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1. Motivation

We want to show that every ideal in a regular ring is tightly closed. This depneds on knowing that the
frobenius map F ∶ R → R is flat. This could be derived from following theorem

Theorem 1.1. Let (R,m,K) be a regular Noetherian local ring and M an R-module. Then M is a big C-M
module over R iff M is faithfully flat over R.

First since the Frobenius map is flat: RP → RP is flat hence RP is a RP C-M module, hence R is a R C-M
module and therefore a faithfully flat module.

We need following result on colon operations:

Proposition 1.2. Let R → S be flat and let I and J be ideals of R such that J is finitely generated. Then
(IS ∶R JS) = (I ∶R J)S.

Proof. Let J = (f1, ..., fn)R, then we have an exact sequence

0→ (I ∶R J) → R → (R/I)⊕n

where the rightmost map is r ↦ (rf1, ..., rfn). This stays exact after we apply − ⊗R S, hence

0→ (I ∶R J)S → S → (S/IS)⊕n
1



But the kernel is (IS ∶R JS). So we’re done. �

We see immediately that (I[q] ∶R J [q]) = (I ∶R J)[q] where J is finitely generated since the Frobenius map is
flat.

Theorem 1.3. All ideals in a regular Noetherian ring is tightly closed.

Proof. Let I be an ideal of R such that I∗ /= I, let u ∈ I∗ − I. Chhose a prime in the support of (I +Ru)/I,
then we have u ∈ I∗RP − IRP . So we can reduce to the local case: (R,m,K) is regular local and u ∈ I∗ − I.
We know that there is some nonzero c ∈ R○ such that

c ∈ (I[q] ∶ uq) = (I ∶ u)[q] ⊆m[q]

for q ≥ q0. Then c ∈ ∩nmn = 0, which is a contradiction! �

2. Weakly F-regular & F-regular rings

2.1. Definition.

Definition 2.1. Let R be a Noetherian ring of prime characteristic p > 0. R is weakly F-regular if every
ideal is tightly closed. R is F-regular if all of its localizations are weakly F-regular.

2.2. Useful Lemma.

Lemma 2.2. Let R be any Noetherian ring and M be a finitely generated module. Let u ∈M . Suppose that
N ⊆M is maximal with respect to the condition that u /∈ N . Then

(1) M/N has finite length
(2) Ass(M/N) contains a unique maximal ideal m
(3) u spans the scole AnnM/N m of M/N

Proof. The maximality of N implies that the image of u is in every nonzero submodule of M/N . We change
notation:

● Replace M by M/N
● Replace N by 0
● Replace u by its image in M/N

So u is a nonzero element in M such that every nonzero sudmodule contains u. We have to show that
Ass(M) = {m} for some maximal ideal m, we show this in two steps:

First we show that Ass(M) contains only one prime. Suppose it has two associated primes P1 and P2, then
we have injections R/P1 →M and R/P2 →M , which shows that there are submodules N1 and N2 isomorphic
to R/P1 and R/P2 respectively. Since u ∈ N1 ∩N2, the intersection is nonzero. But this is impossible unless
P1 = P2.

Next we show that the unique associated prime (denote P ) is maximal. Consider the injection R/P → M ,
u is contained in R/P therefore in any ideal of R/P . If P is not maximal, then there is some other prime
ideal Q in R/P and u ∈ Q. Since u is in every nonzero submodule, u is contained in any power of Q. In
particular, this is true when we pass to the local ring (R/P )Q, but then 0 /= u ∈ ∩n(Q(R/P )Q)n = 0, which
is a contradiction!

Thus Ass(M) = {m} and M has finite length (a power of m will kill M as M has a finite filtration with factors
R/m). The scole AnnM m is a submodule of M , hence, contains u. If u doesn’t span AnnM m, then any
nonzero element not in Ru will span a submodule doesn’t contain u. So AnnM m must be one-dimensional
as a R/m-vector space. �
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2.3. Criterion for weak F-regularity. We want to give equivalent characterizations of weak F-regularity,
we begin with a proposition

Proposition 2.3. Let R be a Noetherian ring and let W be a multiplicative system. Then every element of
(W −1R)○ has the form c

w
where c ∈ R○ and w ∈W

Before giving the proof, we need the prime avoidance lemma for cosets, which we stated below

Lemma 2.4. Let R be any commutative ring and r an element of R. Let I be an ideal of R and P1, ..., Pk
prime ideals of R. Suppose that the coset r + I is contained in ∪ki=1Pi, then there exists some j such that
rR + I ⊆ Pj.

