1. Preliminary

1.1. Mapping cones

If we have two complexes $f_\bullet : (B_\bullet, \delta_\bullet) \to (A_\bullet, d_\bullet)$, we can form a mapping cone C_\bullet to be $C_n = A_n \oplus B_{n-1}$ and the differential map is given by

$$a_n \oplus b_n \mapsto (d_n(a_n) + (-1)^n f(b_{n-1})) \oplus \delta_{n-1}(b_{n-1})$$

It's not hard to verify that this map is a differential map. Note that under this construction, we have that $A_\bullet \subseteq C_\bullet$ is a subcomplex while the quotient is $B_{\bullet-1}$, i.e., we have an exact sequence

$$0 \to A_\bullet \to C_\bullet \to B_{\bullet-1} \to 0$$

which induces a long exact sequence

$$\cdots \to H_n(A_\bullet) \to H_n(C_\bullet) \to H_{n-1}(B_\bullet) \to H_{n-1}(A_\bullet) \to \cdots$$

Immediately we have following consequences:

Proposition 1.1. If $f_\bullet : B_\bullet \to A_\bullet$ is a map of acyclic complexes, then

- $H_n(C_\bullet) = 0$ for $n \geq 2$
- $H_1(C_\bullet) = \text{Ker}(H_0(B) \to H_0(A))$, which is the kernel of the induced map $B_0/\delta_1(B_1) \to A_0/d_1(A_1)$.
- $H_0(C_\bullet) = \text{Coker}(H_0(B) \to H_0(A))$ which is $A_0/(d_1(A_1) + f_0(B_0))$.

Note that we also have a quotient complex of $f_\bullet : B_\bullet \to A_\bullet$, namely Q_\bullet. We have following proposition

Proposition 1.2. $H_i(C_\bullet) \cong H_i(Q_\bullet)$.

THE KOSZUL COMPLEX

ZHAN JIANG

CONTENTS

1. Preliminary 1
 1.1. Mapping cones 1
2. Construction 1
 2.1. Via mapping cones 1
 2.2. Via tensor product 1
 2.3. Direct description 2
 2.4. The Koszul complex of modules 2
3. The Koszul Homology 2
 3.1. Basic properties 2
 3.2. Independence of Koszul homology of the base ring 3
 3.3. Koszul homology and Tor 3
 3.4. Cohomological Koszul complex 3
In particular, we can apply this to a Koszul complex and get

The Koszul complex of modules.

2.4. complex is Koszul complex.

The connecting map in the long exact sequence is given by multiplication by \(x \). So we get SES's:

\[\begin{align*}
0 & \rightarrow R u_1 \rightarrow R \rightarrow 0 \\
& \quad \quad u_1 \mapsto x_1
\end{align*} \]

(2) Suppose \(K_\bullet(x_1, \ldots, x_{n-1}; R) \) is defined, then multiplication by \(x_n \) gives a map of complexes:

\[K_\bullet(x_1, \ldots, x_{n-1}; R) \rightarrow K_\bullet(x_1, \ldots, x_{n-1}; R) \]

and \(K_\bullet(x; R) \) is defined to be the mapping cone of above map.

2.2. Via tensor product. The Koszul complex of one element \(x_i \) is defined to be \(K_\bullet(x_i) = 0 \rightarrow K_1 \rightarrow x_i; K_0 \rightarrow 0 \) where \(K_1 = K_0 = R \) and the Koszul complex for a sequence \(x_1, \ldots, x_n \) is \(K_\bullet(x_1, \ldots, x_n) = K_\bullet(x_1) \otimes \cdots \otimes K_\bullet(x_n) \).

2.3. Direct description. Let \(\sigma \subseteq [n] \) be a subset of the \(n \) elements set \([n] = \{1, 2, \ldots, n\} \). Assume that \(\sigma = \{i_1, ..., i_k\} \) where \(i_1 \leq \cdots \leq i_k \). Let \(|\sigma| \) denote the cardinality of \(\sigma \).

Let \(u_\sigma \) be indeterminants on \(R \) for each \(\sigma \). Then \(K_j = \oplus_{|\sigma|=j} R u_\sigma \) is a free \(R \)-module with \(\binom{n}{j} \) generators. Define maps

\[K_j \rightarrow K_{j-1} \]

\[u_\sigma \mapsto \sum_{t=1}^{j} (-1)^{t-1} x_{i_t} u_{\sigma\setminus\{i_t\}} \]

These maps are differentials and \(K_\bullet \) is a complex. We identify \(u_{\emptyset} \), the generator of \(K_0 \), with \(1 \in R \). This complex is Koszul complex.

2.4. The Koszul complex of modules. \(K_\bullet(x; M) = K_\bullet(x; R) \otimes_R M \).

3. The Koszul Homology

3.1. Basic properties. \(K_\bullet(x; R) \) is a free complex of length \(n \) in which the degree \(j \) term is isomorphic to the free \(R \)-module on \(\binom{n}{j} \) generators.

It’s symmetric in the sequence: if we move around elements in the sequence, we still get the same Koszul complex.

