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1. PRELIMINARY

1.1. Regular sequences.

Definition 1.1. If x1, ..., xn ∈ R and M is an R-module, the sequence x1, ..., xn is called possibly improper
regular sequence on M if x1 is an NZD on M and for all i, xi+1 is an NZD on M/(x1, ..., xi)M. A possibly
improper regular sequence is a regular sequence if (x1, ..., xn)M 6= M. If (x1, ..., xn)M = M, then the regular
sequence is improper.
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Note that if M = 0, then any sequence is an improper regular sequence. And hence any sequence starting
with an unit is an improper regular sequence on M.

Remark 1.2. Suppose (R, m, K) is local and M is finitely generated, then any sequence x1, ..., xn ∈ m that is a
possibly improper regular sequence is automatically a regular sequence by Nakayama’s lemma.

If S is a flat R-algebra, then x1, ..., xn continues to be a possibly improper regular sequence on S ⊗ M: By
induction on n we only need to show the case n = 1. The map M ↪→x M stays as injection after applying
−⊗R S.

Note that in general, a regular sequence is not permutable: In the polynomial ring K[x, y, z], x− 1, xy, xz is a
regular sequence but xy, xz, x−1 is not. But in the local case or homogeneous case we do have permutability.
We shall make this precise later

Lemma 1.3. Let R be a ring and M an R-module. Let x1, ..., xn be a possibly improper regular sequence on M. If
u1, ..., un ∈ M such that

∑n
i=1 xiui = 0. Then ui ∈ (x1, ..., xn)M for every i.

Proof. Prove by induction on n. The case n = 1 is obvious.

We have un ∈ (x1, ..., xn−1)M, which is un = x1v1 +· · ·+xn−1vn−1. So x1(u1 +xnv1)+...+xn−1(un−1 +xnvn−1) = 0.
By induction hypothesis, ui + xnvi ∈ (x1, ..., xn−1)M. Thus ui ∈ (x1, ..., xn)M. �

Proposition 1.4. Let 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M be a finite filtration of M. If x1, ..., xn is a possibly improper
regular sequence on every factor Mk+1/Mk where 0 ≤ k ≤ m − 1, then it’s a possibly improper regular sequence on
M. If moreover it’s a regular sequence on M/Mm−1, then it is a regular sequence on M

Proof. If we prove the first part, the last statement follows. Let I = (x1, ..., xn)R, then IM = M⇒ IM/Mm−1 =
M/Mm−1.

We prove by induction on m. The case m = 1 is obvious. Assume m = 2: we have

0→ M1 → M→ N → 0

x1, ..., xn is already an improper regular sequence on M1 and N. Since Ass(M) ⊆ Ass(M1) ∪Ass(N). So if x1
is an NZD on M1 and N, then x1 is an NZD on M. So we have an exact sequence:

0→ x1 M1 → x1 M→ x1N → 0

Therefore we have an exact sequence of quotients:

0→ M1/x1 M1 → M/x1 M→ N/x1N → 0

Then we can inductively prove that x1, ..., xn is a possibly improper regular sequence on M by 9-lemma.

Now we can carry through the induction on m. Suppose we know the result for filtrations of length m − 1.
Then x1, ..., xn is a possibly improper regular sequence on Mm−1 by induction hypothesis. On the other hand,
it’s also possibly improper regular sequence on M/Mm−1. So the result follows from the case m = 2. �

Theorem 1.5. Let x1, ..., xn ∈ R and let M be an R-module. x1, ..., xn is a (possibly improper) regular sequence on
M iff xm1

1 , ..., xmn
n is a (possibly improper) regular sequence on M where ni are integers.

Proof. Let I = (x1, ..., xn)R and J = (xm1
1 , ..., xmn

n )R. If IM = M, then Ik M = M ⇒ M = Ik M ⊆ JM ⊆ M. If
JM = M, then M = JM ⊆ IM ⊆ M. So the properness is taken care of.

