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1. INTEGRAL DEPENDENCE

Definition 1.1. Let S be an R-algebra with structure homomorphism f : R→ S. An element s ∈ S is integral
over R if there is a monic polynomial h(x) ∈ R[x] such that h(s) = 0.

If we assume that h(x) = xd + r1xd−1 + · · · + rd, then h(s) = 0 implies that

sd = −r1sd−1 − · · · − rd

So the submodule f (R)[s] inside S is a finite module over R (more precisely, f (R)). We have following
definitions:

Definition 1.2. • S is integral over R if every element of S is integral over R.
• If R ⊆ S and S is integral over R, then S is called an integral extension of R.
• S is module-finite over R is S finitely generated as an R-module.
• If R ⊆ S and S is module-finite over R, then S is called a module-finite extension of R.

Next we discuss the relation between module-finite extensions and integral extensions, for that we need a
technical lemma:

Lemma 1.3. Let A = (rij) be an n × n matrix over R and let V be an n × 1 column vector such that AV = 0, then
det(A) kills every entry of V.

Proof. det(A)V = det(A)InV = adj(A)AV = 0 �

Theorem 1.4. If S is module-finite over R, then S is integral over R.

Proof. For any element s ∈ S, we want to show that s is integral over R. Let s1, ..., sn be a set of generators of
S as an R-module. Without loss of generality we can assume that s1 = 1. For each si we have

ssi =
∑

j

rijsj

Let V =

s1
...

sn

 and A = sIn − (rij), then we have AV = 0. By Lemma 1.3 we know that det(A) kills si. In

particular, it kills s1 = 1. So det(sIn − B) = 0⇒ s is integral over R. �
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Proposition 1.5. Let R → S → T be ring homomorphisms such that S is module-finite over R with generators
s1, ..., sm and T is module-finite over S with generators t1, ..., tn. Then the composition R → T is module-finite with
generators sitj where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. Every element t ∈ T can be written as

t =
n∑

i=1

aiti

where ai ∈ S. Then each ai could be written as

ai =
m∑

j=1

rijsj

where rij ∈ R. So
t =

∑
i,j

rijsjti

completes the proof. �

Corollary 1.6. The elements of S integral over R form a subring of S

Proof. Replace R by its image in S and assume that R ⊆ S. Let s1, s2 be two elements of S integral over
R, then R[s1] is module-finite over R and R[s1, s2] is module-finite over R[s1]. So by Prop 1.5 we see that
R[s1, s2] is module-finite over R, hence s1 ± s2 and s1s2 are integral over R. �

Next theorem shows us the key relation between module-finiteness and integralness.

Theorem 1.7. Let S be an R-algebra, then S is module-finite over R iff S is finitely generated as an R-algebra.

Proof. The direction that “module-finite” ⇒ “integral” and “finitely generated” has been shown. For the
converse, suppose that S is generated by s1, ..., sn, all of which are integral over R. Then we have a module-
finite chain:

R→ R[s1]→ R[s1, s2]→ · · · → R[s1, ..., sn] = S
Hence by Prop 1.5, S is module-finite over R. �

Corollary 1.8. S is integral over R iff it is a directed union of module-finite extensions of R.

Proof. “If” part is clear, for the “only if” part, notice that S is the directed union of its finitely generated
R-subalgebras, each of which is module-finite extension of R. �

Let f : R→ S be the structure map and suppose V is a multiplicative set in R. Let W = f (V) be the image of
V in S. Then we have a natural map V−1 f : V−1R→W−1S.

Lemma 1.9. With notations above,

(1) If S is module-finite (resp. integral) over R, then W−1S is module-finite (resp.integral) over V−1R.
(2) If R ⊆ S (then W = V) and T is the integral closure of R in S, then V−1R ⊆ V−1T ⊆ V−1S and V−1T is

the integral closure of V−1R in V−1S.

Proof. (1) If S is integral over R, for any element s
w ∈W−1S, there is some polynomial in R such that

sd + a1sd−1 + · · · + ad = 0

There is some v maps to w, hence the polynomial

xd +
a1

v
xd−1 + · · · + ad

vd

is satisfied by s
w . So W−1S is integral over V−1R.

