INTEGRAL DEPENDENCE

ZHAN JIANG

CONTENTS

1. Integral dependence 1
2. Lying over and going up theorems 3
3. Prime heights, normality and going down theorem 5
4. Graded Case 6

1. Integral dependence

Definition 1.1. Let S be an R-algebra with structure homomorphism $f: R \rightarrow S$. An element $s \in S$ is integral over R if there is a monic polynomial $h(x) \in R[x]$ such that $h(s)=0$.

If we assume that $h(x)=x^{d}+r_{1} x^{d-1}+\cdots+r_{d}$, then $h(s)=0$ implies that

$$
s^{d}=-r_{1} s^{d-1}-\cdots-r_{d}
$$

So the submodule $f(R)[s]$ inside S is a finite module over R (more precisely, $f(R)$). We have following definitions:

Definition 1.2. $\quad S$ is integral over R if every element of S is integral over R.

- If $R \subseteq S$ and S is integral over R, then S is called an integral extension of R.
- S is module-finite over R is S finitely generated as an R-module.
- If $R \subseteq S$ and S is module-finite over R, then S is called a module-finite extension of R.

Next we discuss the relation between module-finite extensions and integral extensions, for that we need a technical lemma:

Lemma 1.3. Let $A=\left(r_{i j}\right)$ be an $n \times n$ matrix over R and let V be an $n \times 1$ column vector such that $A V=0$, then $\operatorname{det}(A)$ kills every entry of V.

Proof. $\operatorname{det}(A) V=\operatorname{det}(A) I_{n} V=\operatorname{adj}(A) A V=0$
Theorem 1.4. If S is module-finite over R, then S is integral over R.
Proof. For any element $s \in S$, we want to show that s is integral over R. Let s_{1}, \ldots, s_{n} be a set of generators of S as an R-module. Without loss of generality we can assume that $s_{1}=1$. For each s_{i} we have

$$
s s_{i}=\sum_{j} r_{i j} s_{j}
$$

Let $V=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{n}\end{array}\right)$ and $A=s I_{n}-\left(r_{i j}\right)$, then we have $A V=0$. By Lemma 1.3 we know that $\operatorname{det}(A)$ kills s_{i}. In particular, it kills $s_{1}=1$. So $\operatorname{det}\left(s I_{n}-B\right)=0 \Rightarrow s$ is integral over R.

Proposition 1.5. Let $R \rightarrow S \rightarrow T$ be ring homomorphisms such that S is module-finite over R with generators s_{1}, \ldots, s_{m} and T is module-finite over S with generators t_{1}, \ldots, t_{n}. Then the composition $R \rightarrow T$ is module-finite with generators $s_{i} t_{j}$ where $1 \leq i \leq m$ and $1 \leq j \leq n$.

Proof. Every element $t \in T$ can be written as

$$
t=\sum_{i=1}^{n} a_{i} t_{i}
$$

where $a_{i} \in S$. Then each a_{i} could be written as

$$
a_{i}=\sum_{j=1}^{m} r_{i j} s_{j}
$$

where $r_{i j} \in R$. So

$$
t=\sum_{i, j} r_{i j} s_{j} t_{i}
$$

completes the proof.
Corollary 1.6. The elements of S integral over R form a subring of S
Proof. Replace R by its image in S and assume that $R \subseteq S$. Let s_{1}, s_{2} be two elements of S integral over R, then $R\left[s_{1}\right]$ is module-finite over R and $R\left[s_{1}, s_{2}\right]$ is module-finite over $R\left[s_{1}\right]$. So by Prop 1.5 we see that $R\left[s_{1}, s_{2}\right]$ is module-finite over R, hence $s_{1} \pm s_{2}$ and $s_{1} s_{2}$ are integral over R.

