INTEGRAL DEPENDENCE

ZHAN JIANG

CONTENTS

1.	Integral dependence	1
2.	Lying over and going up theorems	3
3.	Prime heights, normality and going down theorem	5
4.	Graded Case	6

1. INTEGRAL DEPENDENCE

Definition 1.1. Let *S* be an *R*-algebra with structure homomorphism $f : R \to S$. An element $s \in S$ is **integral** over *R* if there is a monic polynomial $h(x) \in R[x]$ such that h(s) = 0.

If we assume that $h(x) = x^d + r_1 x^{d-1} + \dots + r_d$, then h(s) = 0 implies that

$$s^d = -r_1 s^{d-1} - \dots - r_d$$

So the submodule f(R)[s] inside S is a finite module over R (more precisely, f(R)). We have following definitions:

Definition 1.2. • *S* is **integral over** *R* if every element of *S* is integral over *R*.

- If $R \subseteq S$ and *S* is integral over *R*, then *S* is called an **integral extension** of *R*.
- *S* is **module-finite over** *R* is *S* finitely generated as an *R*-module.
- If $R \subseteq S$ and S is module-finite over R, then S is called a **module-finite extension** of R.

Next we discuss the relation between module-finite extensions and integral extensions, for that we need a technical lemma:

Lemma 1.3. Let $A = (r_{ij})$ be an $n \times n$ matrix over R and let V be an $n \times 1$ column vector such that AV = 0, then det(A) kills every entry of V.

Proof. det(*A*)*V* = det(*A*) I_nV = adj(*A*)*AV* = 0

Theorem 1.4. If S is module-finite over R, then S is integral over R.

Proof. For any element $s \in S$, we want to show that s is integral over R. Let $s_1, ..., s_n$ be a set of generators of S as an R-module. Without loss of generality we can assume that $s_1 = 1$. For each s_i we have

$$ss_i = \sum_j r_{ij}s_j$$

Let $V = \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix}$ and $A = sI_n - (r_{ij})$, then we have AV = 0. By Lemma 1.3 we know that det(A) kills s_i . In particular it kills $s_i = 1 - (r_{ij})$, then we have AV = 0.

particular, it kills $s_1 = 1$. So det $(sI_n - B) = 0 \Rightarrow s$ is integral over R.

Proposition 1.5. Let $R \to S \to T$ be ring homomorphisms such that S is module-finite over R with generators $s_1, ..., s_m$ and T is module-finite over S with generators $t_1, ..., t_n$. Then the composition $R \to T$ is module-finite with generators $s_i t_i$ where $1 \le i \le m$ and $1 \le j \le n$.

Proof. Every element $t \in T$ can be written as

$$t = \sum_{i=1}^{n} a_i t_i$$

where $a_i \in S$. Then each a_i could be written as

$$a_i = \sum_{j=1}^m r_{ij} s_j$$

 $t = \sum_{i,j} r_{ij} s_j t_i$

where $r_{ij} \in R$. So

completes the proof.

Corollary 1.6. The elements of S integral over R form a subring of S

Proof. Replace *R* by its image in *S* and assume that $R \subseteq S$. Let s_1, s_2 be two elements of *S* integral over *R*, then $R[s_1]$ is module-finite over *R* and $R[s_1, s_2]$ is module-finite over $R[s_1]$. So by Prop 1.5 we see that $R[s_1, s_2]$ is module-finite over *R*, hence $s_1 \pm s_2$ and s_1s_2 are integral over *R*.

Next theorem shows us the key relation between module-finiteness and integralness.

Theorem 1.7. Let S be an R-algebra, then S is module-finite over R iff S is finitely generated as an R-algebra.

Proof. The direction that "module-finite" \Rightarrow "integral" and "finitely generated" has been shown. For the converse, suppose that *S* is generated by $s_1, ..., s_n$, all of which are integral over *R*. Then we have a module-finite chain:

$$R \to R[s_1] \to R[s_1, s_2] \to \cdots \to R[s_1, \dots, s_n] = S$$

Hence by Prop 1.5, *S* is module-finite over *R*.

Corollary 1.8. *S* is integral over *R* iff it is a directed union of module-finite extensions of *R*.