Suppose that x1, ..., xn is a p.i.r.s(possibly improper regular sequence) on M, by induction on n, it will suffices
to show that xm1

1 , x2, ..., xn: we may pass to x2, ..., xn and M/xm1
1 M and apply induction hypothesis. First

xm1
1 is an NZD as x1 is. Since M/xm1

1 M has a finite filtration by submodules xj
1 M/xm1

1 M. Each factor is
isomorphic to M/x1 M on which x2, ..., xn is p.i.r.s. So by Proposition 1.4 we see that they continue to be a
p.i.r.s. on M/xm1

1 M. Now we can do induction.

For the other implication, it will suffice to show that if xm1
1 , .., xmj

j , xj+1, ..., xn is a p.i.r.s. then xm1
1 , ..., xmj−1

j−1 , xj, xj+1, ..., xn

is a p.i.r.s. After this we can prove by induction. After killing xm1
1 , ..., xmj−1

j−1 , we only need to do the case
xm1

1 , x2, ..., xn implies x1, x2, ..., xn.
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First xm1
1 is an NZD, then x1 is clearly NZD. Want to show that xk is an NZD on M/(x1, ..., xk−1)M: Suppose

xku ∈ (x1, ..., xk−1)M, then xm1−1
1 xku ∈ (xm1

1 , ..., xk−1)M. So xm1−1
1 u ∈ (xm1

1 , ..., xk−1)M.

xm1−1
1 u = xm1

1 v1 + x2v2 + · · · + xk−1vk−1

xm1−1
1 (u − x1v1) = x2v2 + · · · + xk−1vk−1

By induction hypothesis, x1, ..., xk−1 is a p.i.r.s. and therefore xm1−1
1 , x2, ..., xk−1 is a p.i.r.s. Now we can apply

Lemma 1.3 to conclude that
u − x1v1 ∈ (xm1−1

1 , x2, ..., xn−1)M
So u ∈ (x1, x2, ..., xn−1)M, as required. �

Theorem 1.6. Let x1, ..., xn be a regular sequence on the R-module M. Let I = (x1, ..., xn)R. Suppose that u ∈ M
such that

xm1
1 · · · x

mn
n u ∈ (xm1+1

1 , ..., xmn+1
n )M

where mi are integers, then u ∈ IM.

Proof. We can write
xm1

1 · · · x
mn
n u = xm1+1

1 v1 + ... + xmn+1
n vn

We prove by induction on the number of nonzero mj’s. If all are zero then the conclusion follows.

If mj > 0, let x =
∏

i 6=j xmj

j . Then

xmi
i xu = xm1+1

1 v1 + ... + xmn+1
n vn

xmi
i (xu − xivi) = xm1+1

1 v1 + ... + xmi−1+1
i−1 vi−1 + xmi+1+1

i+1 vi+1 + ... + xmn+1
n vn

Since the powers of xi’s also form a regular sequence. We can apply Lemma 1.3 and conclude that xu−xivi ∈
(xm1+1

1 , ..., xmi−1+1
i−1 , xmi

i , xmi+1+1
i+1 , ..., xmn+1

n )M ⇒ xu ∈ (xm1+1
1 , ..., xmi−1+1

i−1 , xi , xmi+1+1
i+1 , ..., xmn+1

n )M. Now in x there is
one fewer nonzero mj. The conclusion follows from induction. �

Let I be an ideal of R and let M be an R-module. We can form the associated graded ring grI(R) and
associated graded module grI(M). Notice that if x1, ..., xn generates I, then the classes [xi] ∈ I/I2 generate
grI(R) as an (R/I)-algebra. So we have a surjection:

θ : (R/I)[X1, ..., Xn]→ grI(R)
Xi 7→ xi

Similarily we have a surjection

θM : (R/I)[X1, ..., Xn]⊗R/I (M/IM)→ grI(M)

Xm1
1 · · ·X

mn
n ⊗ [u] 7→ [xm1

1 · · · x
mn
n u]

But in the case when x1, ..., xn is a regular sequence and I = (x1, ..., xn)R, we have following theorem

Theorem 1.7. Let x1, ..., xn be a regular sequence on the R-module M and suppose that I = (x1, ..., xn)R. Then the
map (R/I)[X1, ..., Xn]⊗R/I (M/IM)→ grI(M) described above is injection and hence isomorphism.

Proof. Suppose it’s not. Then the kernel is a homogeneous ideal. So we can pick an element of the smallest
degree, say k. Thus it’s equivalent to say that a polynomial with coefficients in M − IM is in Ik+1 M. Pick a
monomial xa1

1 · · · xan
n u where a1 + · · · + an = k and u ∈ M − IM. Then for any other terms in the polynomial,

at least one xj has exponents bigger than aj. Therefore

xa1
1 · · · x

an
n u =

n∑
i=1

xai+1
i ui

Now apply Theorem 1.6 we have that u ∈ IM. A contradiction! �
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1.2. Permutability of regular sequence. If M is a finitely generated nonzero module over a local ring
(R, m, K) and the regular sequence is in m or if M is N-graded module over the N-graded ring R and the
regular sequence is of positive degree. Then the regular sequence is permutable.