If S is finitely generated as an R-module by s1, ..., sm. Then s1
1 , ..., sm

1 generates W−1S over V−1R as well.
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(2) The inclusion is trivial. By the result of (1), we see that V−1T is integral over V−1R. For any element in
V−1S that is integral over V−1R, the denominator comes from V while the numerator is integral over R in S.
So the numerator is in T therefore the element is in V−1T. So V−1T continue to be the integral closure. �

2. LYING OVER AND GOING UP THEOREMS

Definition 2.1. If R ⊆ S are rings, a prime Q ⊆ S is said to lie over P ⊆ R if Q ∩ R = P.

Lemma 2.2. Let R ⊆ S be domains and let s ∈ S − {0} be integral over R, then s has a nonzero multiple in R.

Proof. Look at the integral relation of s over R:

sd + a1sd−1 + · · · + ad = 0

Since S is a domain, ad 6= 0. So we have

s(sd−1 + a1sd−2 + · · · + ad−1) = −ad

which shows that −ad is a nonzero multiple of s in R. �

Theorem 2.3. Let S be an integral extension of R, I ⊆ R an ideal and u ∈ IS. Then u satisfies a monic polynomial
equation un + i1un−1 + · · · + in = 0 where it ∈ It for 1 ≤ t ≤ n.

Proof. We have that u =
∑n

t=1 stit with st ∈ S and it ∈ I. We may replace S by the smaller ring generated by
s1, ..., sn and u. This ring is module-finite over R. So we may assume WLOG that S is module-finite over R.
We may assume further that s1 = 1.

Since usj ∈ IS, we have

usj =
n∑

t=1

ijtst

Let V be the n×1 column matrix with entries s1, ..., sn and let B be the n×n matrix (ijt). Then the determinant
of det(uIn − B) kills every sj, in particular, it kills s1 = 1. So it’s zero, which has the form

un + i1un−1 + · · · + in

where it ∈ It. �

Theorem 2.4 (Lying Over Theorem). Let S be an integral extension of R.

(1) For every ideal I of R, the contraction of IS to R is contained in
√

I. If I is radical, then IS ∩ R = I.
(2) For every prime P of R, there are primes of S that contarct to P, and they are mutually incomparable.

Proof. (1) let u ∈ IS ∩ R, by Thm 2.3 above it satisfies a monic equation with all terms expect un has coeffi-
cients in I. So un ∈ I ⇒ u ∈

√
I.

(2) Now assume that I = P is prime. Consider the extension RP → (R− P)−1S, it’s still an integral extension
by part (1) of Lem 1.9. So we have P(R − P)−1S ∩ RP = PRP. Then any maximal ideal, say Q′ of (R − P)−1S
containing P(R − P)−1S will contract to PRP: the contraction is a prime ideal of RP containing RP, which
must be PRP. But then the contraction Q of Q′ to S will lie over P.

Now we have to show that if two primes lying over P, then they are not comparable, i.e. one doesn’t contain
the other. Suppose we have two primes Q1 ⊆ Q2 in S lying over P, then passing to S/Q1 and R/P we still
have integral extension. Now Q2S/Q1 lies over (0). But by Lem 2.2 we see that any nonzero s ∈ Q2S/Q1 has
a nonzero multiple in R/P, which shows that Q2S/Q1 ∩ R/P 6= (0). �

Corollary 2.5 (Going UP Theorem). Let R ↪→ S be an integral extension and let

P0 ⊆ P1 ⊆ · · · ⊆ Pd

be a chain of prime ideals of R. Let Q0 be a prime ideal of S lying over P0. Then there is a chain of prime ideals

Q0 ⊆ Q1 ⊆ · · · ⊆ Qd



4 ZHAN JIANG

of S such that for all t, Qt lies over Pt.

Proof. It sufficies to construct Q1 ⊇ Q0 lying over P1: the result then follows by a straight-forward induction
on d. Consider R/P0 ⊆ S/Q0. This is an integral extension and P1R/P0 is a prime ideal. So there is a prime
ideal Q1S/Q0 lying over it. Then we’re done. �

Corollary 2.6. If R ↪→ S is an integral extension then dim(R) = dim(S).

Proof. Let Q0 ⊆ · · · ⊆ Qd be a chain of ideals of S, then the contraction to R will be a chain of primes in R of
the same length: they are all distinct ensured by lying over theorem. Hence we have dim(S) ≤ dim(R).