Proof. "If" part is clear, for the "only if" part, notice that *S* is the directed union of its finitely generated *R*-subalgebras, each of which is module-finite extension of *R*. \Box

Let $f : R \to S$ be the structure map and suppose V is a multiplicative set in R. Let W = f(V) be the image of V in S. Then we have a natural map $V^{-1}f : V^{-1}R \to W^{-1}S$.

Lemma 1.9. With notations above,

- (1) If S is module-finite (resp. integral) over R, then $W^{-1}S$ is module-finite (resp.integral) over $V^{-1}R$.
- (2) If $R \subseteq S$ (then W = V) and T is the integral closure of R in S, then $V^{-1}R \subseteq V^{-1}T \subseteq V^{-1}S$ and $V^{-1}T$ is the integral closure of $V^{-1}R$ in $V^{-1}S$.

Proof. (1) If *S* is integral over *R*, for any element $\frac{s}{w} \in W^{-1}S$, there is some polynomial in *R* such that $s^d + a_1s^{d-1} + \cdots + a_d = 0$

There is some *v* maps to *w*, hence the polynomial

$$x^d + \frac{a_1}{v}x^{d-1} + \dots + \frac{a_d}{v^d}$$

is satisfied by $\frac{s}{w}$. So $W^{-1}S$ is integral over $V^{-1}R$.

If S is finitely generated as an R-module by $s_1, ..., s_m$. Then $\frac{s_1}{1}, ..., \frac{s_m}{1}$ generates $W^{-1}S$ over $V^{-1}R$ as well.

(2) The inclusion is trivial. By the result of (1), we see that $V^{-1}T$ is integral over $V^{-1}R$. For any element in $V^{-1}S$ that is integral over $V^{-1}R$, the denominator comes from V while the numerator is integral over R in S. So the numerator is in T therefore the element is in $V^{-1}T$. So $V^{-1}T$ continue to be the integral closure.

2. Lying over and going up theorems

Definition 2.1. If $R \subseteq S$ are rings, a prime $Q \subseteq S$ is said to **lie over** $P \subseteq R$ if $Q \cap R = P$.

Lemma 2.2. Let $R \subseteq S$ be domains and let $s \in S - \{0\}$ be integral over R, then s has a nonzero multiple in R.

Proof. Look at the integral relation of *s* over *R*:

$$s^d + a_1 s^{d-1} + \dots + a_d = 0$$

Since *S* is a domain, $a_d \neq 0$. So we have

 $s(s^{d-1} + a_1s^{d-2} + \dots + a_{d-1}) = -a_d$

which shows that $-a_d$ is a nonzero multiple of *s* in *R*.

Theorem 2.3. Let *S* be an integral extension of *R*, $I \subseteq R$ an ideal and $u \in IS$. Then *u* satisfies a monic polynomial equation $u^n + i_1u^{n-1} + \cdots + i_n = 0$ where $i_t \in I^t$ for $1 \leq t \leq n$.

Proof. We have that $u = \sum_{t=1}^{n} s_t i_t$ with $s_t \in S$ and $i_t \in I$. We may replace S by the smaller ring generated by $s_1, ..., s_n$ and u. This ring is module-finite over R. So we may assume WLOG that S is module-finite over R. We may assume further that $s_1 = 1$.

Since $us_i \in IS$, we have

$$us_j = \sum_{t=1}^n i_{jt} s_t$$

Let *V* be the $n \times 1$ column matrix with entries $s_1, ..., s_n$ and let *B* be the $n \times n$ matrix (i_{jt}) . Then the determinant of det $(uI_n - B)$ kills every s_i , in particular, it kills $s_1 = 1$. So it's zero, which has the form

$$u^n + i_1 u^{n-1} + \cdots + i_n$$

where $i_t \in I^t$.

Theorem 2.4 (Lying Over Theorem). Let S be an integral extension of R.

- (1) For every ideal I of R, the contraction of IS to R is contained in \sqrt{I} . If I is radical, then $IS \cap R = I$.
- (2) For every prime P of R, there are primes of S that contarct to P, and they are mutually incomparable.

Proof. (1) let $u \in IS \cap R$, by Thm 2.3 above it satisfies a monic equation with all terms expect u^n has coefficients in *I*. So $u^n \in I \Rightarrow u \in \sqrt{I}$.