Proof of the Proposition 2.3. Suppose that c
w

∈ (W −1R)○ where c ∈ R and w ∈ W . Let P1, ..., Pk be the

minimal primes of R that do not meet W , then PiW
−1R are all minimal prime ideals in W −1R. The

intersection P1 ∩⋯ ∩ Pk is nilpotent in W −1R therefore we could choose N such that (P1 ∩⋯ ∩ Pk)N = 0 in
W −1R. Let I = (P1 ∩⋯ ∩ Pk)N .

If c+I is contained in the union of all minimal primes of R, then by the Lemma 2.4 above we have cR+I ⊆ P
for some minimal prime ideal P . Then I ⊆ P , we have that P1 ∩⋯ ∩ Pk ⊆ P , and it follows that Pj = P for
some j. But then c ∈ Pj → c

1
∈ PjW −1R, a contradiction, since c

1
∈ (W −1R)○. Thus we could choose a ∈ I

such that c + a is in R○ and we have c
w
= c+a

w
. �

Lemma 2.5. Let R be a Noetherian ring of prime characteristic p > 0. Let I be an ideal of R primary to a
maximal ideal m of R. Then I is tightly closed in R if and only if IRm is tightly closed.

Proof. First we note that Rm is flat over R, so by [PROP 2.11 in Tight-closure] we see that I∗Rm ⊆ (IRm)∗.
Therefore, if a ∈ I∗ − I, then a ∈ I∗Rm − IRm ⊆ (IRm)∗ − IRm. So if IRm is tightly closed, then I is tightly
closed.

For the converse direction, if r
w
∈ (IRm)∗ − IRm where r ∈ R and w ∈W , then we can clear the denominator

and assume that r
1
∈ (IRm)∗ − IRm. Let c ∈ (Rm)○ be the element such that c( r

1
)q ∈ (IRm)[q] for all q >> 0.

By the Propostion 2.3 above, we know that c = c′
w′ where c′ ∈ R○ and w′ ∈W . Again we can clear denominator

and replace c by c′. Then c′rq
1

∈ (IRm)[q] = I[q]Rm for all q >> 0. Notice that I[q] is still m-primary and we
have following commutative diagram:

R //

��

Rm

��
R/I[q] ≃ // Rm/I[q]Rm

The bottom isomorphism is because R/I[q] is already a local ring with maximal ideal m. Since the image

of c′rq from the upper corner is zero, it follows that c′rq ∈ I[q] for all q >> 0. So r ∈ I∗ = I → r
1
∈ IRm, a

contradiction! �

We have following theorem

Theorem 2.6. Let R be a Noetherian ring of prime characteristic p > 0, then TFAE:

(a) R is weakly F-regular
(b) Rm is weakly F-regular for every maximal ideal m
(c) Every ideal primary to a maximal ideal is tightly closed.

Proof. Clearly (a) implies (c). To see that (c) implies (a), suppose we have a counterexample: there is some
element r ∈ I∗ − I, then choose J to be maximal in R with respect to the property that J contains I but
not r. Then by LEM 2.2, we see that R/J has a unique associated prime m which is also maximal. So J is
m-primary. But then r /∈ J and r ∈ I∗ ⊆ J∗, a contradiction!
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Now we know that (b) ⇔ Every m-primary ideal in Rm is tightly closed. This is equivalent to (c) by LEM
2.5. �

3. Strongly F-regular rings

3.1. Definition.

Definition 3.1. Let R be a Noetherian ring of prime characteristic p > 0. Suppose that R is F-finite and
reduced. Then R is strongly F-regular if for every c ∈ R○, there exists qc such that the map

R → R1/qc

1↦ c1/qc

splits over R.

