NOTHER NORMALIZATION AND HILBERT'S NULLSTELLENSTAZ

ZHAN JIANG

Contents

1. Noether normalization theorem
2. Hilbert's Nullstellensatz

1. NOETHER NORMALIZATION THEOREM

Lemma 1.1. Let D be a domain and $f \in D\left[x_{1}, \ldots, x_{n}\right]$. Let $N \geq 1$ be an integer that bounds all the exponents of x_{i} 's in f. Let ϕ be the automorphism:

$$
\begin{aligned}
D\left[x_{1}, \ldots, x_{n}\right] & \rightarrow D\left[x_{1}, \ldots, x_{n}\right] \\
x_{1} & \mapsto x_{1}+x_{n}^{N} \\
x_{2} & \mapsto x_{1}+x_{n}^{N^{2}} \\
\ldots & \\
x_{n-1} & \mapsto x_{1}+x_{n}^{N^{n-1}} \\
x_{n} & \mapsto x_{n}
\end{aligned}
$$

Then the image $\phi(f)$ is a polynomial whose highest degree term involving x_{n} has the form $c x_{n}^{m}$, where c is a nonzero element of D.

Proof. Consider any nonzero term of f, which has the form $c_{\alpha} x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}$ where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and c_{α} is a nonzero element in D.
The image of this term under ϕ is

$$
c_{\alpha}\left(x_{1}+x_{n}^{N}\right)^{\alpha_{1}}\left(x_{2}+x_{n}^{N^{2}}\right)^{\alpha_{2}} \cdots\left(x_{n-1}+x_{n}^{N^{n-1}}\right)^{\alpha_{n-1}} x_{n}^{\alpha_{n}}
$$

and this contains a unique highest degree term: it is the product of the highest degree terms coming from all the factors, and it is

$$
c_{\alpha}\left(x_{n}^{N}\right)^{\alpha_{1}}\left(x_{n}^{N^{2}}\right)^{\alpha_{2}} \cdots\left(x_{n}^{N^{n-1}}\right)^{\alpha_{n-1}} x_{n}^{\alpha_{n}}=c_{\alpha} x_{n}^{\alpha_{n}+\alpha_{1} N+\alpha_{2} N^{2}+\cdots+\alpha_{n-1} N^{n-1}}
$$

The exponents that one gets on x_{n} in these largest degree terms coming from distinct terms of f are all distinct, because of uniqueness of representation of integers in base N. Thus no two exponents are the same and no two of them can cancel.

Let R be an A-algebra and $z_{1}, \ldots, z_{d} \in R$. We shall say that the elements z_{1}, \ldots, z_{d} are algebraically independent over A if the monomials $z_{1}^{a_{1}}, \ldots, z_{d}^{a_{d}}$ as $\left(a_{1}, \ldots, a_{d}\right)$ varies in \mathbb{N}^{d} are all distinct and span a free A-submodule of R.

Theorem 1.2 (Noether normalization theorem). Let D be an integral domain and let R be any finitely generated D-algebra which is an algebra extension of D. Then there is some element $c \neq 0$ in D and elements z_{1}, \ldots, z_{d} in R_{c} algebraically independent over D_{c} such that R_{c} is module-finite over the subring $D_{c}\left[z_{1}, \ldots, z_{d}\right]$.

Proof. We use induction on the number n of generators of R over D. If $n=0$, then $R=D$ and we can choose $d=0$. Now assume that $R=D\left[\theta_{1}, \ldots, \theta_{n}\right]$ has n generators. If all the θ_{i} are algebraically independent over K then we're done. Therefore we may assume that there is a relation $f\left(\theta_{1}, \ldots, \theta_{n}\right)=0$. Apply the automorphism ϕ from Lemma 1.1 and localize at one element we see that $\phi(f)=g$ is monic in θ_{n}. So θ_{n} is algebraic over $R^{\prime}=D_{c}\left[\theta_{1}, \ldots, \theta_{n-1}\right]$. But R^{\prime} is generated by one fewer elements over D_{c} so by induction hypothesis we can localize at on more element b making R_{b}^{\prime} module-finite over $D_{b c}\left[x_{1}, \ldots, x_{z}[d]\right]$ for some d. Hence $R_{b c}$ is module-finite over $D_{b c}\left[z_{1}, \ldots, z_{d}\right]$ as well.
Corollary $\mathbf{1 . 3}$ (Zariski's Lemma). Let R be a finitely generated algebra over a field K and suppose that R is a field. Then R is a finite algebraic extension of K.

Proof. By the Noetherian normalization theorem, R is module-finite over $K\left[z_{1}, \ldots, z_{d}\right]$, which is of Krull dimension d. Since R is a field, $d=0$ and R is module-finite over K.
Corollary 1.4. Let K be algebraically closed field, let R be a finitely generated K-algebra. Let m be a maximal ideal of R. Then the composite map $K \rightarrow R \rightarrow R / m$ is an isomorphism

2. Hilbert's Nullstellensatz

From now on we always assume that K is algebraically closed, and $R=K\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring over K.
Corollary 2.1 (1st weak form). Every maximal ideal m of R is of the form $\left(x_{1}-\lambda_{1}, \ldots, x_{n}-\lambda_{n}\right)$.
Proof. Since $R / m \cong K$ for any maximal ideal m, it must be of the form $\left(x_{1}-\lambda_{1}, \ldots, x_{n}-\lambda_{n}\right)$.
Corollary 2.2 (2nd weak form). Let f_{1}, \ldots, f_{l} be polynomials in R, then the f_{i} 's generate the unit ideal iff the algebraic $\operatorname{set} V\left(f_{1}, \ldots, f_{l}\right)=\emptyset$.
Theorem 2.3 (Hilbert's Nullstellensatz, strong form). In the polynomial ring R, for any ideal $I \subseteq R$, we have

$$
\sqrt{I}=\bigcap_{I \subseteq m \text { maximal ideal }} m
$$

Proof. The \subseteq is obvious, for the other direction, we use a proof called Rabinowitsch's trick: Let f_{1}, \ldots, f_{h} be a set of generators of I and let g be in the other side. Introduce an extra variable z and consider the polynomials $f_{1}, \ldots, f_{h}, 1-g z \in K\left[x_{1}, \ldots, x_{n}, z\right]$. For any point $\left(y_{1}, \ldots, y_{n+1}\right)$ in K^{n+1}, if all polynomials vanish at that point, then all f_{i} vanish at $\left(y_{1}, \ldots, y_{n}\right)$, which implies that $1-g z$ is $1-0$ at that point in K^{n+1}, contradiction! So they generates a unit ideal in $K\left[n_{1}, \ldots, n, z\right]$. So we have

$$
1=H_{1}(z) f_{1}+\cdots+H_{n}(z) f_{n}+H(z)(1-g z)
$$

where $H_{1}(z), \ldots, H_{n}(z), H(z)$ are polynomials in $K\left[n_{1}, \ldots, n, z\right]$. Now we can assign $\frac{1}{g}$ to z and clear the denominators, we have

$$
g^{N}=G_{1} f_{1}+\cdots+G_{n} f_{n}
$$

where G_{i} 's are polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$. So $g \in \sqrt{I}$.
Corollary 2.4. Let $R \rightarrow S$ be a homomorphism of finitely generated K-algebras, then every maximal ideal of S contracts to a maximal ideal of R.

Proof. Suppose that $m \subseteq S$ contracts to $P \subseteq R$, then we have $K \subseteq R / P \subseteq S / m$ where S / m is a module-finite extension of K. So R / P is also a module-finite extension of K, hence P is an maximal ideal.

