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1. MOTIVATION

We want to show that every ideal in a regular ring is tightly closed. This depneds on knowing that the
frobenius map F': R — R is flat. This could be derived from following theorem

Theorem 1.1. Let (R, m, K) be a reqular Noetherian local ring and M an R-module. Then M is a big C-M
module over R iff M is faithfully flat over R.

First since the Frobenius map is flat: Rp — Rp is flat hence Rp is a Rp C-M module, hence R is a R C-M
module and therefore a faithfully flat module.

We need following result on colon operations:

Proposition 1.2. Let R — S be flat and let I and J be ideals of R such that J is finitely generated. Then
(IS ‘R JS) = (I ‘R J)S

Proof. Let J = (f1,..., fn) R, then we have an exact sequence
0-(I:gJ)— R~ (R/I)®"

where the rightmost map is r — (rf1,...,rfn). This stays exact after we apply — ® g S, hence

0> (I:J)S — S (8/IS)®"
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But the kernel is (IS :g JS). So we’re done. O

We see immediately that (I[Q] ‘R J[Q]) =(I:r J)[q] where J is finitely generated since the Frobenius map is
flat.

Theorem 1.3. All ideals in a regular Noetherian ring is tightly closed.

Proof. Let I be an ideal of R such that I* # I, let uwe I* — I. Chhose a prime in the support of (I + Ru)/I,
then we have u e I*Rp — IRp. So we can reduce to the local case: (R, m, K) is regular local and we I - 1.
We know that there is some nonzero c € R° such that

ce (][q] cud) = (I:u)[’ﬂ c mld

for ¢ > qp. Then c e n,m™ =0, which is a contradiction! O

2. WEAKLY F-REGULAR & F-REGULAR RINGS

2.1. Definition.

Definition 2.1. Let R be a Noetherian ring of prime characteristic p > 0. R is weakly F-regular if every
ideal is tightly closed. R is F-regular if all of its localizations are weakly F-regular.

2.2. Useful Lemma.

Lemma 2.2. Let R be any Noetherian ring and M be a finitely generated module. Let w e M. Suppose that
N c M is mazimal with respect to the condition that uw ¢ N. Then

(1) M/N has finite length
(2) Ass(M/N) contains a unique mazimal ideal m
(3) w spans the scole Anny;ym of M[N

Proof. The maximality of N implies that the image of u is in every nonzero submodule of M/N. We change
notation:

e Replace M by M /N
e Replace N by 0
e Replace u by its image in M /N

So u is a nonzero element in M such that every nonzero sudmodule contains u. We have to show that
Ass(M) = {m} for some maximal ideal m, we show this in two steps:

First we show that Ass(M) contains only one prime. Suppose it has two associated primes P; and P, then
we have injections R/P; - M and R/P», — M, which shows that there are submodules N; and N» isomorphic
to R/P; and R/P, respectively. Since u € N1 n Na, the intersection is nonzero. But this is impossible unless
P =P

Next we show that the unique associated prime (denote P) is maximal. Consider the injection R/P — M,
u is contained in R/P therefore in any ideal of R/P. If P is not maximal, then there is some other prime
ideal @ in R/P and u € Q. Since w is in every nonzero submodule, u is contained in any power of Q. In
particular, this is true when we pass to the local ring (R/P)q, but then 0 # u € n,,(Q(R/P)g)"™ = 0, which
is a contradiction!

Thus Ass(M) = {m} and M has finite length (a power of m will kill M as M has a finite filtration with factors
R/m). The scole Anny;m is a submodule of M, hence, contains w. If u doesn’t span Annp;m, then any
nonzero element not in Ru will span a submodule doesn’t contain u. So Anny; m must be one-dimensional
as a R/m-vector space. |



2.3. Criterion for weak F-regularity. We want to give equivalent characterizations of weak F-regularity,
we begin with a proposition

Proposition 2.3. Let R be a Noetherian ring and let W be a multiplicative system. Then every element of
(W™'R)° has the form £ where c€ R® and we W

Before giving the proof, we need the prime avoidance lemma for cosets, which we stated below

Lemma 2.4. Let R be any commutative ming and r an element of R. Let I be an ideal of R and P4y, ..., Py
prime ideals of R. Suppose that the coset r + I is contained in UlePi, then there exists some j such that
rR+I1cP;.

Proof of the Proposition 2.5. Suppose that = € (W™IR)° where c € R and w € W. Let Py,..., P, be the
minimal primes of R that do not meet W, then P;W™'R are all minimal prime ideals in W™'R. The
intersection Py n---n Py is nilpotent in W™ R therefore we could choose N such that (P, n--n P;)Y =0 in
WR. Let I = (P n--nP)N.

If ¢+1 is contained in the union of all minimal primes of R, then by the Lemma 2.4 above we have cR+1 < P
for some minimal prime ideal P. Then I ¢ P, we have that P, n---n P, ¢ P, and it follows that P; = P for
some j. But then ce P; - { € PjW‘lR7 a contradiction, since { € (W™LR)°. Thus we could choose a € I

such that c+a is in R° and we have = = c;—“ O

Lemma 2.5. Let R be a Noetherian ring of prime characteristic p>0. Let I be an ideal of R primary to a
mazximal ideal m of R. Then I is tightly closed in R if and only if IR,, is tightly closed.

Proof. First we note that R,, is flat over R, so by [PROP 2.11 in Tight-closure] we see that I*R,, € (IR,)*.
Therefore, if ae [*— I, then a € I*R,, - IR,, € (IR,;,)* - IR,,. So if IR,, is tightly closed, then I is tightly
closed.

For the converse direction, if = € (IR,;,)" -~ I Ry, where r € R and w € W, then we can clear the denominator
and assume that § € (IR;,)* ~ IR,,. Let c€ (R,,)° be the element such that c({)? € (IR, for all g >> 0.
By the Propostion 2.3 above, we know that ¢ = i—l, where ¢’ € R° and w’ € W. Again we can clear denominator

and replace ¢ by ¢’. Then C,Trq e (IR, = MR, for all ¢ >> 0. Notice that 119 is still m-primary and we
have following commutative diagram:

R——— R,

L

R/][Q] = Rm/j[q]Rm

The bottom isomorphism is because R/ l4] is already a local ring with maximal ideal m. Since the image
of ¢'r? from the upper corner is zero, it follows that ¢/r? € Il9] for all ¢ >> 0. Sor e [* = [ — T €IR,, a
contradiction! |

We have following theorem

Theorem 2.6. Let R be a Noetherian ring of prime characteristic p >0, then TFAE:

(a) R is weakly F-regular
(b) R, is weakly F-reqular for every mazimal ideal m
(c) Every ideal primary to a mazimal ideal is tightly closed.

Proof. Clearly (a) implies (c). To see that (c) implies (a), suppose we have a counterexample: there is some
element r € I* — I, then choose J to be maximal in R with respect to the property that J contains I but
not r. Then by LEM 2.2, we see that R/J has a unique associated prime m which is also maximal. So J is
m-primary. But then r ¢ J and r € I* ¢ J*, a contradiction!
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Now we know that (b) <> Every m-primary ideal in R, is tightly closed. This is equivalent to (¢) by LEM
2.5. O

3. STRONGLY F-REGULAR RINGS

3.1. Definition.

Definition 3.1. Let R be a Noetherian ring of prime characteristic p > 0. Suppose that R is F-finite and
reduced. Then R is strongly F-regular if for every c € R°, there exists g, such that the map

R - R4

1 /4

splits over R.

The power g, usually depends on ¢. For example, one may need larger ¢ for ¢” than for c.

Remark 3.2. This fact is quite useful in the following proof: If f: R — S is a ring homomorphism and M is
an S-module. For any R-linear map R — M, if it splits, then R is a direct summand of S.

Suppose the R-linear map is given by 1 — u, and the splitting map is § : M - R. Then the splitting map
S — R could be defined as ¢(s) = 0(su).
Note that in the remark, R — M split means that Ru isomorphic to R and Ru is a direct summand of M.

3.2. Properties. Apply Remark 3.2 to S = RY4e we immediately have following;:
Proposition 3.3. A strongly F-reqular ring R is F-split.

Proof. See [F-split ring] O

Next we note following:

Proposition 3.4. Suppose that R is reduced Noetherian of prime characteristic p > 0 and c € R°. If the
map R - R/ sending 1 — ¢ splits, then for all ¢ > q., the map R -~ R sending 1~ ¢!/ splits.

Proof. Tt sufficies to show that we have a splitting map for R — R'/?% then the result follows by induction.

Now assume that 0 : R/% - R sending M 01 is the splitting map. We can pass to a map 6’ : RY/Pae s Rl/p
by taking pth root on both sides:

R/pae v’ ~ Rl/p

]

Rla % _ p

So 0" : R'/P2= » RP sending ¢'/P% to 1 in R'? and is R'/P, hence, R-linear. Now by Proposition 3.3 above,
there is a splitting map ¢ : RY? - R. Now ¢ o 6§’ will give the desired splitting map. (|
Following theorem reveals why we have such a strange definition for strong F-regularity.

Theorem 3.5. Let R be a strongly F-regular ring. Then for every inclusion of N € M of modules, N is
tightly closed in M.

Proof. First we may map a free module G onto M and let H be the preimage of N. Then it sufficies to show
that H is tightly closed in G. Let u € H*, then there is some ¢ € R° such that for all ¢ >> 0, cu? € H9J.

Since R is strongly F-regular, let . be the number such that R — R'/% sending 1+ ¢'/% splits.
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Now we can choose ¢ to be larger than ¢. and fix it. cu? € H4 tells us that
cul =rihi+- +r,hd

Work in G ® R4 so then we could take gth root on both side and get

My = r}/th +owrllap,
But then we can apply the split map 6 : R/? - R to both sides and get

=00V hy +0(r} "),
The right hand side is clearly in H. O
Theorem 3.6. Let R be an F-finite reduced ring. TFAE:

(1) R is strongly F-regular.
(2) Ry, is strongly F-regular for every mazimal ideal m.
(3) WLR is strongly F-regular for every multiplicative system W .

Proof. (1)—(3): By Proposition 2.3, we know that elements in (W™'R)° has the form £ where ¢ € R° and
w € W. Given such an element =, choose ¢ such that R — RY4 gplits. Assume the split map is 6: R4 > R
such that 6(c'/9) = 1. Define 1 : RY9 - R by n(u) = (w"%). Then 7 induces a map W 'RY? - W-'R.
Notice that W'RY9 = (W-'R)Y9 and we have n((i)l/q) =0(ct7) =1.

(3)—(2): This is obvious.

(2)—=(1): Fix c € R°, for any maximal ideal m of R, the image of ¢ is in R;,. So there exist g, such that
R, — R%q"‘ sending 1 to ¢!/9m splits. There is a Zariski open neighbourhood containing m such that at
every prime P in this open neighbourhood the map Rp — R}D/qm splits. These open neighbourhood covers
Spec(R). Since Spec(R) is quasicompact, there is a finite cover, thus there finitely many g,,’s. Let ¢. be the
maximal one. Then R — RY% splits at every prime ideal, hence it splits. O

Corollary 3.7. A strongly F-reqular ring is F-regular.

Corollary 3.8. R is strongly F-reqular iff it is a finite product of strongly F-regular domains.
Proposition 3.9. If S is strongly F-regular and R is a direct summand of S, then R is strongly F-regular.
Proof. If R and S are domains then let ¢ € R° be given. Since S is strongly F-regular, we may choose ¢ and

S-linear map 6 : S/¢ » S such that 8(c'/?) = 1. Let a: S - R be R-linear map such that a(1) = 1. Then
aof:8% 5 Ris R-linear and sends ¢'/? to 1. We may restrict this map to R4, (Il

Proposition 3.10. If R — S is faithfully flat and S is strongly F-reqular, then R is strongly F-regqular.
Proof. Let ¢ € R°, then ¢ € S°. So there exists ¢ and an S-linear map S%9 — S such that ¢'/? — 1. There is

an obvious map S ®p RY9 - S/, This yields a map S ®z R/ — S. Thus R — R4 splits after a faithfully
flat base change, which implies that itself splits. ([l

Theorem 3.11. An F-finite reqular ring is strongly F-regular.

Proof. We may assume that (R, m, K) is local so it’s a domain. Since F is flat, we have that RY4 is flat
over R, hence, free over R since it’s also module-finite over R.

Let ¢ # 0 be given. Choose ¢ so large that ¢ ¢ ml4. Then ¢!/4 ¢ mRY4, so ¢'/4 is part of a minimal basis for
the R-free module R'/?. Now we can choose a split map. O

The following result makes the property of being a strongly F-regular ring much easier to test.
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Theorem 3.12. Let R be a reduced F-finite ring of prime characteristic p >0 and let c € R° be such that R,
is strongly F-reqular. Then R is strongly F-reqular iff

There exists q. such that the map R — R4 sending 1 — cMae gplits.

Proof. The boxed condition for R is obviously necessary. Now assume it, we have to show that R is strongly
F-regular. First we see that R is F-split: because the map R to R'/P-module RY% splits, so R — RY? splits.

For any d € R°, since R, is strongly F-regular, we can choose g4 and an R -linear map £ : Ri/ % _ R, such
that 3(d"/9) = 1. Since Hoch(Ri/q‘i,Rc) is the localization of Homp(RY9 R) at ¢. We have that S = 1
for some ¢ = p¢ where « is a map RY% — R such that o(d"/9) = ¢4,

By taking gg.th root we obtain a map:

otfade . pl/99caa _, ptlage

dt/a9eqa y tlac

Since R is F-split: R — R4 splits. So there is a map ~y : RY9 » R. Therefore we have a map
,yl/qc . RY/age _ Rpl/4c
11

ctae oy ol/ae

Finally we have the split map
0:RY% > R
Cl/qC -1

The composition of all three maps gives what we want. (Il

3.3. Cohen-Macaulayness.

Theorem 3.13. If an FF-finite local ring (R, m) is strongly F-regular, then R is Cohen-Macaulay.

Proof. We prove by induction on the dimension of R. First note that everything is preserved by completing.
Hence we may assume that R = S/I where S is a complete regular local domain. We prove it by induction
on the dimension of R. The case d = dim(R) =0 is easy.

Suppose that it holds for any d < dim(R). Let dim(S) = n. Consider H’ (R). By local duality, we have
Hi (R)Y = Ext? (R, S). Since Ext% (R, S) is noetherian and its formation commutes with localization. For
any prime P ¢ R (we also write P ¢ S), we have Exty (R, S)p = Ext4'(Rp, Sp). Since S is a local domain,
dim Sp +dim S/P =n and S/P = R/P. So n—1i=dimSp - (i —dim R/P). By local duality over Sp, we have
Ext?'(Rp,Sp) = H?g;m(R/P)(Rp)V. But by induction assumption, we conclude that Hj;g;m(R/P)(Rp) =0

whenever i — dim(R/P) < ht P < i < dim(R). Therefore H: (R) is of finite length for any i < dim(R).

We can choose ¢ € m such that ¢ kills all H:, (R) where i < dim(R). Now consider the composition map
Fic ;

Rc F{(R) = Fi(R) -~ R. This is identity on R, which will becom identity on Hy, (R). But the middle

map will be zero because Fec kills H, (FE¢R) under the isomorphism R = F¢R. O

3.4. Geometrically regular maps. We want to show that if R — S is geometrically regular and R is

strongly F-regular, then S is strongly F-regular.

We need following result:

Theorem 3.14 (Radu-André). Let R and S be F-finite rings such that R — S is geometrically regular.
Then for all e, R(®) ®@r S - S is faithfully flat.



Proof. TO BE ADDED ]

If R and S are reduced F-finite rings, then RY9 @z S — SS9 is faithfully flat. Note that we also have
following proposition

Proposition 3.15. Let R — S be faithfully flat map of Noetherian rings such that S is module-finite over
R. Then R is a direct summand of S as an R-module

Proof. Since B is finitely generated A-module, the split issue is local in R. Assume WLOG that (R, m, K) is
local, then S is free over R and 1 is not in m.S. We can extend 1 to be a set of free basis for S by Nakayama’s
lemma. Then the split map follows. O

Corollary 3.16. Let R — S be geometrically reqular of F-finite rings. Then for all ¢, RY1®S — SY9 makes
RY1 9 S a direct summand of SY9.

Now we are ready to prove following:

Theorem 3.17. If R — S is geometrically regular map of F-finite rings and R is strongly F-regular, then
sois S.

Proof. Since F-finite rings are excellent, we can choose ¢ € R° such that R, is regular, then S, is regular.
By Theorem 3.12 we only need to show that S — S'/7 sending 1 ~ ¢'/7 splits over S. By Corollary 3.16
we already have a split map S/9 - RY9 ® S sending ¢'/9 ~ ¢/9 ® 1. Now composte it with the map
RY1® S - R® S =S which sending ¢'/7® 1+ 1® 1 and we are done. |

4. GORENSTEIN CASE

4.1. Preliminary.

Proposition 4.1. Let R be a Noetherian ring of prime characteristic p >0, then TFAE:

(1) If N ¢ M are arbitrary modules, than N is tightly closed in M

(2) For every mazimal ideal m of R, 0 is tightly closed (over R) in Er(R/m)

(8) For evevry mazimal ideal m of R, if u generates the soc(Er(R/m)), then u is not in the tight closure
of 0 in Er(R/m).

Proof. Evidently we have (1)—(2)—(3). We also note that (3)—(2) is obvious: since R/m — Er(R/m) is
essential, if 0* is nonzero, it will contain u.

Now assume (2) and (3), we want to prove (1): Let u € Ny, — N, we may replace N by a module maximal
with respect to containing N and not containing u. By passing to M /N we see that u € 0* —0 and u generates
the socle of the finite length module M. M is an essential extension of Ru 2 K, therefore K - EF — M and
u also generates the socle in F. Now u € 03, - v € 0%,. O

4.2. Gorenstein local ring. Suppose that (R, m) is a F-finite Gorenstein local ring, then R has a canonical
module wg. Apply the functor Hompg (-, wgr) to the natural inclusion R ¢ RY?" yilds a map HomR(Rl/pE ,WR) =
WR.

We have Hompz (RY?" | wpr) = wpipe and wr 2 R, wrijpe ¥ RY?" Hence we get almost splitting map R'/?° - R,
call it ®.

Lemma 4.2. The R-linear map ® : RM?" — R generates Homp(RY?" | R) as an RY?"-module.

Proof. If we dual everything back, ® will corresponds to the natural inclusion map taking 1 to 1. Hence &
has to be the generator up to a unit. (DETALIS TO ADD LATER). O
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