THE KOSZUL COMPLEX

ZHAN JIANG

CONTENTS

1. Preliminary	1
1.1. Mapping cones	1
2. Construction	1
2.1. Via mapping cones	1
2.2. Via tensor product	1
2.3. Direct description	2
2.4. The Koszul complex of modules	2
3. The Koszul Homology	2
3.1. Basic properties	2
3.2. Independence of Koszul homology of the base ring	3
3.3. Koszul homology and Tor	3
3.4. Cohomological Koszul complex	3

1. Preliminary

1.1. **Mapping cones.** If we have two complexes $f_{\bullet} : (B_{\bullet}, \delta_{\bullet}) \to (A_{\bullet}, d_{\bullet})$, we can form a mapping cone C_{\bullet} to be $C_n = A_n \oplus B_{n-1}$ and the differential map is given by

$$a_n \oplus b_n \mapsto (d_n(a_n) + (-1)^{n-1} f(b_{n-1})) \oplus \delta_{n-1}(b_{n-1})$$

It's not hard to verify that this map is a differential map. Note that under this construction, we have that $A_{\bullet} \subseteq C_{\bullet}$ is a subcomplex while the quotient is $B_{\bullet-1}$, i.e. we have an exact sequence

$$0 \to A_{\bullet} \to C_{\bullet} \to B_{\bullet-1} \to 0$$

which induces a long exact sequence

$$\cdots \to H_n(A_{\bullet}) \to H_n(C_{\bullet}) \to H_{n-1}(B_{\bullet}) \to H_{n-1}(A_{\bullet}) \to \cdots$$

Immediately we have following consequences:

Proposition 1.1. *If* $f_{\bullet} : B_{\bullet} \to A_{\bullet}$ *is a map of acyclic complexes, then*

- $H_n(C_{\bullet}) = 0$ for $n \ge 2$
- $H_1(C_{\bullet}) = \text{Ker}(H_0(B) \to H_0(A))$, which is the kernel of the induced map $B_0/\delta_1(B_1) \to A_0/d_1(A_1)$.
- $H_0(C_{\bullet}) = \text{Coker}(H_0(B) \to H_0(A))$ which is $A_0/(d_1(A_1) + f_0(B_0))$.

Note that we also have a quotient complex of $f_{\bullet} : B_{\bullet} \to A_{\bullet}$, namely Q_{\bullet} . We have following proposition **Proposition 1.2.** $H_i(C_{\bullet}) \cong H_i(Q_{\bullet})$.

Proof. TO BE ADDED

2. CONSTRUCTION

2.1. **Via mapping cones.** Let $\underline{x} = x_1, ..., x_n$ be a sequence of elements in *R*, then the Koszul complex $\mathcal{K}_{\bullet}(\underline{x}; R)$ is defined recursively:

(1) If n = 1, then $\mathcal{K}_{\bullet}(\underline{x}; R)$ is

$$0 \to Ru_1 \to R \to 0$$
$$u_1 \mapsto x_1$$

(2) Suppose $\mathcal{K}_{\bullet}(x_1, ..., x_{n-1}; R)$ is defined, then multiplication by x_n gives a map of complexes:

$$\mathcal{K}_{\bullet}(x_1,...,x_{n-1};R) \rightarrow \mathcal{K}_{\bullet}(x_1,...,x_{n-1};R)$$

and $\mathcal{K}_{\bullet}(\underline{x}; R)$ is defined to be the mapping cone of above map.

2.2. Via tensor product. The Koszul complex of one element x_i is defined to be $K_{\bullet}(x_i) = 0 \rightarrow K_1 \rightarrow^{\times x_i} K_0 \rightarrow 0$ where $K_1 = K_0 = R$ and the Koszul complex for a sequence $x_1, ..., x_n$ is $K_{\bullet}(x_1, ..., x_n) = K_{\bullet}(x_1) \otimes \cdots \otimes K_{\bullet}(x_n)$.

2.3. **Direct description.** Let $\sigma \subseteq [n]$ be a subset of the *n* elements set $[n] = \{1, 2, ..., n\}$. Assume that $\sigma = \{i_1, ..., i_k\}$ where $i_1 \leq \cdots \leq i_k$. Let $|\sigma|$ denote the cardinality of σ .

Let u_{σ} be indeterminants on R for each σ . Then $\mathcal{K}_j = \bigoplus_{|\sigma|=j} Ru_{\sigma}$ is a free R-module with $\binom{n}{j}$ generators. Define maps

$$\mathcal{K}_{j} \to \mathcal{K}_{j-1}$$
$$u_{\sigma} \mapsto \sum_{t=1}^{j} (-1)^{t-1} x_{i_{t}} u_{\sigma-\{i_{t}\}}$$

These maps are differentials and \mathcal{K}_{\bullet} is a complex. We identify u_{\emptyset} , the generator of \mathcal{K}_{0} , with $1 \in R$. This complex is Koszul complex.

2.4. The Koszul complex of modules. $\mathcal{K}_{\bullet}(\underline{x}; M) = \mathcal{K}_{\bullet}(\underline{x}; R) \otimes_{R} M$.

3. The Koszul Homology

3.1. **Basic properties.** $\mathcal{K}_{\bullet}(\underline{x}; R)$ is a free complex of length *n* in which the degree *j* term is isomorphic to the free *R*-module on $\binom{n}{i}$ generators.

It's symmetric in the sequence: if we move around elements in the sequence, we still get the same Koszul complex.