Next theorem shows us the key relation between module-finiteness and integralness.
Theorem 1.7. Let S be an R-algebra, then S is module-finite over R iff S is finitely generated as an R-algebra.
Proof. The direction that "module-finite" \Rightarrow "integral" and "finitely generated" has been shown. For the converse, suppose that S is generated by s_{1}, \ldots, s_{n}, all of which are integral over R. Then we have a modulefinite chain:

$$
R \rightarrow R\left[s_{1}\right] \rightarrow R\left[s_{1}, s_{2}\right] \rightarrow \cdots \rightarrow R\left[s_{1}, \ldots, s_{n}\right]=S
$$

Hence by Prop 1.5, S is module-finite over R.
Corollary 1.8. S is integral over R iff it is a directed union of module-finite extensions of R.
Proof. "If" part is clear, for the "only if" part, notice that S is the directed union of its finitely generated R-subalgebras, each of which is module-finite extension of R.

Let $f: R \rightarrow S$ be the structure map and suppose V is a multiplicative set in R. Let $W=f(V)$ be the image of V in S. Then we have a natural map $V^{-1} f: V^{-1} R \rightarrow W^{-1} S$.
Lemma 1.9. With notations above,
(1) If S is module-finite (resp. integral) over R, then $W^{-1} S$ is module-finite (resp.integral) over $V^{-1} R$.
(2) If $R \subseteq S$ (then $W=V$) and T is the integral closure of R in S, then $V^{-1} R \subseteq V^{-1} T \subseteq V^{-1} S$ and $V^{-1} T$ is the integral closure of $V^{-1} R$ in $V^{-1} S$.

Proof. (1) If S is integral over R, for any element $\frac{s}{w} \in W^{-1} S$, there is some polynomial in R such that

$$
s^{d}+a_{1} s^{d-1}+\cdots+a_{d}=0
$$

There is some v maps to w, hence the polynomial

$$
x^{d}+\frac{a_{1}}{v} x^{d-1}+\cdots+\frac{a_{d}}{v^{d}}
$$

is satisfied by $\frac{s}{w}$. So $W^{-1} S$ is integral over $V^{-1} R$.
If S is finitely generated as an R-module by s_{1}, \ldots, s_{m}. Then $\frac{s_{1}}{1}, \ldots, \frac{s_{m}}{1}$ generates $W^{-1} S$ over $V^{-1} R$ as well.
(2) The inclusion is trivial. By the result of (1), we see that $V^{-1} T$ is integral over $V^{-1} R$. For any element in $V^{-1} S$ that is integral over $V^{-1} R$, the denominator comes from V while the numerator is integral over R in S. So the numerator is in T therefore the element is in $V^{-1} T$. So $V^{-1} T$ continue to be the integral closure.

2. Lying over and going up theorems

Definition 2.1. If $R \subseteq S$ are rings, a prime $Q \subseteq S$ is said to lie over $P \subseteq R$ if $Q \cap R=P$.
Lemma 2.2. Let $R \subseteq S$ be domains and let $s \in S-\{0\}$ be integral over R, then s has a nonzero multiple in R.
Proof. Look at the integral relation of s over R :

$$
s^{d}+a_{1} s^{d-1}+\cdots+a_{d}=0
$$

Since S is a domain, $a_{d} \neq 0$. So we have

$$
s\left(s^{d-1}+a_{1} s^{d-2}+\cdots+a_{d-1}\right)=-a_{d}
$$

which shows that $-a_{d}$ is a nonzero multiple of s in R.
Theorem 2.3. Let S be an integral extension of $R, I \subseteq R$ an ideal and $u \in I S$. Then u satisfies a monic polynomial equation $u^{n}+i_{1} u^{n-1}+\cdots+i_{n}=0$ where $i_{t} \in I^{t}$ for $1 \leq t \leq n$.

Proof. We have that $u=\sum_{t=1}^{n} s_{t} i_{t}$ with $s_{t} \in S$ and $i_{t} \in I$. We may replace S by the smaller ring generated by s_{1}, \ldots, s_{n} and u. This ring is module-finite over R. So we may assume WLOG that S is module-finite over R. We may assume further that $s_{1}=1$.

