *m* be a maximal ideal of *R*. Then the composite map $K \rightarrow R \rightarrow R/m$ is an isomorphism

2. HILBERT'S NULLSTELLENSATZ

From now on we always assume that *K* is algebraically closed, and $R = K[x_1, ..., x_n]$ is the polynomial ring over *K*.

Corollary 2.1 (1st weak form). *Every maximal ideal m of R is of the form* $(x_1 - \lambda_1, ..., x_n - \lambda_n)$.

Proof. Since $R/m \cong K$ for any maximal ideal *m*, it must be of the form $(x_1 - \lambda_1, ..., x_n - \lambda_n)$.

Corollary 2.2 (2nd weak form). Let $f_1, ..., f_l$ be polynomials in R, then the f_i 's generate the unit ideal iff the algebraic set $V(f_1, ..., f_l) = \emptyset$.

Theorem 2.3 (Hilbert's Nullstellensatz, strong form). *In the polynomial ring R, for any ideal I* \subseteq *R, we have*

$$\sqrt{I} = \bigcap_{I \subset m \text{ maximal ideal}} m$$

Proof. The \subseteq is obvious, for the other direction, we use a proof called Rabinowitsch's trick: Let $f_1, ..., f_h$ be a set of generators of I and let g be in the other side. Introduce an extra variable z and consider the polynomials $f_1, ..., f_h, 1 - gz \in K[x_1, ..., x_n, z]$. For any point $(y_1, ..., y_{n+1})$ in K^{n+1} , if all polynomials vanish at that point, then all f_i vanish at $(y_1, ..., y_n)$, which implies that 1 - gz is 1 - 0 at that point in K^{n+1} , contradiction! So they generates a unit ideal in $K[n_1, ..., n_z]$. So we have

$$1 = H_1(z)f_1 + \dots + H_n(z)f_n + H(z)(1 - gz)$$

where $H_1(z), ..., H_n(z), H(z)$ are polynomials in $K[n_1, ..., n_z]$. Now we can assign $\frac{1}{g}$ to z and clear the denominators, we have

$$g^N = G_1 f_1 + \dots + G_n f_n$$

where G_i 's are polynomials in $K[x_1, ..., x_n]$. So $g \in \sqrt{I}$.

Corollary 2.4. Let $R \rightarrow S$ be a homomorphism of finitely generated K-algebras, then every maximal ideal of S contracts to a maximal ideal of R.

Proof. Suppose that $m \subseteq S$ contracts to $P \subseteq R$, then we have $K \subseteq R/P \subseteq S/m$ where S/m is a module-finite extension of *K*. So R/P is also a module-finite extension of *K*, hence *P* is an maximal ideal.