Lemma 1.8. Suppose that we have either of the following two situations:

(1) (R, m, K) is a local ring and M is a finitely generated module over R. x1, ..., xn is a sequence in m
(2) R is a N-graded ring and M is a N-graded module. x1, ..., xn is a sequence in m which is the unique maximal

homogeneous ideal.

Proof. We only need to show that we can tranpose first two terms. Now assume that x1 is an NZD on
M and x2 is an NZD on M/x1 M. First we show that x2 is an NZD on M: Let N = AnnM x2. If u ∈ N,
x2u = 0 ⇒ u ∈ x1 M. So u = x1v. Then x1(x2v) = 0 ⇒ x2v = 0. Therefore v ∈ N. So N = x1N. Nakayama’s
lemma tells us that N = 0.

Now we have to show that x1 is an NZD on M/x2 M: (This time we don’t need local of grading hypothesis)
Suppose x1u = 0 in M/x2 M, which is x1u = x2v. Kill x1 we see that v ∈ x1 M. So v = x1ṽ. Then x1(u−x2ṽ) = 0
which implies that u = x2ṽ. So v = 0 in M/x2 M. �

1.3. Freeness over regular rings.

Lemma 1.9. Let K be a field and assume either that

(1) R is a regular local ring of dimension n and x1, ..., xn is a system of parameters. Let M be a nonzero finitely
generated module.

(2) R = K[x1, ..., xn] is a graded polynomial ring over K in which each of the xi is of positive degree. Let M be a
nonzero finitely generated Z-graded module.

Then M is free iff x1, ..., xn is a regular sequence on M

Proof. The ”only if” part is clear, since x1, ..., xn is a regular sequence on R and M is a direct sum of R.

Let m = (x1, ..., xn)R. Then M/mM is a finite-dimensional K-vector space over R. We can find a basis and
lift them back to a set of generators of M by Nakayama’s lemma. We also notice that in case (2), we can lift
them to a set of homogeneous basis.

We prove by induction on n. Assume u1, ..., uk is the set of (homogeneous) basis and n > 0 (n = 0 is clear).
Let N = {(r1, ..., rk) ∈ Rk : r1u1 + · · · + rkuk = 0}. By the induction hypothesis, the image of ui’s in M/x1 M are
a free basis. It follows that every ri is zero in R/x1R. So ri = x1si. Therefore x1(s1u1 + · · · + skuk) = 0. Since x1
is an NZD, we have (s1, ..., sk) ∈ N. So x1N = N ⇒ N = 0 by Nakayama’s lemma. �

1.4. Transition from one system of parameters to another.

Definition 1.10. A system of parameters for a local ring (R, m, K) is a sequence of elements x1, ..., xn ∈ m
such that m is nilpotent over (x1, ..., xn).

Definition 1.11. Suppose R is a finitely generated N-graded algebra over R0 = K. A homogeneous system
of parameters for R is a sequence of homogeneous elements f1, ..., fn in R such that dim(R/( f1, ..., fn)R) = 0.

We can use Homogeneous Prime Avoidance to show the existence of a homogeneous system of parameters.

Suppose we are in one of the two situations:

• (R, m, K) is local and f1, ..., fn and g1, ..., gn are two system of parameters
• R is finitely generated N-graded over R0 = K, m is the homogeneous maximal ideal and f1, ..., fn and

g1, ..., gn are two homogeneous system of parameters for R.

In either situation we have a finite sequence of system of parameters starting with f1, ..., fn and ending with
g1, ..., gn such that two consecutive elements of the sequence agree in all but one element.



COHEN-MACAULAY RINGS 5

We do this by induction on n: If n = 1 we’re done. If n > 1, we can choose h to avoid all minimal primes
of ( f1, ..., fn−1) and all minimal primes of (g1, ..., gn−1). Then the question reduces to find a transition from
f1, ..., fn−1, h to g1, ..., gn−1, h, which has shorter length. So the conclusion follows.

2. LOCAL CASE

2.1. Depth. First we have a lemma

Lemma 2.1. Let R → S be a homomorphism of Noetherian rings. Let I be an ideal of R and let M be a finitely
generated S-module. Then IM = M iff IS + AnnS M is the unit ideal.

Proof. If IM = M, then choose a set of generators u1, ..., un. Each is an I-linear combination of ui’s. Therefore
U = AU ⇒ (I − A)U = 0. In particular, det(I − A)U = 0. So det(I − A) = 1 + a ∈ AnnS M where a ∈ IS. Then
IS + AnnS M = S.