The power qc usually depends on c. For example, one may need larger q for cp than for c.

Remark 3.2. This fact is quite useful in the following proof: If f ∶ R → S is a ring homomorphism and M is
an S-module. For any R-linear map R →M , if it splits, then R is a direct summand of S.

Suppose the R-linear map is given by 1 ↦ u, and the splitting map is θ ∶ M → R. Then the splitting map
S → R could be defined as φ(s) ∶= θ(su).

Note that in the remark, R →M split means that Ru isomorphic to R and Ru is a direct summand of M .

3.2. Properties. Apply Remark 3.2 to S = R1/qc we immediately have following:

Proposition 3.3. A strongly F-regular ring R is F-split.

Proof. See [F-split ring] �

Next we note following:

Proposition 3.4. Suppose that R is reduced Noetherian of prime characteristic p > 0 and c ∈ R○. If the
map R → R1/qc sending 1↦ c1/qc splits, then for all q ≥ qc, the map R → R1/q sending 1↦ c1/q splits.

Proof. It sufficies to show that we have a splitting map for R → R1/pqc , then the result follows by induction.

Now assume that θ ∶ R1/qc → R sending c1/qc to 1 is the splitting map. We can pass to a map θ′ ∶ R1/pqc → R1/p

by taking pth root on both sides:

R1/pqc θ′ // R1/p

R1/qc

OO

θ // R

OO

So θ′ ∶ R1/pqc → R1/p sending c1/pqc to 1 in R1/p and is R1/p, hence, R-linear. Now by Proposition 3.3 above,
there is a splitting map φ ∶ R1/p → R. Now φ ○ θ′ will give the desired splitting map. �

Following theorem reveals why we have such a strange definition for strong F-regularity.

Theorem 3.5. Let R be a strongly F-regular ring. Then for every inclusion of N ⊆ M of modules, N is
tightly closed in M .

Proof. First we may map a free module G onto M and let H be the preimage of N . Then it sufficies to show
that H is tightly closed in G. Let u ∈H∗, then there is some c ∈ R○ such that for all q >> 0, cuq ∈H[q].

Since R is strongly F-regular, let qc be the number such that R → R1/qc sending 1↦ c1/qc splits.
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Now we can choose q to be larger than qc and fix it. cuq ∈H[q] tells us that

cuq = r1hq1 +⋯ + rnhqn
Work in G⊗R1/q so then we could take qth root on both side and get

c1/qu = r1/q1 h1 +⋯ + r1/qn hn

But then we can apply the split map θ ∶ R1/q → R to both sides and get

u = θ(r1/q1 )h1 +⋯θ(r
1/q
n )hn

The right hand side is clearly in H. �

Theorem 3.6. Let R be an F-finite reduced ring. TFAE:

(1) R is strongly F-regular.
(2) Rm is strongly F-regular for every maximal ideal m.
(3) W −1R is strongly F-regular for every multiplicative system W .

Proof. (1)→(3): By Proposition 2.3, we know that elements in (W −1R)○ has the form c
w

where c ∈ R○ and

w ∈W . Given such an element c
w

, choose q such that R → R1/q splits. Assume the split map is θ ∶ R1/q → R

such that θ(c1/q) = 1. Define η ∶ R1/q → R by η(u) = θ(w1/qu). Then η induces a map W −1R1/q → W −1R.

Notice that W −1R1/q = (W −1R)1/q and we have η(( c
w
)1/q) = θ(c1/q) = 1.

(3)→(2): This is obvious.

(2)→(1): Fix c ∈ R○, for any maximal ideal m of R, the image of c is in R○
m. So there exist qm such that

Rm → R
1/qm
m sending 1 to c1/qm splits. There is a Zariski open neighbourhood containing m such that at

every prime P in this open neighbourhood the map RP → R
1/qm
P splits. These open neighbourhood covers

Spec(R). Since Spec(R) is quasicompact, there is a finite cover, thus there finitely many qm’s. Let qc be the

maximal one. Then R → R1/qc splits at every prime ideal, hence it splits. �

Corollary 3.7. A strongly F-regular ring is F-regular.