Since $u s_{j} \in I S$, we have

$$
u s_{j}=\sum_{t=1}^{n} i_{j t} s_{t}
$$

Let V be the $n \times 1$ column matrix with entries s_{1}, \ldots, s_{n} and let B be the $n \times n$ matrix $\left(i_{j t}\right)$. Then the determinant of $\operatorname{det}\left(u I_{n}-B\right)$ kills every s_{j}, in particular, it kills $s_{1}=1$. So it's zero, which has the form

$$
u^{n}+i_{1} u^{n-1}+\cdots+i_{n}
$$

where $i_{t} \in I^{t}$.
Theorem 2.4 (Lying Over Theorem). Let S be an integral extension of R.
(1) For every ideal I of R, the contraction of IS to R is contained in \sqrt{I}. If I is radical, then IS $\cap R=I$.
(2) For every prime P of R, there are primes of S that contarct to P, and they are mutually incomparable.

Proof. (1) let $u \in I S \cap R$, by Thm 2.3 above it satisfies a monic equation with all terms expect u^{n} has coefficients in I. So $u^{n} \in I \Rightarrow u \in \sqrt{I}$.
(2) Now assume that $I=P$ is prime. Consider the extension $R_{P} \rightarrow(R-P)^{-1} S$, it's still an integral extension by part (1) of Lem 1.9. So we have $P(R-P)^{-1} S \cap R_{P}=P R_{P}$. Then any maximal ideal, say Q^{\prime} of $(R-P)^{-1} S$ containing $P(R-P)^{-1} S$ will contract to $P R_{P}$: the contraction is a prime ideal of R_{P} containing R_{P}, which must be $P R_{P}$. But then the contraction Q of Q^{\prime} to S will lie over P.
Now we have to show that if two primes lying over P, then they are not comparable, i.e. one doesn't contain the other. Suppose we have two primes $Q_{1} \subseteq Q_{2}$ in S lying over P, then passing to S / Q_{1} and R / P we still have integral extension. Now $Q_{2} S / Q_{1}$ lies over (0). But by Lem 2.2 we see that any nonzero $s \in Q_{2} S / Q_{1}$ has a nonzero multiple in R / P, which shows that $Q_{2} S / Q_{1} \cap R / P \neq(0)$.

Corollary 2.5 (Going UP Theorem). Let $R \hookrightarrow S$ be an integral extension and let

$$
P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{d}
$$

be a chain of prime ideals of R. Let Q_{0} be a prime ideal of S lying over P_{0}. Then there is a chain of prime ideals

$$
Q_{0} \subseteq Q_{1} \subseteq \cdots \subseteq Q_{d}
$$

of S such that for all t, Q_{t} lies over P_{t}.

Proof. It sufficies to construct $Q_{1} \supseteq Q_{0}$ lying over P_{1} : the result then follows by a straight-forward induction on d. Consider $R / P_{0} \subseteq S / Q_{0}$. This is an integral extension and $P_{1} R / P_{0}$ is a prime ideal. So there is a prime ideal $Q_{1} S / Q_{0}$ lying over it. Then we're done.

Corollary 2.6. If $R \hookrightarrow S$ is an integral extension then $\operatorname{dim}(R)=\operatorname{dim}(S)$.

Proof. Let $Q_{0} \subseteq \cdots \subseteq Q_{d}$ be a chain of ideals of S, then the contraction to R will be a chain of primes in R of the same length: they are all distinct ensured by lying over theorem. Hence we have $\operatorname{dim}(S) \leq \operatorname{dim}(R)$.

On the other hand, given a prime chain in R. The lying over theorem ensures that we have a starting point in S and the going up theorem shows that we have a prime chain of the same length. So $\operatorname{dim}(S) \geq \operatorname{dim}(R)$.
Therefore $\operatorname{dim}(R)=\operatorname{dim}(S)$.

Next we discuss the number of primes lying over a given prime in the module-finite case, first we need two preliminary results:

Definition 2.7. Two ideals $I, J \subseteq R$ are called comaximal if $I+J=R$.
Lemma 2.8 (Chinese Remainder Theorem). If I_{1}, \ldots, I_{n} are pairwise comaximal in R, then
(1) $I_{1} I_{2}, I_{3}, \ldots, I_{n}$ are also pairwise comaximal.
(2) $I_{1} \cdots I_{n}=I_{1} \cap \cdots \cap I_{n}$.
(3) Let $J=I_{1} \cdots I_{n}$, then the natural map

$$
R / J \rightarrow R / I_{1} \times \cdots \times R / I_{n}
$$

is a ring isomorphism.

Proof. (1) We only need to show that $I_{1} I_{2}+I_{j}=R$ for any j. Suppose we have $a_{1}+u=1$ for $a_{1} \in I_{1}$ and $u \in I_{j}$; $a_{2}+v=1$ for $a_{2} \in I_{2}$ and $v \in I_{j}$. Then $\left(a_{1}+u\right)\left(a_{2}+v\right)=1 \Rightarrow a_{1} a_{2}+\left(a_{1} v+a_{2} u+u v\right)=1$. Note that $a_{1} a_{2} \in I_{1} I_{2}$ and $\left(a_{1} v+a_{2} u+u v\right) \in I_{j}$.
For (2) and (3): By (1) we only need to prove this for $n=2$, the general case will follow from the induction on n. Clearly we have $I_{1} I_{2} \subseteq I_{1} \cap I_{2}$. Let $u \in I_{1} \cap I_{2}$, choose $a_{1} \in I_{1}$ and $a_{2} \in I_{2}$ such that $a_{1}+a_{2}=1$. Then $u=u\left(a_{1}+a_{2}\right)=u a_{1}+u a_{2}$. But both $u a_{1}$ and $u a_{2}$ are in $I_{1} I_{2}$. So $u \in I_{1} I_{2}$.

Now consider the map $R \rightarrow R / I_{1} \times R / I_{2}$: It induces an injection $R / I_{1} I_{2}=R /\left(I_{1} \cap I_{2}\right) \hookrightarrow R / I_{1} \times R / I_{2}$. To see surjectivity, for any $\left(u_{1}, u_{2}\right) \in R / I_{1} \times R / I_{2}$, again choose $a_{1} \in I_{1}$ and $a_{2} \in I_{2}$ such that $a_{1}+a_{2}=1$. Note that a_{1} maps to 1 in R / I_{2} and a_{2} maps to 1 in R / I_{1}. Then $u_{1} a_{2}+u_{2} a_{1}$ maps to $\left(u_{1}, u_{2}\right)$ as desired.

Theorem 2.9. Let R be a reduced K-algebra that is module-finite over the field K. Then R is a product of finite algebraic field extensions $L_{1} \times \cdots \times L_{n}$ of K. In particular, R has n maximal ideals, $i . e$. the kernels of the n projections $R \rightarrow L_{i}$ and $n \leq \operatorname{dim}_{K} R$.

Proof. Since K is of dimension zero, so is R as it's integral over K. Hence every prime ideal of R is maximal and minimal. R can only have finitely many minimal primes, call them m_{1}, \ldots, m_{n}. Then $m_{1} \cap \cdots \cap m_{n}$ is the nilradical of R. So $m_{1} \cap \cdots \cap m_{n}=(0)$ as R is reduced. By Chinese Remainder thoerem, we have

$$
R=R /(0)=R / m_{1} \cap \cdots \cap m_{n}=R / m_{1} \cdots m_{n}=R / m_{1} \times \cdots \times m_{n}
$$

Each $L_{i}=R / m_{i}$ is a field module-finite over K, hence it's a finite algebraic field extension of K. The rest follows easily.