(2) Now assume that I = P is prime. Consider the extension $R_P \to (R - P)^{-1}S$, it's still an integral extension by part (1) of Lem 1.9. So we have $P(R - P)^{-1}S \cap R_P = PR_P$. Then any maximal ideal, say Q' of $(R - P)^{-1}S$ containing $P(R - P)^{-1}S$ will contract to PR_P : the contraction is a prime ideal of R_P containing R_P , which must be PR_P . But then the contraction Q of Q' to S will lie over P.

Now we have to show that if two primes lying over *P*, then they are not comparable, i.e. one doesn't contain the other. Suppose we have two primes $Q_1 \subseteq Q_2$ in *S* lying over *P*, then passing to S/Q_1 and R/P we still have integral extension. Now Q_2S/Q_1 lies over (0). But by Lem 2.2 we see that any nonzero $s \in Q_2S/Q_1$ has a nonzero multiple in R/P, which shows that $Q_2S/Q_1 \cap R/P \neq (0)$.

Corollary 2.5 (Going UP Theorem). Let $R \hookrightarrow S$ be an integral extension and let

$$P_0 \subseteq P_1 \subseteq \cdots \subseteq P_d$$

be a chain of prime ideals of R. Let Q_0 be a prime ideal of S lying over P_0 . Then there is a chain of prime ideals

$$Q_0 \subseteq Q_1 \subseteq \cdots \subseteq Q_d$$

of *S* such that for all *t*, Q_t lies over P_t .

Proof. It sufficies to construct $Q_1 \supseteq Q_0$ lying over P_1 : the result then follows by a straight-forward induction on *d*. Consider $R/P_0 \subseteq S/Q_0$. This is an integral extension and P_1R/P_0 is a prime ideal. So there is a prime ideal Q_1S/Q_0 lying over it. Then we're done.

Corollary 2.6. If $R \hookrightarrow S$ is an integral extension then dim $(R) = \dim(S)$.

Proof. Let $Q_0 \subseteq \cdots \subseteq Q_d$ be a chain of ideals of *S*, then the contraction to *R* will be a chain of primes in *R* of the same length: they are all distinct ensured by lying over theorem. Hence we have dim(*S*) \leq dim(*R*).

On the other hand, given a prime chain in *R*. The lying over theorem ensures that we have a starting point in *S* and the going up theorem shows that we have a prime chain of the same length. So dim(*S*) \ge dim(*R*).

Therefore $\dim(R) = \dim(S)$.

Next we discuss the number of primes lying over a given prime in the module-finite case, first we need two preliminary results:

Definition 2.7. Two ideals $I, J \subseteq R$ are called comaximal if I + J = R.

Lemma 2.8 (Chinese Remainder Theorem). If I₁, ..., I_n are pairwise comaximal in R, then

- (1) $I_1I_2, I_3, ..., I_n$ are also pairwise comaximal.
- (2) $I_1 \cdots I_n = I_1 \cap \cdots \cap I_n$.
- (3) Let $J = I_1 \cdots I_n$, then the natural map

$$R/J \rightarrow R/I_1 \times \cdots \times R/I_n$$

is a ring isomorphism.

Proof. (1) We only need to show that $I_1I_2 + I_j = R$ for any *j*. Suppose we have $a_1 + u = 1$ for $a_1 \in I_1$ and $u \in I_j$; $a_2 + v = 1$ for $a_2 \in I_2$ and $v \in I_j$. Then $(a_1 + u)(a_2 + v) = 1 \Rightarrow a_1a_2 + (a_1v + a_2u + uv) = 1$. Note that $a_1a_2 \in I_1I_2$ and $(a_1v + a_2u + uv) \in I_j$.

For (2) and (3): By (1) we only need to prove this for n = 2, the general case will follow from the induction on n. Clearly we have $I_1I_2 \subseteq I_1 \cap I_2$. Let $u \in I_1 \cap I_2$, choose $a_1 \in I_1$ and $a_2 \in I_2$ such that $a_1 + a_2 = 1$. Then $u = u(a_1 + a_2) = ua_1 + ua_2$. But both ua_1 and ua_2 are in I_1I_2 . So $u \in I_1I_2$.

Now consider the map $R \to R/I_1 \times R/I_2$: It induces an injection $R/I_1I_2 = R/(I_1 \cap I_2) \hookrightarrow R/I_1 \times R/I_2$. To see surjectivity, for any $(u_1, u_2) \in R/I_1 \times R/I_2$, again choose $a_1 \in I_1$ and $a_2 \in I_2$ such that $a_1 + a_2 = 1$. Note that a_1 maps to 1 in R/I_2 and a_2 maps to 1 in R/I_1 . Then $u_1a_2 + u_2a_1$ maps to (u_1, u_2) as desired.

Theorem 2.9. Let *R* be a reduced *K*-algebra that is module-finite over the field *K*. Then *R* is a product of finite algebraic field extensions $L_1 \times \cdots \times L_n$ of *K*. In particular, *R* has *n* maximal ideals, i.e. the kernels of the *n* projections $R \rightarrow L_i$ and $n \leq \dim_K R$.

Proof. Since *K* is of dimension zero, so is *R* as it's integral over *K*. Hence every prime ideal of *R* is maximal and minimal. *R* can only have finitely many minimal primes, call them $m_1, ..., m_n$. Then $m_1 \cap \cdots \cap m_n$ is the nilradical of *R*. So $m_1 \cap \cdots \cap m_n = (0)$ as *R* is reduced. By Chinese Remainder theorem, we have

$$R = R/(0) = R/m_1 \cap \cdots \cap m_n = R/m_1 \cdots m_n = R/m_1 \times \cdots \times m_n$$

Each $L_i = R/m_i$ is a field module-finite over *K*, hence it's a finite algebraic field extension of *K*. The rest follows easily.

INTEGRAL DEPENDENCE

3. PRIME HEIGHTS, NORMALITY AND GOING DOWN THEOREM

Definition 3.1. Given a prime $P \subseteq R$, the supremum of lengths of finite strictly ascending chains of primes contained in *P* is called the **height** of *P*, denoted by ht(*P*).

Corollary 3.2. *If* $R \subseteq S$ *is an integral extension and* Q *is a prime ideal of* S *lying over* $P \subseteq R$ *, then* $ht_R(P) \ge ht_S(Q)$ *.*

Proof. Any prime chain in *S* contained in *Q* restricts to a prime chain in *R* contained in *P* by Lying over theorem. \Box

Then we are natural to ask when the equality holds. That is, suppose you have a prime chain

$$P_0 \subseteq P_1 \subseteq \cdots \subseteq P_n = P$$

and a prime *Q* lying over *P*, can you construct a prime chain in *S*:

$$Q_0 \subseteq Q_1 \subseteq \cdots \subseteq Q_n = Q$$

such that each Q_i lies over P_i ?

This turns out to need additional hypotheses even when *R* is a domain. For this purpose, we need the notion of **integral closure**.

- **Definition 3.3.** (1) The set of elements in $S \supseteq R$ that are integral over R was shown earlier to be a ring. This ring is called the **integral closure of** R **in** S.
 - (2) The integral closure of a domain *R* in its fraction field Frac(*R*) is called the **integral closure** or **normalization** of *R*. A domain *R* is **integrally closed** or **normal** if it is its own normalization.
- **Example 3.4.** (1) A unique factorization domain is a normal domain: Let $\frac{a}{b} \in Frac(R)$ be integral over *R* where *a*, *b* have no common nonunit divisors, then $\frac{a}{b}$ satisfies a monic equation

$$x^{d} + c_1 x^{d-1} + \dots + c_d = 0$$

So we have an equality in *R*:

$$a^{d} + c_{1}a^{d-1}b + \dots + c_{d}b^{d} = 0$$

Every term except a^d is divisible by b, hence a^d is divisible by b, which implies that a is divisible by b, a contradiction!

- (2) $\mathbb{Z}[\sqrt{5}]$ is not integrally closed. The element $\frac{1+\sqrt{5}}{2}$ satisfies the equation $x^2 x 1 = 0$.
- (3) If $R \subseteq S$ are domains and R is a direct summand of S as an R-module, then R is normal whenever S is.
- (4) The d^{th} Vernonse subring of $K[x_1, ..., x_n]$ is normal.

We need some preliminaries before we can prove the going down theorem.

Proposition 3.5 (Division Algorithm). Let *R* be rings and R[x] be the polynomial rings in one variable over *R*. Let *g* be any polynomial in R[x] and *f* a monic polynomial in R[x]. Then one can write uniquely g = fq + r where $q, r \in R[x]$ and either r = 0 or deg $(r) < \deg(f)$.

Proof. We can perform the long divison: Suppose $g = ax^n + \cdots$ and $f = x^d + \cdots$. If n < d then we can choose q = 0 and r = g. If not, let $g_1 = g - ax^{n-d}f$. Then g_1 has lower degree and by induction on degree we can write $g_1 = q_1f + r_1$. Hence $g = (q_1 + ax^{n-d})f + r_1$.

To prove uniqueness, suppose that qf + r = q'f + r'. Then (q - q')f = r' - r. The degree of LHS is larger than RHS unless they are both zero. So q = q' and r = r'.

Proposition 3.6. Let *R* be a normal domain with fraction field *K*. Let *S* be a domain containing *R*. Suppose that $s \in S$ is integral over *R*. Let $f(x) \in K[x]$ be the minimal monic polynomial of *s*. Then $f(x) \in R[x]$ and for any polynomial $g(x) \in R[x]$ such that g(s) = 0, f(x)|g(x) in R[x].

Proof. Since *s* satisfies some monic polynomial h(x) over *R*. We have f(x)|h(x) in K[x]. Hence every root of f(x) is integral over *R*, the coefficient of f(x) are elementary polynomials of roots of f(x). Therefore they are integral over *R*. Since *R* is normal, they are in *R*. Therefore $f(x) \in R[x]$.

If g(s) = 0, then f(x)|g(x) in K[x]. But we can do the division algorithm in R[x] and get the same result. So $q(x) \in R[x]$ and $f(x)|g(x) \in R[x]$.

Now we are ready to prove

Theorem 3.7 (Going Down Theorem). Let *R* be a normal domain and let *S* be integral over *R*. Suppose that no nonzero element of *R* is a zerodivisor in *S*, i.e. that *S* is torsion-free as an *R* module. Let

$$P_n \supseteq P_{n-1} \supseteq \cdots \supseteq P_0$$

be a chain of primes in R. Let Q_n be a prime ideal lying over P_n , then there is a chian of primes

$$Q_n \supseteq Q_{n-1} \supseteq \cdots \supseteq Q_0$$

of *S* such that Q_i lies over P_i for each *i*.

Proof. The general case follows by induction if we can prove this for two primes, i.e. given $P_0 \subseteq P_1$ in R and Q_1 lies over P_1 , we want to find Q_0 lies over P_0 such that $Q_0 \subseteq Q_1$.

First we show that we can assume WLOG that *S* is a domain by showing that there is a prime $q \subseteq Q_1$ lying over (0) $\subseteq R$. Consider the multiplicative system $W = (R - \{0\})(S - Q_1)$ in *S*. $0 \notin W$ as *S* is torison-free as an *R*-module. So there is a prime ideal *q* in *S* disjoint from *W*. $q \cap R = 0$ as $R - \{0\} \subseteq W$. Since $S - Q_1 \subseteq W$ we also have $q \subseteq Q_1$. We now replace *S* by S/q. Since *q* doesn't meet *R*, we still have injection $R \to S/q$. This extension is still integral. If we can find a prime ideal Q_0S/q lying over P_0 , then the contraction of Q_0 will lie over P_0 .

Now we can assume that *S* is also a domain. Let $A = R - P_0$ and $B = S - Q_1$. To complete the proof, we shall show that the multiplicative system *AB* does not meet the ideal P_0S . This implies that there is a prime ideal Q_0 of *S* containing P_0S and disjoint from $AB \supset A \cup B$. $Q_0 \cap B = \emptyset \Rightarrow Q_0 \subseteq Q_1$ and $Q_0 \cap A = \emptyset \Rightarrow P_0 \subseteq Q_0 \cap R \subseteq P_0$.

Suppose that $ab \in P_0S$ where $a \in A$ and $b \in B$. Since ab is integral over R, it satisfies a monic equation $g_1(x)$ with all but the leading coefficients in P_0 . Let $g(x) = g_1(ax) \in R[x]$, then g(b) = 0. Let K = Frac(R) and L = Frac(S) be the corresponding coefficients field. Then b is algebraic over K and has a minimal monic polynomial f(x) in K[x]. Since $b \in S$ is integral over R, by Prop 3.6 we see that $f(x) \in R[x]$ and f(x) divides g(x) in R[x], that is, we have g(x) = f(x)q(x) in R[x].