Corollary 3.8. R is strongly F-regular iff it is a finite product of strongly F-regular domains.

Proposition 3.9. If S is strongly F-regular and R is a direct summand of S, then R is strongly F-regular.

Proof. If R and S are domains then let c ∈ R○ be given. Since S is strongly F-regular, we may choose q and
S-linear map θ ∶ S1/q → S such that θ(c1/q) = 1. Let α ∶ S → R be R-linear map such that α(1) = 1. Then

α ○ θ ∶ S1/q → R is R-linear and sends c1/q to 1. We may restrict this map to R1/q. �

Proposition 3.10. If R → S is faithfully flat and S is strongly F-regular, then R is strongly F-regular.

Proof. Let c ∈ R○, then c ∈ S○. So there exists q and an S-linear map S1/q → S such that c1/q ↦ 1. There is
an obvious map S ⊗RR1/q → S1/q. This yields a map S ⊗RR1/q → S. Thus R → R1/q splits after a faithfully
flat base change, which implies that itself splits. �

Theorem 3.11. An F-finite regular ring is strongly F-regular.

Proof. We may assume that (R,m,K) is local so it’s a domain. Since F is flat, we have that R1/q is flat
over R, hence, free over R since it’s also module-finite over R.

Let c /= 0 be given. Choose q so large that c /∈m[q]. Then c1/q /∈mR1/q, so c1/q is part of a minimal basis for
the R-free module R1/q. Now we can choose a split map. �

The following result makes the property of being a strongly F-regular ring much easier to test.
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Theorem 3.12. Let R be a reduced F-finite ring of prime characteristic p > 0 and let c ∈ R○ be such that Rc
is strongly F-regular. Then R is strongly F-regular iff

There exists qc such that the map R → R1/qc sending 1↦ c1/qc splits.

Proof. The boxed condition for R is obviously necessary. Now assume it, we have to show that R is strongly
F-regular. First we see that R is F-split: because the map R to R1/p-module R1/qc splits, so R → R1/p splits.

For any d ∈ R○, since Rc is strongly F-regular, we can choose qd and an Rc-linear map β ∶ R1/qd
c → Rc such

that β(d1/qd) = 1. Since HomRc(R
1/qd
c ,Rc) is the localization of HomR(R1/qd ,R) at c. We have that β = α

cq

for some q = pe where α is a map R1/qd → R such that α(d1/qd) = cq.

By taking qqcth root we obtain a map:

α1/qqc ∶ R1/qqcqd → R1/qqc

d1/qqcqd ↦ c1/qc

Since R is F-split: R → R1/q splits. So there is a map γ ∶ R1/q → R. Therefore we have a map

γ1/qc ∶ R1/qqc → R1/qc

1↦ 1

c1/qc ↦ c1/qc

Finally we have the split map

θ ∶ R1/qc → R

c1/qc ↦ 1

The composition of all three maps gives what we want. �

3.3. Cohen-Macaulayness.

Theorem 3.13. If an FF-finite local ring (R,m) is strongly F -regular, then R is Cohen-Macaulay.

Proof. We prove by induction on the dimension of R. First note that everything is preserved by completing.
Hence we may assume that R = S/I where S is a complete regular local domain. We prove it by induction
on the dimension of R. The case d = dim(R) = 0 is easy.

Suppose that it holds for any d < dim(R). Let dim(S) = n. Consider Hi
m(R). By local duality, we have

Hi
m(R)∨ ≅ Extn−iS (R,S). Since Extn−iS (R,S) is noetherian and its formation commutes with localization. For

any prime P ⊆ R (we also write P ⊆ S), we have Extn−iS (R,S)P ≅ Extn−iSP
(RP , SP ). Since S is a local domain,

dimSP + dimS/P = n and S/P ≅ R/P . So n− i = dimSP − (i− dimR/P ). By local duality over SP , we have

Extn−iSP
(RP , SP ) ≅ H

i−dim(R/P )
PSP

(RP )∨. But by induction assumption, we conclude that H
i−dim(R/P )
PSP

(RP ) = 0

whenever i − dim(R/P ) < htP ⇔ i < dim(R). Therefore Hi
m(R) is of finite length for any i < dim(R).

