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1. NOETHER NORMALIZATION THEOREM

Lemma 1.1. Let D be a domain and f ∈ D[x1, ..., xn]. Let N ≥ 1 be an integer that bounds all the exponents of xi’s
in f . Let φ be the automorphism:

D[x1, ..., xn]→ D[x1, ..., xn]

x1 7→ x1 + xN
n

x2 7→ x1 + xN2

n

· · · · · ·

xn−1 7→ x1 + xNn−1

n

xn 7→ xn

Then the image φ( f ) is a polynomial whose highest degree term involving xn has the form cxm
n , where c is a nonzero

element of D.

Proof. Consider any nonzero term of f , which has the form cαxα1
1 , ..., xαn

n where α = (α1, ..., αn) and cα is a
nonzero element in D.

The image of this term under φ is

cα(x1 + xN
n )α1 (x2 + xN2

n )α2 · · · (xn−1 + xNn−1

n )αn−1 xαn
n

and this contains a unique highest degree term: it is the product of the highest degree terms coming from
all the factors, and it is

cα(xN
n )α1 (xN2

n )α2 · · · (xNn−1

n )αn−1 xαn
n = cαxαn+α1 N+α2 N2+···+αn−1 Nn−1

n

The exponents that one gets on xn in these largest degree terms coming from distinct terms of f are all
distinct, because of uniqueness of representation of integers in base N. Thus no two exponents are the same
and no two of them can cancel. �

Let R be an A-algebra and z1, ..., zd ∈ R. We shall say that the elements z1, ..., zd are algebraically indepen-
dent over A if the monomials za1

1 , ..., zad
d as (a1, ..., ad) varies in Nd are all distinct and span a free A-submodule

of R.

Theorem 1.2 (Noether normalization theorem). Let D be an integral domain and let R be any finitely generated
D-algebra which is an algebra extension of D. Then there is some element c 6= 0 in D and elements z1, ..., zd in Rc
algebraically independent over Dc such that Rc is module-finite over the subring Dc[z1, ..., zd].
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Proof. We use induction on the number n of generators of R over D. If n = 0, then R = D and we can choose
d = 0. Now assume that R = D[θ1, ..., θn] has n generators. If all the θi are algebraically independent over K
then we’re done. Therefore we may assume that there is a relation f (θ1, ..., θn) = 0. Apply the automorphism
φ from Lemma 1.1 and localize at one element we see that φ( f ) = g is monic in θn. So θn is algebraic over
R′ = Dc[θ1, ..., θn−1]. But R′ is generated by one fewer elements over Dc so by induction hypothesis we
can localize at on more element b making R′b module-finite over Dbc[x1, ..., xz[d]] for some d. Hence Rbc is
module-finite over Dbc[z1, ..., zd] as well. �

Corollary 1.3 (Zariski’s Lemma). Let R be a finitely generated algebra over a field K and suppose that R is a field.
Then R is a finite algebraic extension of K.

Proof. By the Noetherian normalization theorem, R is module-finite over K[z1, ..., zd], which is of Krull di-
mension d. Since R is a field, d = 0 and R is module-finite over K. �

Corollary 1.4. Let K be algebraically closed field, let R be a finitely generated K-algebra. Let m be a maximal ideal of
R. Then the composite map K → R � R/m is an isomorphism

2. HILBERT’S NULLSTELLENSATZ

From now on we always assume that K is algebraically closed, and R = K[x1, ..., xn] is the polynomial ring
over K.

Corollary 2.1 (1st weak form). Every maximal ideal m of R is of the form (x1 − λ1, ..., xn − λn).

Proof. Since R/m ∼= K for any maximal ideal m, it must be of the form (x1 − λ1, ..., xn − λn). �

Corollary 2.2 (2nd weak form). Let f1, ..., fl be polynomials in R, then the fi’s generate the unit ideal iff the algebraic
set V( f1, ..., fl) = ∅.

Theorem 2.3 (Hilbert’s Nullstellensatz, strong form). In the polynomial ring R, for any ideal I ⊆ R, we have
√

I =
⋂

I⊆m maximal ideal

m

Proof. The ⊆ is obvious, for the other direction, we use a proof called Rabinowitsch’s trick: Let f1, ..., fh
be a set of generators of I and let g be in the other side. Introduce an extra variable z and consider the
polynomials f1, ..., fh, 1− gz ∈ K[x1, ..., xn, z]. For any point (y1, ..., yn+1) in Kn+1, if all polynomials vanish at
that point, then all fi vanish at (y1, ..., yn), which implies that 1−gz is 1−0 at that point in Kn+1, contradiction!
So they generates a unit ideal in K[n1, ..., n,z]. So we have

1 = H1(z) f1 + · · · + Hn(z) fn + H(z)(1− gz)

where H1(z), ..., Hn(z), H(z) are polynomials in K[n1, ..., n,z]. Now we can assign 1
g to z and clear the denom-

inators, we have
gN = G1 f1 + · · · + Gn fn

where Gi’s are polynomials in K[x1, ..., xn]. So g ∈
√

I. �

Corollary 2.4. Let R → S be a homomorphism of finitely generated K-algebras, then every maximal ideal of S
contracts to a maximal ideal of R.

Proof. Suppose that m ⊆ S contracts to P ⊆ R, then we have K ⊆ R/P ⊆ S/m where S/m is a module-finite
extension of K. So R/P is also a module-finite extension of K, hence P is an maximal ideal. �


