F-finite Rings

Zhan Jiang

July 12, 2017

Contents

1	Defir	ition · · · · · · · · · · · · · · · · · · ·	1
	1.1	Definition	1
	1.2	Properties of F-fintie rings · · · · · · · · · · · · · · · · · · ·	1
2	Knuz	z's Theorem · · · · · · · · · · · · · · · · · · ·	3
	2.1	The theorem · · · · · · · · · · · · · · · · · · ·	3

1 Definition

1.1 Definition

Definition 1.1. A Noetherian ring R of prime characteristic p > 0 is **F-finite** if the Frobenius map $F : R \to R$ makes R into a module-finite R-algebra.

Note that this is equivalent to say that *R* is module-finite over $R^p = \{r^p : r \in R\}$.

If furthur more we have *R* reduced, this is also equivalent to $R^{1/p}$ is module-finite over *R*.

1.2 Properties of F-fintie rings

Proposition 1.2. Let *R* be a Noetherian ring of prime characteristic p > 0. If *R* is *F*-finite, then so is every ring essentially of finite type over *R*

Proof. Since *R* is module-finite over R^p , assume that $u_1, ..., u_n$ spans *R* over R^p .

We need to show three cases:

(1) If $S = R[x_1, ..., x_n]$, then S is F-finite. By induction it sufficies to show that R[x] is finite. But clearly $u_i x^j (1 \le i \le n, 1 \le j \le p-1 \text{ spans } R[x] \text{ over } (R[x])^p$.

(2) If S = R/I for some ideal *I*. Then the image of $u_1, ..., u_n$ will span R/I over $(R/I)^p$.

(3) If $S = W^{-1}R$, then the image of $u_1, ..., u_n$ will span $W^{-1}R$ over $(W^{-1}R)^p$. Because $(W^{-1}R)^p = W^{-1}(R^p)$ as inverting r^p is the same as inverting r.

By the same idea in the proof, we can prove following

Proposition 1.3. Let *R* be a Noetherian ring of prime characteristic p > 0. If *R* is *F*-finite, so is the formal power series ring $R[[x_1, ..., x_n]]$

Proof. Again by induction we only have to show R[[x]] is F-finite. Let $u_1, ..., u_n$ span R over R^p , then $u_i x^j$ spans R[[x]] over $R^p[[x^p]]$.

Also note that Proposition 1.2 has following corollary:

Corollary 1.4. *If K is a field finitely generated as a field over a perfect field, then every algebra essentially of finite type over K is F-finite.*

Proof. Note that Frobenius map is an automorphism of a perfect field. So a perfect field is always F-finite. *K* is an algebra essentially of finite type over this perfect field. So *K* is F-finite. The result follows by Proposition 1.2.

Proposition 1.5. Let *R* be a Noetherian ring of prime characteristic p > 0, then *R* is *F*-finite iff R_{red} is *F*-finite.

Proof. The "only if" part is clear by Proposition 1.2 above. We only need to show the "if" part. Let *J* be the nilradical of *R*. Then R/J is module-finite over $(R/J)^p$ by $u_1, ..., u_n$. Suppose *J* is generated by $v_1, ..., v_m$, then we have

$$R = R^{p}u_{1} + \dots + R^{p}u_{n} + J$$
$$= R^{p}u_{1} + \dots + R^{p}u_{n} + Rv_{1} + \dots + Rv_{m}$$

If we replace *R* in the second expansion by the first expansion, we get

$$R = \sum_{i=1}^{n} R^{p} u_{i} + \sum_{i,j} R^{p} u_{i} v_{j} + \sum_{j=1}^{m} J v_{j}$$

The last term is J^2 , so R/J^2 is module-finite over $(R/J^2)^p$. By induction we have R/J^{2^k} is module-finite over $(R/J^{2^k})^p$. Since *J* is the nilradical, there is some power 2^k kills *J*. Then *R* is F-finite.

Proposition 1.6. *Let* R *be a Noetherian ring of prime characteristic* p > 0*. TFAE:*

- (1) $F: R \rightarrow R$ is module-finite (R is F-finite)
- (2) $F^e: R \to R$ is module-finite for all $e \ge 1$
- (3) $F^e: R \to R$ is module-finite for some $e = e_0$

Proof. Clearly $(1) \Rightarrow (2) \Rightarrow (3)$. We only need to show $(3) \Rightarrow (1)$: If F^e is module-finite, so is its reduced ring R_{red} . Then we have $R_{\text{red}} \subseteq R_{\text{red}}^{1/p} \subseteq R_{\text{red}}^{1/q}$. Thus $R_{\text{red}}^{1/p}$ is module-finite since it's a subring of a module-finite extension. Then R_{red} is module-finite therefore R is module-finite by Proposition 1.5.

Proposition 1.7. *Let* R *be a Noetherian ring of prime characteristic* p > 0. If (R, m, K) *is a complete local ring, then* R *is* F*-finite iff* K *is* F*-finite.*

Proof. If *R* is F-finite, then K = R/m is F-finite. Assume that *K* is F-finite, then by the structure theorem of complete local ring [see Complete-local], *R* is a holomorphic image of a formal power series ring $K[[x_1, ..., x_n]]$. Then by Proposition 1.3 and Proposition 1.2, *R* is F-finite.

2 Knuz's Theorem

2.1 The theorem

Theorem 2.1 (E. Knuz). *Every F-finite ring is excellent.*