3. PRIME HEIGHTS, NORMALITY AND GOING DOWN THEOREM

Definition 3.1. Given a prime $P \subseteq R$, the supremum of lengths of finite strictly ascending chains of primes contained in P is called the height of P, denoted by $\operatorname{ht}(P)$.
Corollary 3.2. If $R \subseteq S$ is an integral extension and Q is a prime ideal of S lying over $P \subseteq R$, then $\mathrm{ht}_{R}(P) \geq \mathrm{ht}_{S}(Q)$.
Proof. Any prime chain in S contained in Q restricts to a prime chain in R contained in P by Lying over theorem.

Then we are natural to ask when the equality holds. That is, suppose you have a prime chain

$$
P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}=P
$$

and a prime Q lying over P, can you construct a prime chain in S :

$$
Q_{0} \subseteq Q_{1} \subseteq \cdots \subseteq Q_{n}=Q
$$

such that each Q_{i} lies over P_{i} ?
This turns out to need additional hypotheses even when R is a domain. For this purpose, we need the notion of integral closure.

Definition 3.3. (1) The set of elements in $S \supseteq R$ that are integral over R was shown earlier to be a ring. This ring is called the integral closure of R in S.
(2) The integral closure of a domain R in its fraction field $\operatorname{Frac}(R)$ is called the integral closure or normalization of R. A domain R is integrally closed or normal if it is its own normalization.

Example 3.4. (1) A unique factorization domain is a normal domain: Let $\frac{a}{b} \in \operatorname{Frac}(R)$ be integral over R where a, b have no common nonunit divisors, then $\frac{a}{b}$ satisfies a monic equation

$$
x^{d}+c_{1} x^{d-1}+\cdots+c_{d}=0
$$

So we have an equality in R :

$$
a^{d}+c_{1} a^{d-1} b+\cdots+c_{d} b^{d}=0
$$

Every term except a^{d} is divisible by b, hence a^{d} is divisible by b, which implies that a is divisible by b, a contradiction!
(2) $\mathbb{Z}[\sqrt{5}]$ is not integrally closed. The element $\frac{1+\sqrt{5}}{2}$ satisfies the equation $x^{2}-x-1=0$.
(3) If $R \subseteq S$ are domains and R is a direct summand of S as an R-module, then R is normal whenever S is.
(4) The $d^{\text {th }}$ Vernonse subring of $K\left[x_{1}, \ldots, x_{n}\right]$ is normal.

We need some preliminaries before we can prove the going down theorem.
Proposition 3.5 (Division Algorithm). Let R be rings and $R[x]$ be the polynomial rings in one variable over R. Let g be any polynomial in $R[x]$ and f a monic polynomial in $R[x]$. Then one can write uniquely $g=f q+r$ where $q, r \in R[x]$ and either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(f)$.

Proof. We can perform the long divison: Suppose $g=a x^{n}+\cdots$ and $f=x^{d}+\cdots$. If $n<d$ then we can choose $q=0$ and $r=g$. If not, let $g_{1}=g-a x^{n-d} f$. Then g_{1} has lower degree and by induction on degree we can write $g_{1}=q_{1} f+r_{1}$. Hence $g=\left(q_{1}+a x^{n-d}\right) f+r_{1}$.

To prove uniqueness, suppose that $q f+r=q^{\prime} f+r^{\prime}$. Then $\left(q-q^{\prime}\right) f=r^{\prime}-r$. The degree of LHS is larger than RHS unless they are both zero. So $q=q^{\prime}$ and $r=r^{\prime}$.

Proposition 3.6. Let R be a normal domain with fraction field K. Let S be a domain containing R. Suppose that $s \in S$ is integral over R. Let $f(x) \in K[x]$ be the minimal monic polynomial of s. Then $f(x) \in R[x]$ and for any polynomial $g(x) \in R[x]$ such that $g(s)=0, f(x) \mid g(x)$ in $R[x]$.

Proof. Since s satisfies some monic polynomial $h(x)$ over R. We have $f(x) \mid h(x)$ in $K[x]$. Hence every root of $f(x)$ is integral over R, the coefficient of $f(x)$ are elementary polynomials of roots of $f(x)$. Therefore they are integral over R. Since R is normal, they are in R. Therefore $f(x) \in R[x]$.
If $g(s)=0$, then $f(x) \mid g(x)$ in $K[x]$. But we can do the division algorithm in $R[x]$ and get the same result. So $q(x) \in R[x]$ and $f(x) \mid g(x) \in R[x]$.