Now we pass to R/P_0 , the leading coefficient of g(x) is a^d while all other coefficients are in P_0 . So $\bar{g}(x) = \bar{a}^d x^d$. Hence $\bar{f}(x) = x^k$, which means that f(x) should have the form

$$f(x) = x^k + p_1 x^{k-1} + \dots + p_k$$

where all $p_i \in P_0$. So $b^k \in P_0 S \subseteq Q_1 \Rightarrow b \in Q_1$, a contradiction! So *AB* doesn't meet $P_0 S$ and we're done. \Box

Corollary 3.8. *Let R be a normal domain and S an integral extension of R that is torsion free over R*. *Let* $Q \subseteq S$ *be a prime lying over* $P \subseteq R$, *then* ht(Q) = ht(P).

4. GRADED CASE

Theorem 4.1. Let $R \subseteq S$ be an inclusion of \mathbb{N} graded (or \mathbb{Z} graded) rings compatible with the gradings, i.e. $R_h \subseteq S_h$ for each h. Then the integral closure of R in S is also compatible graded, i.e. every homogeneous component of an element of S integral over R is integral over R.

Proof. First we suppose that *R* has infinitely many units of degree 0 such that the difference of any two is a unit. Each unit *u* induces an endomorphism θ_u of *R* whose action on deg *d* forms is multiplication by

 u^d . Then $\theta_u \theta_v = \theta_{uv}$ and θ_u is an automorphism whose inverse is $\theta_{u^{-1}}$. These automorphisms are defined compatibly on both *R* and *S*, i.e. we have a commutative diagram

Let *T* be the integral closure of *R* in *S*, then θ_u preserves *T*: If $s \in S$ is integral over *R*, then one may apply θ_u to the equation of integral dependence to obtain an equation of integral dependence for $\theta_u(s)$ over *R*.

Now suppose that $s = s_h + \cdots + s_{h+k}$ is the decomposition into homogeneous components, each s_j has degree j. We choose units u_1, \dots, u_n such that $u_i - u_j$ is a unit for $i \neq j$. By applying θ_{u_i} we get n equations:

$$u_i^h s_h + \dots + u_i^{h+k} s_{h+k} = t_i \quad 1 \le i \le n$$

Let $M = (u_i^{j+h})_{k \times k}$, $V = \begin{pmatrix} s_h \\ \vdots \\ s_{h+k} \end{pmatrix}$ and $W = \begin{pmatrix} t_1 \\ \vdots \\ t_k \end{pmatrix}$, then we have W = MV and $W \in T$. But M is invertible: it's a

Van der Monde matrix with determinant $\prod_{i < j} (u_i - u_j)$. So $V = M^{-1}W \in T$.

In the general case, let *t* be an indeterminate over *R* and *S*. Assign degree zero to *t* so that *R*[*t*] is again a graded ring. Then *R*[*t*] \subseteq *S*[*t*] is still compatible. Let *U* be the set of *t*^{*n*}'s and all their differences. We have an inclusion of graded rings $U^{-1}R[t] \subseteq U^{-1}S[t]$. Now we have those desired units hence for any $s = s_h + \cdots + s_{h+k}$ integral over *R* we can show that each s_j is integral over $U^{-1}R[t]$.

Consider an equation of integral dependence

$$s_i^d + f_1 s_i^{d-1} + \dots + f_d = 0$$

where $f_i \in U^{-1}R[t]$. Then we can pick an element $G \in U$ to clear all denominators, and we get

$$Gs_i^d + F_1 s_i^{d-1} + \dots + F_d = 0$$

The coefficients of t^m where *m* is the highest degree of *t* in *G* must be zero. Therefore we get an equation of s_j with coefficients in *R*, as required.

Corollary 4.2. If R is integrally closed in S, then R[t] is integrally closed in S[t]. If R is a normal domain, then so is R[t]

Proof. The integral closure of R[t] in S[t] is graded and spanned by elements of the form st^k . Now consider the equation that st^k satisfies: Since t is an indeterminate, the coefficients of the equation must be zero. So s is integral over R.

In the Noetherian case, we can give an alternate proof: Since *R* is normal, it's an intersection of Noetherian DVR's *V*. Therefore R[t] is the intersection of V[t]'s. *V* is a PID, hence UFD. So V[t] is also UFD, hence normal. Therefore their intersection is normal.