If IS + AnnS M = S, then IM = (IS + AnnS M)M = SM = M. �

Actually we have a faster prove: I + J = S iff V(I) ∩ V(J) = ∅. But we also know that Supp(M/IM) =
Supp(S/IS ⊗M) = Supp(S/IS) ∩ Supp(M).

Next we can prove following

Theorem 2.2. Every maximal regular sequence on M in I is of the same finite length.

Proof. First we show that every sequence if finite: suppose we have a regular sequence x1, ..., xn, .... Let
In = (x1, ..., xn), then In ⊆ In+1 must terminate. Thus In+1 = In, then xn+1 ∈ In which means the action of xn+1
on M/In M is zero. A contradiction!

Now assume that we have two sequences x1, ..., xn and y1, ..., ym. Assume WLOG that n ≤ m. Let Q be an
associated prime of M/(x1, ..., xn)M contaning I and let P be its contraction to R. We can replace R be RP, S
by SQ and M by MQ. Therefore assume WLOG that R→ S is local.

If n = 0, then P consists entirely of zerodivisors. Therefore m = 0. If n = 1, since P is an associated prime of
M/x1 M. There is an element u ∈ M/x1 M of which the annihilator is P. Since y1 ∈ P, we see y1u ∈ x1 M.
Then y1u = x1v. Now we prove that P is the associated prime of M/y1 M by proving that AnnM/y1 M v = P.
If r ∈ R kills v, i.e. rv = y1w. Since x1, y1 are NZD. This holds iff x1rv = x1y1w ⇔ y1ru = y1x1w ⇔ ru = x1w,
which implies that r ∈ P. Meanwhile any other element in R is an unit.

Now suppose that n > 1. Since x1, ..., xn−1 and y1, ..., ym−1 are both regular sequences that are not maxi-
mal. Then I is not contained in any associated prime of M/(x1, ..., xn−1)M nor in any associated prime of
M/(y1, ..., ym−1)M. Thus there is an NZD z on both module. Since z is NZD on M/(x1, ..., xn−1)M and xn
is already a maximal regular sequence. By the case case n = 1, we see that z is also maximal. Therefore
(x1, ..., xn−1, z) is maximal. The same argument proves that (y1, ..., ym−1, z) is also maximal. Now by per-
mutability of regular sequence, (z, x1, ..., xn−1) and (z, y1, ..., ym−1) are regular sequence. Now kill z and by
induction we see n − 1 = m − 1. Thus n = m. �

Now we can give following definition

Definition 2.3. Let R → S be a homomorphism of Noetherian rings and I ⊆ R an ideal. Let M be a finitely
generated S-module. If IM 6= M we define the depth of M on I to be the maximal length of any maximal
regular sequence in M on I. If IM = M, we use the convention that the depth=∞.

Proposition 2.4. Let R be a local ring and let M be a finitely generated R-module. Let I ⊆ R be an ideal such that
IM 6= M. If (x1, ..., xd) is a regular sequence on M, then dim(M/(x1, ..., xd)M) = dim(M)−d and depthI(M/(x1, ..., xd)M) =
depthI(M)− d.

Proof. We only need to prove the case d = 1. Once we proved it, every time xi is an NZD on M/(x1, ..., xi−1)M,
and the statement follows.
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The depth statement is easy as every maximal regular sequence is of the same length. For the dimension
formula: replace R by R/AnnR M then dim(M) = dim(R). Since x1 is an NZD on M, it avoids all associated
primes of M, hence it avoids all minimal primes. So dim(R/x1R) = dim(M/x1 M) ≤ dim(R)−1. On the other
hand, the minimal primes over x1R has height at most 1. So dim(R/x1R) ≥ dim(R) − 1 ⇒ dim(R/x1R) =
dim(R)− 1. �

Corollary 2.5. We have

(1) depthI(M) = infP depthIRP
(MP)

(2) depthI(M) = infP depthPRP
(MP)

where P runs through all prime ideals in the support of M/IM.

Proof. (1):First of all, we know that localing at P will only increase the depth: a regular sequence on M will
continue to be regular sequence. We only need to show that at some prime P, depthI M = depthIRP

MP.

Fix a regular sequence x1, ..., xn, since MP/(x1, ..., xn)MP ∼= (M/(x1, ..., xn)M)P, we only need to show that if
depthI(M) = 0, then depthIRP

(MP) = 0 for some P. Now since depthI(M) = 0, I consists of zerodivisors on
M. Therefore I is contained in some associated prime P. The inclusion still holds IRP ⊆ PRP. Therefore the
depth is still zero. On the other hand, if (M/IM)P = MP/IMP = 0, then MP = IMP ⊆ PMP ⊆ MP ⇒ MP = 0.
This is impossible. So P has to be in the support of M/IM.