Now we are ready to prove
Theorem 3.7 (Going Down Theorem). Let R be a normal domain and let S be integral over R. Suppose that no nonzero element of R is a zerodivisor in S, i.e. that S is torsion-free as an R module. Let

$$
P_{n} \supseteq P_{n-1} \supseteq \cdots \supseteq P_{0}
$$

be a chain of primes in R. Let Q_{n} be a prime ideal lying over P_{n}, then there is a chian of primes

$$
Q_{n} \supseteq Q_{n-1} \supseteq \cdots \supseteq Q_{0}
$$

of S such that Q_{i} lies over P_{i} for each i.

Proof. The general case follows by induction if we can prove this for two primes, i.e. given $P_{0} \subseteq P_{1}$ in R and Q_{1} lies over P_{1}, we want to find Q_{0} lies over P_{0} such that $Q_{0} \subseteq Q_{1}$.
First we show that we can assume WLOG that S is a domain by showing that there is a prime $q \subseteq Q_{1}$ lying over $(0) \subseteq R$. Consider the multiplicative system $W=(R-\{0\})\left(S-Q_{1}\right)$ in $S .0 \notin W$ as S is torison-free as an R-module. So there is a prime ideal q in S disjoint from $W . q \cap R=0$ as $R-\{0\} \subseteq W$. Since $S-Q_{1} \subseteq W$ we also have $q \subseteq Q_{1}$. We now replace S by S / q. Since q doesn't meet R, we still have injection $R \rightarrow S / q$. This extenison is still integral. If we can find a prime ideal $Q_{0} S / q$ lying over P_{0}, then the contraction of Q_{0} will lie over P_{0}.
Now we can assume that S is also a domain. Let $A=R-P_{0}$ and $B=S-Q_{1}$. To complete the proof, we shall show that the multiplicative system $A B$ does not meet the ideal $P_{0} S$. This implies that there is a prime ideal Q_{0} of S containing $P_{0} S$ and disjoint from $A B \supset A \cup B$. $Q_{0} \cap B=\emptyset \Rightarrow Q_{0} \subseteq Q_{1}$ and $Q_{0} \cap A=\emptyset \Rightarrow P_{0} \subseteq$ $Q_{0} \cap R \subseteq P_{0}$.
Suppose that $a b \in P_{0} S$ where $a \in A$ and $b \in B$. Since $a b$ is integral over R, it satisfies a monic equation $g_{1}(x)$ with all but the leading coefficients in P_{0}. Let $g(x)=g_{1}(a x) \in R[x]$, then $g(b)=0$. Let $K=\operatorname{Frac}(R)$ and $L=\operatorname{Frac}(S)$ be the corresponding coefficients field. Then b is algebraic over K and has a minimal monic polynomial $f(x)$ in $K[x]$. Since $b \in S$ is integral over R, by Prop 3.6 we see that $f(x) \in R[x]$ and $f(x)$ divides $g(x)$ in $R[x]$, that is, we have $g(x)=f(x) q(x)$ in $R[x]$.
Now we pass to R / P_{0}, the leading coefficient of $g(x)$ is a^{d} while all other coefficients are in P_{0}. So $\bar{g}(x)=\bar{a}^{d} x^{d}$. Hence $\bar{f}(x)=x^{k}$, which means that $f(x)$ should have the form

$$
f(x)=x^{k}+p_{1} x^{k-1}+\cdots+p_{k}
$$

where all $p_{i} \in P_{0}$. So $b^{k} \in P_{0} S \subseteq Q_{1} \Rightarrow b \in Q_{1}$, a contradiction! So $A B$ doesn't meet $P_{0} S$ and we're done.
Corollary 3.8. Let R be a normal domain and S an integral extension of R that is torsion free over R. Let $Q \subseteq S$ be a prime lying over $P \subseteq R$, then $\operatorname{ht}(Q)=\operatorname{ht}(P)$.

