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1. PRELIMINARY

1.1. Mapping cones. If we have two complexes f, : (Bs, de) — (As, de), we can form a mapping cone C, to
be C, = A, ® B,_1 and the differential map is given by

an, D bn = (dn(an) + (71)n71f(bn—1)) S (5n—1(bn—1)

It’s not hard to verify that this map is a differential map. Note that under this construction, we have that
A. C C, is a subcomplex while the quotient is B,_1, i.e. we have an exact sequence

0—Ae =+ Cq —Be_1 — 0
which induces a long exact sequence
<o = Hy(As) = Hy(Co) = Hy—1(Ba) = Hy—1(Ae) — -+

Immediately we have following consequences:

Proposition 1.1. If f, : Bs — A, is a map of acyclic complexes, then

o H,(Co)=0forn>2
e H;(C,) = Ker(Ho(B) — Hy(A)), which is the kernel of the induced map By/51(B1) — Ao/d1(A1).
o Hy(C.) = Coker(Ho(B) — Ho(A)) which is Ay /(d1(A1) + fo(Bo)).

Note that we also have a quotient complex of f, : B, — A,, namely Q,. We have following proposition

Proposition 1.2. H;(C,) = H;(Q,).
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Proof. TO BE ADDED 0

2. CONSTRUCTION

2.1. Viamapping cones. Let x = x, ..., x,, be a sequence of elements in R, then the Koszul complex ICq(x; R)
is defined recursively:

(1) If n =1, then Kq(x; R) is
0—Ru; -R—0
Up — X1
(2) Suppose Ko(x1, ..., X5—1; R) is defined, then multiplication by x, gives a map of complexes:
Ke(x1, ..., Xxp_1; R) = Ko(x1, ..., Xx4y_1; R)

and K,.(x; R) is defined to be the mapping cone of above map.

2.2. Via tensor product. The Koszul complex of one element x; is defined to be Ko(x;) = 0 = K; =% Ky —
0 where K; = Kg = R and the Koszul complex for a sequence x1, ..., X, is Ko(x1, ..., X)) = Ko (x1) ® - - - @ Ko (xy,).

2.3. Direct description. Let ¢ C [n] be a subset of the n elements set [n] = {1,2,...,n}. Assume that o =
{i1,...,ix} where i; < --- <. Let |o| denote the cardinality of .

Let u, be indeterminants on R for each ¢. Then K; = ®|s-jRu, is a free R-module with (:’) generators.
Define maps

K:j — /Cj,1
j

Ug — Z(_l)t_lxit”af{if}
=1

These maps are differentials and K, is a complex. We identify uy, the generator of ICy, with 1 € R. This
complex is Koszul complex.

2.4. The Koszul complex of modules. /Co(x; M) = Ko(x; R) @r M.

3. THE KOoszuL HOMOLOGY

3.1. Basic properties. K,(x; R) is a free complex of length n in which the degree j term is isomorphic to the
free R-module on () generators.

It's symmetric in the sequence: if we move around elements in the sequence, we still get the same Koszul
complex.
Observation: If C, is a complex, then there is a SES of complexes:
0= Coe = Co ®Ko(x) = Co(~1) = 0

givenby 0 = C, - C, ® C,—1 — C,—1 — 0, etc.
The connecting map in the long exact sequence is given by multiplication by x.
So we get SES’s:

0 — Hy(C,)/xH,(Co) = Hy(Co @ Ko(x)) = Anny, ,(c,)(x) = 0

In particular, we can apply this to a Koszul complex and get
H.(x; M)

0= xH,(x; M)

— Hy(x; M) — Anng, ,(x; M) =0

Let H;(x; M) be the ith homology of ICq(x; M). We note following propositions:
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Proposition 3.1. Let R bea ring and x = x1, ..., x, € R. Let I = (x)R and let M be an R-module:

(1) Hi(x; M) =0ifi <OQori> n.
(2) Ho(x; M) = M/IM.
(3) Hy(x; M) = Anny, I
(4) Anng M kills every H;(x; M).
(5) If M is Noetherian, then so is H;i(x; M).
(6) For every i, Hi(x; -) is a covariant functor from R-modules to R-modules.
(7) If
00— M - M, - Mz —0

is a short exact sequence, then we have long exact sequences:
-+ = Hi(x; Mh) — Hi(x; M) — Hi(x; M3) — Hi—1(x; M) — - -
(8) If x is a possibly improper reqular sequence on M, then Hi(x; M) =0, Vi > 1

Proof. (1) is trivial from definition

(2): The first map is identified as M" — M sending (vy, ..., Un) — V1X1 + - - - + U, X, then the result follows
(3): The last map is identified as M — M" sending v — (x10, —x9, - - - , (—1)""'x,0) then the result follows
(4)&(5): Since every term in the Koszul complex is itself a direct sum of copies of M

(6): This is standard homological algebra arguement

(7): Since each term in the Koszul complex is free, any exact sequence induces an exact sequence of com-
plexes, hence induces a long exact sequence.

(8): by induction on the length of the regular sequence. O
Theorem 3.2. If (R, m) is local and x € m and M is finitely generated, then H;(x; M) = 0 for all i > 0 implies that x
is a reqular sequence on M.

Proof. TO BE ADDED O

3.2. Independence of Koszul homology of the base ring. Suppose we have a map R — S and an S-module
M. By restriction of scalars M is also an R-module. Let x be a sequence in R and let y be its image in S. Note
that the action of x; and y; are the same for every i. This shows that KCq(x; M) and Ke(y; M) are the same.
Therefore H;(x; M) = H;(y; M) for every i. a

Note that even if we treat M as an R-module at the very beginning, we can still recover the S-module
structure of H;(x; M): since M —° M is R-linear and H;(x;_) is a covariant functor, so we can recover the
action of s on H;(x; M).

3.3. Koszul homology and Tor. Let A = Z[Xj, ..., X,], K[Xj, ..., X;,] or R[X3, ..., X,,] where X; acts on M
exactly as x;, then
Proposition 3.3. H;(x; M) = Tor! (A/(X1, ..., X»)A, M)
Corollary 3.4. Let x be a sequence in R and let I = (x)R, then I kills H;(x; M) for all i.
3.4. Cohomological Koszul complex. K*(x; M) = Homg(KCe(x, M)) The cohomological Koszul complex of
R (or M) is isomorphic with the homological Koszul complex numbered “backward”.
Theorem 3.5. Let x be a possibly improper sequence in R and let M be an R-module, then
Exth(R/(0R, M) = H'(x; M) = H,_i(x; M) = Tor’_,(R/(x)R, M)