(2):It’s easy to see that depthIRP
(MP) ≤ depthPRP

(MP). So again we only need to show equality at some P.
But this is immediate from the proof of part (1): the P we choose consists of only ZD on M, so depthPRP

(MP) =
0. �

The Corollary 2.5 enables us to pass a question about depth to a local case, in which case we have per-
mutability and Propsition 2.4.

Now we are ready to prove that

Proposition 2.6. Let R→ S be Noetherian rings. Let I be an ideal of R and let M be a finitely generated S-module.

(1) depthI(M) ≤ dim(M) ≤ dim(S)
(2) depthI(M) ≤ dim(R)

Proof. (1): The first part dim(M) ≤ dim(S) is obvious. In the local case, after killing a regular sequence, M
is nonzero. So dim(MP) ≥ depthIRP

(MP). Since this is true for any P in the support of M/IM. But any
localization only decreases the dimension. So dim(MP) ≤ dim(M).

(2): The dimension will only decrease after localization. We can pass to a local ring with depth unchanged.
So assume R, S are local. Now kill the annihilator of M in both rings. Now we want to use the induction on
depth of M. Let x be an NZD in I on M. Then M/xM has depth 1 less while R/xR and S/xS has dimension
1 less. When we reaches dim(R) = 0, then I consists of nilpotents therefore the depth of M is automatically
zero. �

Corollary 2.7. Let R be a Noetherian ring and let M be a finitely generated R-module, then depthI(R) ≤ ht(P)
where P is in Supp(M) ∩min(I).

2.2. Cohen-Macaulay rings. A system of parameters for a local ring (R, m, K) of Krull dimension n is n
elements x1, ..., xn in m such that

√
(x1, ..., xn)R = m.

A local ring is Cohen-Macaulay if some (equivalently, every) system of parameters is a regular sequence.

Proposition 2.8. Let (R, m, K) be a local ring. If one system of parameters is a regular sequence, then every system
of parameters are regular sequences.
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Proof. We can choose a chain of system of parameters starting with the given one and ending with an arbi-
trary one. So we only need to show that when two system of parameters differ by one element, if one is a
regular sequence, then so is the other.

Both system of parameters and regular sequences are permutable. We can assume WLOG that the first
dim(R)− 1 terms are the same and we kill them. We know that xn = cy and ym = dx. If x is an NZD, so is y
and the converse holds. �

Proposition 2.9. If (R, m, K) is a CM local ring, then ht(I) = depthI(R) for any ideal I

Proof. Let n = ht(I) = depthI(R). Choose a maximal sequence of elements of I that is part of a system of
parameters, say x1, ..., xk where k < n. I cannot be contained in any minimal primes of (x1, ..., xk): otherwise
I will be contained in some minimal prime of (x1, .., xk), which has height at most k, a contradiction! So we
can choose xk+1 not in any minimal prime, therefore x1, ..., xk, xk+1 is part of a system of parameters for R,
contradicting the maximality of the sequence x1, ..., xk. �

We note that every regular sequence could be extended to a system of parameters:

• A sequence x1, ..., xn is a regular sequence if xi is not in the union of associated primes of (x1, ..., xi−1)R
• A sequence x1, ..., xn is a system of parameters if xi is not in the union of minimal primes of (x1, ..., xi−1)R

So any regular sequence is automatically part of a system of parameters, and after killing this regular se-
quence of length d. The dimension drops exactly by d. So we can still choose more elements to make the
sequence a system of parameters.

Corollary 2.10. If (R, m, K) is a CM local ring, then so is RP for any prime P.

Proof. By Proposition 2.9, we know that dim(RP) = ht(P) = ht(PRP) = depthP(R). Choose a regular sequence
on R in P, they continue to be a regular sequence on RP in PRP. Therefore RP is Cohen-Macaulay. �

Now it’s reasonable to give following definition

Definition 2.11. A Noetherian ring R is Cohen-Macaulay if RP is Cohen-Macaulay local ring for any prime
P of R.

By Corollary 2.10 we know that it’s equivalent to Rm is Cohen-Macaulay local for any maximal prime m.

Proposition 2.12. R is CM iff ht(I) = depthI(R) for every ideal I of R.

Proposition 2.13. If R is CM, let x1, ..., xn be a regular sequence and let I = (x1, ..., xn)R. Then every associated
prime P of I has height n. In particular, I has no mebedded primes.