On the other hand, given a prime chain in R. The lying over theorem ensures that we have a starting point
in S and the going up theorem shows that we have a prime chain of the same length. So dim(S) ≥ dim(R).

Therefore dim(R) = dim(S). �

Next we discuss the number of primes lying over a given prime in the module-finite case, first we need two
preliminary results:

Definition 2.7. Two ideals I, J ⊆ R are called comaximal if I + J = R.

Lemma 2.8 (Chinese Remainder Theorem). If I1, ..., In are pairwise comaximal in R, then

(1) I1 I2, I3, ..., In are also pairwise comaximal.
(2) I1 · · · In = I1 ∩ · · · ∩ In.
(3) Let J = I1 · · · In, then the natural map

R/J → R/I1 × · · · × R/In

is a ring isomorphism.

Proof. (1) We only need to show that I1 I2 + Ij = R for any j. Suppose we have a1 + u = 1 for a1 ∈ I1 and u ∈ Ij;
a2 + v = 1 for a2 ∈ I2 and v ∈ Ij. Then (a1 + u)(a2 + v) = 1⇒ a1a2 + (a1v + a2u + uv) = 1. Note that a1a2 ∈ I1 I2
and (a1v + a2u + uv) ∈ Ij.

For (2) and (3): By (1) we only need to prove this for n = 2, the general case will follow from the induction
on n. Clearly we have I1 I2 ⊆ I1 ∩ I2. Let u ∈ I1 ∩ I2, choose a1 ∈ I1 and a2 ∈ I2 such that a1 + a2 = 1. Then
u = u(a1 + a2) = ua1 + ua2. But both ua1 and ua2 are in I1 I2. So u ∈ I1 I2.

Now consider the map R→ R/I1 × R/I2: It induces an injection R/I1 I2 = R/(I1 ∩ I2) ↪→ R/I1 × R/I2. To see
surjectivity, for any (u1, u2) ∈ R/I1 × R/I2, again choose a1 ∈ I1 and a2 ∈ I2 such that a1 + a2 = 1. Note that
a1 maps to 1 in R/I2 and a2 maps to 1 in R/I1. Then u1a2 + u2a1 maps to (u1, u2) as desired. �

Theorem 2.9. Let R be a reduced K-algebra that is module-finite over the field K. Then R is a product of finite
algebraic field extensions L1× · · · × Ln of K. In particular, R has n maximal ideals, i.e. the kernels of the n projections
R→ Li and n ≤ dimK R.

Proof. Since K is of dimension zero, so is R as it’s integral over K. Hence every prime ideal of R is maximal
and minimal. R can only have finitely many minimal primes, call them m1, ..., mn. Then m1 ∩ · · · ∩mn is the
nilradical of R. So m1 ∩ · · · ∩ mn = (0) as R is reduced. By Chinese Remainder thoerem, we have

R = R/(0) = R/m1 ∩ · · · ∩ mn = R/m1 · · ·mn = R/m1 × · · · × mn

Each Li = R/mi is a field module-finite over K, hence it’s a finite algebraic field extension of K. The rest
follows easily. �
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3. PRIME HEIGHTS, NORMALITY AND GOING DOWN THEOREM

Definition 3.1. Given a prime P ⊆ R, the supremum of lengths of finite strictly ascending chains of primes
contained in P is called the height of P, denoted by ht(P).

Corollary 3.2. If R ⊆ S is an integral extension and Q is a prime ideal of S lying over P ⊆ R, then htR(P) ≥ htS(Q).

Proof. Any prime chain in S contained in Q restricts to a prime chain in R contained in P by Lying over
theorem. �

Then we are natural to ask when the equality holds. That is, suppose you have a prime chain

P0 ⊆ P1 ⊆ · · · ⊆ Pn = P

and a prime Q lying over P, can you construct a prime chain in S:

Q0 ⊆ Q1 ⊆ · · · ⊆ Qn = Q

such that each Qi lies over Pi?

This turns out to need additional hypotheses even when R is a domain. For this purpose, we need the notion
of integral closure.

Definition 3.3. (1) The set of elements in S ⊇ R that are integral over R was shown earlier to be a ring.
This ring is called the integral closure of R in S.

(2) The integral closure of a domain R in its fraction field Frac(R) is called the integral closure or nor-
malization of R. A domain R is integrally closed or normal if it is its own normalization.

Example 3.4. (1) A unique factorization domain is a normal domain: Let a
b ∈ Frac(R) be integral over

R where a, b have no common nonunit divisors, then a
b satisfies a monic equation

xd + c1xd−1 + · · · + cd = 0

So we have an equality in R:

ad + c1ad−1b + · · · + cdbd = 0

Every term except ad is divisible by b, hence ad is divisible by b, which implies that a is divisible by
b, a contradiction!

(2) Z[
√

5] is not integrally closed. The element 1+
√

5
2 satisfies the equation x2 − x − 1 = 0.

(3) If R ⊆ S are domains and R is a direct summand of S as an R-module, then R is normal whenever S
is.

(4) The dth Vernonse subring of K[x1, ..., xn] is normal.

We need some preliminaries before we can prove the going down theorem.

Proposition 3.5 (Division Algorithm). Let R be rings and R[x] be the polynomial rings in one variable over R.
Let g be any polynomial in R[x] and f a monic polynomial in R[x]. Then one can write uniquely g = f q + r where
q, r ∈ R[x] and either r = 0 or deg(r) < deg( f ).

Proof. We can perform the long divison: Suppose g = axn + · · · and f = xd + · · · . If n < d then we can choose
q = 0 and r = g. If not, let g1 = g − axn−d f . Then g1 has lower degree and by induction on degree we can
write g1 = q1 f + r1. Hence g = (q1 + axn−d) f + r1.

To prove uniqueness, suppose that q f + r = q′ f + r′. Then (q− q′) f = r′ − r. The degree of LHS is larger than
RHS unless they are both zero. So q = q′ and r = r′. �

Proposition 3.6. Let R be a normal domain with fraction field K. Let S be a domain containing R. Suppose that s ∈ S
is integral over R. Let f (x) ∈ K[x] be the minimal monic polynomial of s. Then f (x) ∈ R[x] and for any polynomial
g(x) ∈ R[x] such that g(s) = 0, f (x)|g(x) in R[x].



6 ZHAN JIANG

Proof. Since s satisfies some monic polynomial h(x) over R. We have f (x)|h(x) in K[x]. Hence every root of
f (x) is integral over R, the coefficient of f (x) are elementary polynomials of roots of f (x). Therefore they are
integral over R. Since R is normal, they are in R. Therefore f (x) ∈ R[x].

If g(s) = 0, then f (x)|g(x) in K[x]. But we can do the division algorithm in R[x] and get the same result. So
q(x) ∈ R[x] and f (x)|g(x) ∈ R[x]. �

Now we are ready to prove

Theorem 3.7 (Going Down Theorem). Let R be a normal domain and let S be integral over R. Suppose that no
nonzero element of R is a zerodivisor in S, i.e. that S is torsion-free as an R module. Let

Pn ⊇ Pn−1 ⊇ · · · ⊇ P0

be a chain of primes in R. Let Qn be a prime ideal lying over Pn, then there is a chian of primes

Qn ⊇ Qn−1 ⊇ · · · ⊇ Q0

of S such that Qi lies over Pi for each i.

Proof. The general case follows by induction if we can prove this for two primes, i.e. given P0 ⊆ P1 in R and
Q1 lies over P1, we want to find Q0 lies over P0 such that Q0 ⊆ Q1.

First we show that we can assume WLOG that S is a domain by showing that there is a prime q ⊆ Q1 lying
over (0) ⊆ R. Consider the multiplicative system W = (R − {0})(S − Q1) in S. 0 6∈ W as S is torison-free as
an R-module. So there is a prime ideal q in S disjoint from W. q ∩ R = 0 as R − {0} ⊆W. Since S − Q1 ⊆W
we also have q ⊆ Q1. We now replace S by S/q. Since q doesn’t meet R, we still have injection R → S/q.
This extenison is still integral. If we can find a prime ideal Q0S/q lying over P0, then the contraction of Q0
will lie over P0.

Now we can assume that S is also a domain. Let A = R − P0 and B = S − Q1. To complete the proof, we
shall show that the multiplicative system AB does not meet the ideal P0S. This implies that there is a prime
ideal Q0 of S containing P0S and disjoint from AB ⊃ A ∪ B. Q0 ∩ B = ∅ ⇒ Q0 ⊆ Q1 and Q0 ∩ A = ∅ ⇒ P0 ⊆
Q0 ∩ R ⊆ P0.