4. Graded Case

Theorem 4.1. Let $R \subseteq S$ be an inclusion of \mathbb{N} graded (or \mathbb{Z} graded) rings compatible with the gradings, i.e. $R_{h} \subseteq S_{h}$ for each h. Then the integral closure of R in S is also compatible graded, i.e. every homogeneous component of an element of S integral over R is integral over R.

Proof. First we suppose that R has infinitely many units of degree 0 such that the difference of any two is a unit. Each unit u induces an endomorphism θ_{u} of R whose action on $\operatorname{deg} d$ forms is multiplication by
u^{d}. Then $\theta_{u} \theta_{v}=\theta_{u v}$ and θ_{u} is an automorphism whose inverse is $\theta_{u^{-1}}$. These automorphisms are defined compatibly on both R and S, i.e. we have a commutative diagram

Let T be the integral closure of R in S, then θ_{u} preserves T : If $s \in S$ is integral over R, then one may apply θ_{u} to the equation of integral dependence to obtain an equation of integral dependence for $\theta_{u}(s)$ over R.
Now suppose that $s=s_{h}+\cdots+s_{h+k}$ is the decomposition into homogeneous components, each s_{j} has degree j. We choose units u_{1}, \ldots, u_{n} such that $u_{i}-u_{j}$ is a unit for $i \neq j$. By applying $\theta_{u_{i}}$ we get n equations:

$$
u_{i}^{h} s_{h}+\cdots+u_{i}^{h+k} s_{h+k}=t_{i} \quad 1 \leq i \leq n
$$

Let $M=\left(u_{i}^{j+h}\right)_{k \times k}, V=\left(\begin{array}{c}s_{h} \\ \vdots \\ s_{h+k}\end{array}\right)$ and $W=\left(\begin{array}{c}t_{1} \\ \vdots \\ t_{k}\end{array}\right)$, then we have $W=M V$ and $W \in T$. But M is invertible: it's a Van der Monde matrix with determinant $\prod_{i<j}\left(u_{i}-u_{j}\right)$. So $V=M^{-1} W \in T$.
In the general case, let t be an indeterminate over R and S. Assign degree zero to t so that $R[t]$ is again a graded ring. Then $R[t] \subseteq S[t]$ is still compatible. Let U be the set of $t^{n \prime} s$ and all their differences. We have an inclusion of graded rings $U^{-1} R[t] \subseteq U^{-1} S[t]$. Now we have those desired units hence for any $s=s_{h}+\cdots+s_{h+k}$ integral over R we can show that each s_{j} is integral over $U^{-1} R[t]$.
Consider an equation of integral dependence

$$
s_{j}^{d}+f_{1} s_{j}^{d-1}+\cdots+f_{d}=0
$$

where $f_{i} \in U^{-1} R[t]$. Then we can pick an element $G \in U$ to clear all denominators, and we get

$$
G s_{j}^{d}+F_{1} s_{j}^{d-1}+\cdots+F_{d}=0
$$

The coefficients of t^{m} where m is the highest degree of t in G must be zero. Therefore we get an equation of s_{j} with coefficients in R, as required.
Corollary 4.2. If R is integrally cloesd in S, then $R[t]$ is integrally closed in $S[t]$. If R is a normal domain, then so is $R[t]$

Proof. The integral closure of $R[t]$ in $S[t]$ is graded and spanned by elements of the form $s t^{k}$. Now consider the equation that $s t^{k}$ satisfies: Since t is an indeterminate, the coefficients of the equation must be zero. So s is integral over R.

In the Noetherian case, we can give an alternate proof: Since R is normal, it's an intersection of Noetherian DVR's V. Therefore $R[t]$ is the intersection of $V[t]$'s. V is a PID, hence UFD. So $V[t]$ is also UFD, hence normal. Therefore their intersection is normal.