Proof. We can localize at P and PRP is still an associated prime of IRP, then x1, ..., xn could be extended to
a system of parameters which is also a regular sequence. But PRP/IRP consists entirely of zerodivisors on
RP/IRP. So it’s impossible to extend. Thus RP/IRP has dimension 0, which implies that P has height n. �

The Cohen-Macaulay condition is increasingly resetrictive as the Krull dimension increases.

• In dimension 0, every local ring is Cohen-Macaulay.
• In dimension 1, it is sufficient but not necessary that the ring be reduced. The precies characterization

is that the maximal ideal not be an embedded prime ideal of (0).
• In dimension 2, it suffices, but is not necessary, that the ring R be normal. (normality implies that (0)

is of pure height 1, therefore no embedded prime ideals).

The two dimensional domains K[[x2, x3, y, xy]] and K[[x4, x3y, xy3, y4]] are not CM. But K[[x2, x3, y2, y3]] is
not normal, it is CM.

Theorem 2.14. Let R be a module-finite local extension of a regular local ring A. Then R is Cohen-Macaulay iff R is
A-free
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Proof. If R is Cohen-Macaulay, every regular sequence on A is also a system of parameters of A and contin-
ues to be a system of parameters of R. Hence it’s regular on R. So R is A-free

If R is A free, some system of parameters of A is a regular sequence on R. So R is Cohen-Macaulay. �

We also notice that

Proposition 2.15. A local ring R is Cohen-Macaulay iff R̂ is Cohen-Macaulay.

2.3. Height of ideals.

Proposition 2.16. Let R be a Noetherian ring and let x1, ..., xd generate a proper ideal I of height d. Then there exists
elements y1, ..., yd ∈ R such that for every i

• yi ∈ xi + (xi+1, ..., xd)R
• y1, ..., yi generates an ideal of height i

and moreover, (y1, ..., yd)R = I and yd = xd.

If R is CM, then y1, ..., yd is a regular sequence.

Proof. First we see that x1 + (x2, ..., xd)R is not contained in the union of all minimal primes of R by the
coset form of prime avoidace lemma: otherwise ht(I) = 0. So we can choose x1 + δ1 not in any minimal
prime. Hence y1 = x1 + δ1 is a NZD in R. So ht(y1) = 1 and (y1, x2, ..., xd)R = I. Now we apply induction to
R/y1R. �

Proposition 2.17. Let R be a Noetherian ring and let P be a minimal prime of R. Let x1, ..., xd be elements of R such
that (x1, ..., xi)(R/P) has height i. Then there exists δi ∈ P such that let yi = xi + δi, then (y1, ..., yi)R has height i.

Proof. We construct δi recursively: Let δ1, ..., δt be chosen. If t < d, we cannot have xt+1 + P contained in the
union of minimal primes of the ideal (y1, ..., yt)R. Otherwise by prime avoidance we have xt+1 +P ⊆ Q. Then
on one hand ht(Q) ≤ t. On the other hand, after modulo P, we get (x1, ..., xt+1)R/P ⊆ QR/P⇒ ht(QR/P) ≥
t + 1, a contradiction! Then we can choose δt+1 ∈ xt+1 + P not in any minimal prime of (y1, ..., yt)R. �

3. HOMOGENEOUS CASE

3.1. Preliminary Results.

Proposition 3.1. Let M be an N(or Z)-graded module over an N(or Z)-graded Noetherian ring R, then every associ-
ated prime of M is homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u ∈ M. Fix P and u, any multiple of
u could be identified as an element of R/P→ Ru ⊆ M, hence has annihilator P as well.

Let ui be a nonzero homogeneous component of u of degree i. Its annihilator Ji is easily seen to be a ho-
mogeneous ideal of R. If Ji 6= Jk then we can choose an element r ∈ Ji − Jk then ru is nonzero with fewer
homogeneous componenets. We can choose an multiple of u such that it has the fewest homogeneous com-
ponents. Then Ji = Jk, call them J. We have J ⊆ P.

If J 6= P, choose r ∈ P−J. We can make the choice such that no components of r is in J. Let ra be homogeneous
component of r with lowest degree a and let ub be homogeneous component of u with lowest degree b. Then
raub is of the lowst degree and hence is zero. So ra ∈ J, a contradiction! �

Corollary 3.2. Let R be a finitely generated N-graded K-algebra with R0 = K. Let m = ⊕∞d=1Rd be the homogeneous
maximal ideal of R. Then dim(R) = ht(m) = dim(Rm).