Suppose that ab ∈ P0S where a ∈ A and b ∈ B. Since ab is integral over R, it satisfies a monic equation
g1(x) with all but the leading coefficients in P0. Let g(x) = g1(ax) ∈ R[x], then g(b) = 0. Let K = Frac(R)
and L = Frac(S) be the corresponding coefficients field. Then b is algebraic over K and has a minimal monic
polynomial f (x) in K[x]. Since b ∈ S is integral over R, by Prop 3.6 we see that f (x) ∈ R[x] and f (x) divides
g(x) in R[x], that is, we have g(x) = f (x)q(x) in R[x].

Now we pass to R/P0, the leading coefficient of g(x) is ad while all other coefficients are in P0. So ḡ(x) = ādxd.
Hence f̄ (x) = xk, which means that f (x) should have the form

f (x) = xk + p1xk−1 + · · · + pk

where all pi ∈ P0. So bk ∈ P0S ⊆ Q1 ⇒ b ∈ Q1, a contradiction! So AB doesn’t meet P0S and we’re done. �

Corollary 3.8. Let R be a normal domain and S an integral extension of R that is torsion free over R. Let Q ⊆ S be a
prime lying over P ⊆ R, then ht(Q) = ht(P).

4. GRADED CASE

Theorem 4.1. Let R ⊆ S be an inclusion of N graded (or Z graded) rings compatible with the gradings, i.e. Rh ⊆ Sh
for each h. Then the integral closure of R in S is also compatible graded, i.e. every homogeneous component of an
element of S integral over R is integral over R.

Proof. First we suppose that R has infinitely many units of degree 0 such that the difference of any two is
a unit. Each unit u induces an endomorphism θu of R whose action on deg d forms is multiplication by
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ud. Then θuθv = θuv and θu is an automorphism whose inverse is θu−1 . These automorphisms are defined
compatibly on both R and S, i.e. we have a commutative diagram

S
θu // S

R

OO

θu // R

OO

Let T be the integral closure of R in S, then θu preserves T: If s ∈ S is integral over R, then one may apply θu
to the equation of integral dependence to obtain an equation of integral dependence for θu(s) over R.

Now suppose that s = sh + · · ·+ sh+k is the decomposition into homogeneous components, each sj has degree
j. We choose units u1, ..., un such that ui − uj is a unit for i 6= j. By applying θui we get n equations:

uh
i sh + · · · + uh+k

i sh+k = ti 1 ≤ i ≤ n

Let M = (uj+h
i )k×k, V =

 sh
...

sh+k

 and W =

t1
...
tk

, then we have W = MV and W ∈ T. But M is invertible: it’s a

Van der Monde matrix with determinant
∏

i<j(ui − uj). So V = M−1W ∈ T.

In the general case, let t be an indeterminate over R and S. Assign degree zero to t so that R[t] is again
a graded ring. Then R[t] ⊆ S[t] is still compatible. Let U be the set of tn’s and all their differences. We
have an inclusion of graded rings U−1R[t] ⊆ U−1S[t]. Now we have those desired units hence for any
s = sh + · · · + sh+k integral over R we can show that each sj is integral over U−1R[t].

Consider an equation of integral dependence

sd
j + f1sd−1

j + · · · + fd = 0

where fi ∈ U−1R[t]. Then we can pick an element G ∈ U to clear all denominators, and we get

Gsd
j + F1sd−1

j + · · · + Fd = 0

The coefficients of tm where m is the highest degree of t in G must be zero. Therefore we get an equation of
sj with coefficients in R, as required. �

Corollary 4.2. If R is integrally cloesd in S, then R[t] is integrally closed in S[t]. If R is a normal domain, then so is
R[t]

Proof. The integral closure of R[t] in S[t] is graded and spanned by elements of the form stk. Now consider
the equation that stk satisfies: Since t is an indeterminate, the coefficients of the equation must be zero. So s
is integral over R. �

In the Noetherian case, we can give an alternate proof: Since R is normal, it’s an intersection of Noetherian
DVR’s V. Therefore R[t] is the intersection of V[t]’s. V is a PID, hence UFD. So V[t] is also UFD, hence
normal. Therefore their intersection is normal.