Observation: If *C*• is a complex, then there is a SES of complexes:

$$0 \to C_{\bullet} \to C_{\bullet} \otimes K_{\bullet}(x) \to C_{\bullet}(-1) \to 0$$

given by $0 \rightarrow C_n \rightarrow C_n \oplus C_{n-1} \rightarrow C_{n-1} \rightarrow 0$, etc.

The connecting map in the long exact sequence is given by multiplication by *x*.

So we get SES's:

$$0 \to H_n(C_{\bullet})/xH_n(C_{\bullet}) \to H_n(C_{\bullet} \otimes K_{\bullet}(x)) \to \operatorname{Ann}_{H_{n-1}(C_{\bullet})}(x) \to 0$$

In particular, we can apply this to a Koszul complex and get

$$0 \to \frac{H_n(\underline{x}; M)}{xH_n(\underline{x}; M)} \to H_n(\underline{x}; M) \to \operatorname{Ann}_{H_{n-1}}(\underline{x}; M) \to 0$$

Let $H_i(\underline{x}; M)$ be the *i*th homology of $\mathcal{K}_{\bullet}(\underline{x}; M)$. We note following propositions:

Proposition 3.1. Let R be a ring and $\underline{x} = x_1, ..., x_n \in R$. Let $I = (\underline{x})R$ and let M be an R-module:

(1) $H_i(\underline{x}; M) = 0$ if i < 0 or i > n.

(2) $H_0(\underline{x}; M) \cong M/IM.$

(3) $H_n(\underline{x}; M) = \operatorname{Ann}_M I.$

- (4) Ann_R M kills every $H_i(x; M)$.
- (5) If M is Noetherian, then so is $H_i(\underline{x}; M)$.
- (6) For every *i*, $H_i(\underline{x}; _)$ is a covariant functor from *R*-modules to *R*-modules.
- (7) If

$$0
ightarrow M_1
ightarrow M_2
ightarrow M_3
ightarrow 0$$

is a short exact sequence, then we have long exact sequences:

 $\cdots \rightarrow H_i(\underline{x}; M_1) \rightarrow H_i(\underline{x}; M_2) \rightarrow H_i(\underline{x}; M_3) \rightarrow H_{i-1}(\underline{x}; M_1) \rightarrow \cdots$

(8) If \underline{x} is a possibly improper regular sequence on M, then $H_i(\underline{x}; M) = 0, \forall i \ge 1$

Proof. (1) is trivial from definition

(2): The first map is identified as $M^n \to M$ sending $(v_1, ..., v_n) \mapsto v_1 x_1 + \cdots + v_n x_n$ then the result follows

(3): The last map is identified as $M \to M^n$ sending $v \mapsto (x_1v, -x_2v, \cdots, (-1)^{n-1}x_nv)$ then the result follows

(4)&(5): Since every term in the Koszul complex is itself a direct sum of copies of M

(6): This is standard homological algebra arguement

(7): Since each term in the Koszul complex is free, any exact sequence induces an exact sequence of complexes, hence induces a long exact sequence.

(8): by induction on the length of the regular sequence.

Theorem 3.2. *If* (R, m) *is local and* $\underline{x} \in m$ *and* M *is finitely generated, then* $H_i(\underline{x}; M) = 0$ *for all* i > 0 *implies that* \underline{x} *is a regular sequence on* M.

Proof. TO BE ADDED

3.2. **Independence of Koszul homology of the base ring.** Suppose we have a map $R \to S$ and an *S*-module *M*. By restriction of scalars *M* is also an *R*-module. Let \underline{x} be a sequence in *R* and let \underline{y} be its image in *S*. Note that the action of x_i and y_i are the same for every *i*. This shows that $\mathcal{K}_{\bullet}(\underline{x}; M)$ and $\mathcal{K}_{\bullet}(\underline{y}; M)$ are the same. Therefore $H_i(\underline{x}; M) \cong H_i(y; M)$ for every *i*.

Note that even if we treat *M* as an *R*-module at the very beginning, we can still recover the *S*-module structure of $H_i(\underline{x}; M)$: since $M \to^s M$ is *R*-linear and $H_i(\underline{x}; _)$ is a covariant functor, so we can recover the action of *s* on $H_i(\underline{x}; M)$.

3.3. Koszul homology and Tor. Let $A = \mathbb{Z}[X_1, ..., X_n]$, $K[X_1, ..., X_n]$ or $R[X_1, ..., X_n]$ where X_i acts on M exactly as x_i , then

Proposition 3.3. $H_i(\underline{x}; M) \cong \operatorname{Tor}_i^A(A/(X_1, ..., X_n)A, M)$

Corollary 3.4. Let <u>x</u> be a sequence in R and let $I = (\underline{x})R$, then I kills $H_i(\underline{x}; M)$ for all i.

3.4. **Cohomological Koszul complex.** $\mathcal{K}^{\bullet}(\underline{x}; M) \cong \operatorname{Hom}_{R}(\mathcal{K}_{\bullet}(\underline{x}, M))$ The cohomological Koszul complex of *R* (or *M*) is isomorphic with the homological Koszul complex numbered "backward".

Theorem 3.5. Let \underline{x} be a possibly improper sequence in R and let M be an R-module, then

 $\operatorname{Ext}_{R}^{i}(R/(\underline{x})R, M) \cong H^{i}(\underline{x}; M) \cong H_{n-i}(\underline{x}; M) \cong \operatorname{Tor}_{n-i}^{R}(R/(\underline{x})R, M)$

 \square