Proof. Let P be a minimal ideal of R, then P is homogeneous by Proposition 3.1. So P ⊆ m. But after killing
P, the dimension of the domain R/P equals to height of maximal ideal, which doesn’t change after localizing
at m.
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Therefore
dim(R) = dim(R/P) = dim((R/P)m) ≤ dim(Rm) ≤ dim(R)

Now the result follows. �

3.2. Homogeneous system of parameters. Recall the definition 1.11 of a homogeneous system of parame-
ters, here we give more characterization on them.

Theorem 3.3. Let R be a finitely generated N-graded K-algebra with R0 = K such that dim(R) = n. Let f1, ..., fn be
a sequence of homogeneous elements of positive degree, TFAE:

(1) f1, ..., fn is a homogeneous system of parameters.
(2) m is nilpotent in R/( f1, ..., fn)R
(3) R/( f1, ..., fn)R is finite-dimensional as a K-vector space
(4) R is module-finite over the subring K[ f1, ..., fn]

Moreover, when above conditions hold, f1, ..., fn are algebraically independent over K. So K[ f1, ..., fn] is a polynomial
ring.

Proof. The basic idea behind this is that R = K ⊕ m.

(1)⇒(2): If f1, ..., fn is a homogeneous system of parameters, we have that dim(R/( f1, ..., fn)R) = 0. Then
every maximal ideal is minimal and hence homogeneous. So there is only one m/( f1, ..., fn) and it follows
that m/( f1, ..., fn) is nilpotent.

(2)⇒(3): After killing ( f1, ..., fn), m/( f1, ..., fn) is nilpotent. So m/( f1, ..., fn) is finite-dimensional as a K-vector
space, which implies that R/( f1, ..., fn)R is a finite-dimensional K-vector space.

(3)⇒(4): This is obvious by Nakayama’s lemma.

(4)⇒(1): R is module-finite over K[ f1, ..., fn]. This is preserved after killing ( f1, ..., fn) so R/( f1, ..., fn)R is
module-finite over K. Therefore it’s zero-dimensional.

Finally, since R is module-finite over K[ f1, ..., fn]. The Krull dimension of K[ f1, ..., fn] is necessarily n, which
implies that f1, ..., fn must be algebraically independent. �

3.3. Cohen-Macaulay rings. Now we can prove following:

Theorem 3.4. Let R be a finitely generated graded algebra of dimension n over R0 = K. Let m denote the homogeneous
maximal ideal of R. TFAE:

(1) Some homogeneous system of parameters is a regular sequence.
(2) Every homogeneous system of parameters is a regular sequence.
(3) For some homogeneous system of parameters f1, ..., fn, R is a free module over K[ f1, ..., fn].
(4) For every homogeneous system of parameters f1, ..., fn, R is a free module over K[ f1, ..., fn].
(5) Rm is Cohen-Macaulay.
(6) R is Cohen-Macaulay.

Proof. (1)⇔(2): This is the same as the local case.

(1)⇔(3) and (2)⇔(4): This is because Lemma 1.9.

So now we have that the first four equivalent. Clearly (6)⇒(5).

(5)⇒(2): Let x1, ..., xn be a homogeneous system of parameters for R. It continues to be a system of pa-
rameters of Rm. Hence it’s a regular sequence. We claim that they are a regular sequence on R: If not,
xk+1 is contained in some associated prime of (x1, ..., xk), which is homogeneous. This is preserved after
localization, a contradictino!

(1)⇒(6): Let f1, ..., fn be a homgoeneous system of parameters for R. Then R is a free module over S =
K[ f1, ..., fn]. Let Q be a maximal ideal of R and let P be its contraction to S. Then SP → RQ is faithfully
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flat. Notice that they have the same dimension. Choose a regular sequence in SP, they will continue to be
a regular sequence in RQ. Then RQ has a system of parameters which is also a regular sequence. So RQ is
Cohen-Macaulay. �

4. EXAMPLES

4.1. A normal non-C-M domain. Let S = K[X, Y, Z]/(X3 + Y3 + Z3) = K[x, y, z] where char(K) 6= 3. Let
R = K[s, t] then the Segre product is T = K[xs, ys, zs, xt, yt, zt], which is a direct summand of R ⊗K S. Since
S is normal, so is S⊗K R = S[s, t]. Therefore T is normal. In fact T is regular except at the origin. Both T and
Tm are normal but not C-M.