We can choose c ∈ m such that c kills all Hi
m(R) where i < dim(R). Now consider the composition map

R ⊆ Fe∗(R)
Fe
∗ c→ Fe∗(R) → R. This is identity on R, which will becom identity on Hi

m(R). But the middle
map will be zero because Fe∗c kills Hi

m(Fe∗R) under the isomorphism R ≅ Fe∗R. �

3.4. Geometrically regular maps. We want to show that if R → S is geometrically regular and R is
strongly F-regular, then S is strongly F-regular.

We need following result:

Theorem 3.14 (Radu-André). Let R and S be F-finite rings such that R → S is geometrically regular.

Then for all e, R(e) ⊗R S → S(e) is faithfully flat.
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Proof. TO BE ADDED �

If R and S are reduced F-finite rings, then R1/q ⊗R S → S1/q is faithfully flat. Note that we also have
following proposition

Proposition 3.15. Let R → S be faithfully flat map of Noetherian rings such that S is module-finite over
R. Then R is a direct summand of S as an R-module

Proof. Since B is finitely generated A-module, the split issue is local in R. Assume WLOG that (R,m,K) is
local, then S is free over R and 1 is not in mS. We can extend 1 to be a set of free basis for S by Nakayama’s
lemma. Then the split map follows. �

Corollary 3.16. Let R → S be geometrically regular of F-finite rings. Then for all q, R1/q⊗S → S1/q makes
R1/q ⊗ S a direct summand of S1/q.

Now we are ready to prove following:

Theorem 3.17. If R → S is geometrically regular map of F-finite rings and R is strongly F-regular, then
so is S.

Proof. Since F-finite rings are excellent, we can choose c ∈ R○ such that Rc is regular, then Sc is regular.
By Theorem 3.12 we only need to show that S → S1/q sending 1 ↦ c1/q splits over S. By Corollary 3.16
we already have a split map S1/q → R1/q ⊗ S sending c1/q ↦ c1/q ⊗ 1. Now composte it with the map
R1/q ⊗ S → R⊗ S = S which sending c1/q ⊗ 1↦ 1⊗ 1 and we are done. �

4. Gorenstein case

4.1. Preliminary.

Proposition 4.1. Let R be a Noetherian ring of prime characteristic p > 0, then TFAE:

(1) If N ⊆M are arbitrary modules, than N is tightly closed in M
(2) For every maximal ideal m of R, 0 is tightly closed (over R) in ER(R/m)
(3) For evevry maximal ideal m of R, if u generates the soc(ER(R/m)), then u is not in the tight closure

of 0 in ER(R/m).

Proof. Evidently we have (1)→(2)→(3). We also note that (3)→(2) is obvious: since R/m → ER(R/m) is
essential, if 0∗ is nonzero, it will contain u.

Now assume (2) and (3), we want to prove (1): Let u ∈ N∗
M −N , we may replace N by a module maximal

with respect to containing N and not containing u. By passing to M/N we see that u ∈ 0∗−0 and u generates
the socle of the finite length module M . M is an essential extension of Ru ≅ K, therefore K → E →M and
u also generates the socle in E. Now u ∈ 0∗M → u ∈ 0∗E . �

4.2. Gorenstein local ring. Suppose that (R,m) is a F -finite Gorenstein local ring, then R has a canonical

module ωR. Apply the functor HomR(−, ωR) to the natural inclusionR ⊆ R1/pe yilds a map HomR(R1/pe , ωR) →
ωR.

We have HomR(R1/pe , ωR) ≅ ωR1/pe and ωR ≅ R,ωR1/pe ≅ R1/pe , Hence we get almost splitting map R1/pe → R,
call it Φ.

Lemma 4.2. The R-linear map Φ ∶ R1/pe → R generates HomR(R1/pe ,R) as an R1/pe-module.

Proof. If we dual everything back, Φ will corresponds to the natural inclusion map taking 1 to 1. Hence Φ
has to be the generator up to a unit. (DETALIS TO ADD LATER). �
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