Observation: If \(C_\bullet \) is a complex, then there is a SES of complexes:

\[\begin{align*}
0 & \rightarrow C_\bullet \rightarrow C_\bullet \otimes K_\bullet(x) \rightarrow C_\bullet(-1) \rightarrow 0
\end{align*} \]

given by \(0 \rightarrow C_n \rightarrow C_n \otimes C_{n-1} \rightarrow C_{n-1} \rightarrow 0 \), etc.

The connecting map in the long exact sequence is given by multiplication by \(x \).

So we get SES’s:

\[\begin{align*}
0 & \rightarrow H_n(C_\bullet)/x H_n(C_\bullet) \rightarrow H_n(C_\bullet \otimes K_\bullet(x)) \rightarrow \text{Ann}_{H_{n-1}(C_\bullet)}(x) \rightarrow 0
\end{align*} \]

In particular, we can apply this to a Koszul complex and get

\[\begin{align*}
0 & \rightarrow \frac{H_n(x; M)}{x H_n(x; M)} \rightarrow H_n(x; M) \rightarrow \text{Ann}_{H_{n-1}(x; M)}(x) \rightarrow 0
\end{align*} \]

Let \(H_i(x; M) \) be the \(i \)th homology of \(K_\bullet(x; M) \). We note following propositions:
Proposition 3.1. Let R be a ring and $\underline{x} = x_1, \ldots, x_n \in R$. Let $I = (\underline{x})R$ and let M be an R-module:

1. $H_i(\underline{x}; M) = 0$ if $i < 0$ or $i > n$.
2. $H_0(\underline{x}; M) \cong M/IM$.
3. $H_n(\underline{x}; M) = \text{Ann}_M I$.
4. $\text{Ann}_R M$ kills every $H_i(\underline{x}; M)$.
5. If M is Noetherian, then so is $H_i(\underline{x}; M)$.
6. For every i, $H_i(\underline{x}; -)$ is a covariant functor from R-modules to R-modules.
7. If

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

is a short exact sequence, then we have long exact sequences:

$$\cdots \to H_i(\underline{x}; M_1) \to H_i(\underline{x}; M_2) \to H_i(\underline{x}; M_3) \to H_{i-1}(\underline{x}; M_1) \to \cdots$$

8. If \underline{x} is a possibly improper regular sequence on M, then $H_i(\underline{x}; M) = 0$, $\forall i \geq 1$.

Proof. (1) is trivial from definition

(2): The first map is identified as $M^n \to M$ sending $(v_1, \ldots, v_n) \mapsto v_1 x_1 + \cdots + v_n x_n$ then the result follows

(3): The last map is identified as $M \to M^n$ sending $v \mapsto (x_1 v, -x_2 v, \cdots, (-1)^{n-1} x_n v)$ then the result follows

(4)&(5): Since every term in the Koszul complex is itself a direct sum of copies of M

(6): This is standard homological algebra argument

(7): Since each term in the Koszul complex is free, any exact sequence induces an exact sequence of complexes, hence induces a long exact sequence.

(8): by induction on the length of the regular sequence. □

Theorem 3.2. If (R, m) is local and $\underline{x} \in m$ and M is finitely generated, then $H_i(\underline{x}; M) = 0$ for all $i > 0$ implies that \underline{x} is a regular sequence on M.

Proof. TO BE ADDED □

3.2. Independence of Koszul homology of the base ring. Suppose we have a map $R \to S$ and an S-module M. By restriction of scalars M is also an R-module. Let \underline{x} be a sequence in R and let \underline{y} be its image in S. Note that the action of x_i and y_i are the same for every i. This shows that $\mathcal{K}_*(\underline{x}; M)$ and $\mathcal{K}_*(\underline{y}; M)$ are the same. Therefore $H_i(\underline{x}; M) \cong H_i(\underline{y}; M)$ for every i.

Note that even if we treat M as an R-module at the very beginning, we can still recover the S-module structure of $H_i(\underline{x}; M)$: since $M \to^S M$ is R-linear and $H_i(\underline{x}; -)$ is a covariant functor, we can recover the action of s on $H_i(\underline{x}; M)$.

3.3. Koszul homology and Tor. Let $A = \mathbb{Z}[X_1, \ldots, X_n]$, $K[X_1, \ldots, X_n]$ or $R[X_1, \ldots, X_n]$ where X_i acts on M exactly as x_i, then

Proposition 3.3. $H_i(\underline{x}; M) \cong \text{Tor}_i^R(A/(X_1, \ldots, X_n)A, M)$

Corollary 3.4. Let \underline{x} be a sequence in R and let $I = (\underline{x})R$, then I kills $H_i(\underline{x}; M)$ for all i.

3.4. Cohomological Koszul complex. $\mathcal{K}^*(\underline{x}; M) \cong \text{Hom}_R(\mathcal{K}_*(\underline{x}; M))$ The cohomological Koszul complex of R (or M) is isomorphic with the homological Koszul complex numbered “backward”.

Theorem 3.5. Let \underline{x} be a possibly improper sequence in R and let M be an R-module, then

$$\text{Ext}_R^i(R/(\underline{x})R, M) \cong H^i(\underline{x}; M) \cong H_{n-i}(\underline{x}; M) \cong \text{Tor}_{n-i}^R(R/(\underline{x})R, M)$$