Let D = K[xs, ys, xt, yt] ⊆ T be a subring, we have

(zs)3 + ((xs)3 + (ys)3) = 0

(zt)3 + ((xt)3 + (yt)3) = 0

So T is module-finite over D and D has a homogeneous system of parameters ys, xt, xs − yt. But this is not
a regular sequence on T: because

(zs)(zt)(xs − yt) = (zs)2(xt)− (zt)2(ys)

If (zs)(zt) 6∈ (xt, ys) then we’re done: suppose not, then (zs)(zt) ∈ (xt, ys). Consider the K-linear map T → S
sending s 7→ 1 and t 7→ 1. Then z2 ∈ (x, y), but this is impossible because S/(x, y) ∼= K[z]/(z3).

5. COHEN-MACAULAY MODULES

5.1. Definition.

Definition 5.1. If (R, m, K) is local and M a finitely generated R-module of Krull dimension d, a system of
parameters for M is a sequence of elements x1, ..., xd ∈ m such that, equivalently:

• dim(M/(x1, ..., xd)M) = 0.
• The image of x1, ..., xd form a system of parameters in R/AnnR M.

Definition 5.2. A fintiely generated module M over a Noetherian local ring R is Cohen-Macaulay if some
(equivalently, every) system of parameters is a regular sequence.

Definition 5.3. A fintiely generated module M over a Noetherian ring R is Cohen-Macaulay if its localiza-
tion at maximal (equivalently, prime) ideals in its support are Cohen-Macaulay.

Theorem 5.4. Let (R, m, K) be a local ring and M 6= 0 a finitely generated Cohen-Macaulay R-module of Krull
dimension d. Then every nonzero submodule N of M has Krull dimension d.

Proof. We can replace R by R/AnnR(M). Then every system of parameters for R is a regular sequnce on M.
We use induction on d. If d = 0, then there is nothing to prove.

If d > 0 and the result holds for smaller d. Let N be a submodule such that dim(N) < d. We can choose
N to be the maximal one with this property, then for any N′ ⊆ M with Krull dimension < d. We have
N′ ⊆ N: Since dim(N) < d, there is an element x ∈ AnnR(N) avoids all minimal primes of R. There is a
similar element y in AnnR(N′). Then xy ∈ AnnR(N + N′) avoids all minimal primes. So dim(N + N′) < d⇒
N + N′ ⊆ N.

Let x ∈ m be an NZD on M, then x is automatically an NZD on N. We claim that x is an NZD on M/N: If
xu ∈ N, then Rxu ⊆ N is a submodule of Krull dimension < d. But this submodule is isomorphic to Ru ⊆
M. So Ru ⊆ N ⇒ u ∈ N. Therefore multiply by x induces an isomorphism of sequences 0 → N → M →
M/N → 0 and 0→ xN → xM → x(M/N)→ 0. Therefore the latter one is also exact. Thus by the 9-lemma
we have an injection N/xN → M/xM, but then dim(M/xM) = d−1 and dim(N/xN) = dim(N)−1 < d−1.
This contradicts with the induction hypothesis. �

An immediate corollary is that
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Corollary 5.5. If (R, m, K) is C-M then R is equidimensional, i.e. for every minimal prime p we have dim(R/p) =
dim(R).

Proof. If p is minimal, it is an associated prime of R hence R/p ↪→ R. Since all nonzero submodules of R has
the same dimension dim(R) by THM 5.4, the results follows. �

5.2. Regular local case. We need a preliminary result from [Tor-and-Ext]

Proposition 5.6. Let x1, ..., xn ∈ R and let M be an R-module. Suppose that x1, ..., dn be a possibly improper regular
sequence on R and M. Let Ik = (x1, ..., xk)R, 0 ≤ k ≤ n. Then

TorR
i (R/Ik, M) = 0

for i ≥ 1 and 0 ≤ k ≤ n

Using this, we can prove following

Theorem 5.7. Let (R, m, K) be a regular local ring and let M be an R-module. Then M is a big Cohen-Macaulay
module over R iff M is faithfully flat over R.

Proof. We first notice that both conditions imply that mM 6= M: both conditions implies that a system of
parameters is a regular sequence on M. Let I be the ideal generated by the system of parameters, then m is
nilpotent over I so there is some power of m such that mn ⊆ I. If mM = M, then mn M = M ⊆ IM ⊆ M, a
contradiction!

If M is faithfully flat, then obviously, any system of parameters, which is a regular sequence on R, is a
regular sequence on M. Now assume that M is a big CM module, we have to show that M is faithfully flat.

Note that if M is flat, then mM 6= M ⇒ M is faithfully flat. So we only need to prove that M is flat, which
suffices to show that TorR

i (N, M) = 0 for any R-module N. Actually we shall prove TorR
i (N, M) = 0 for every

i ≥ 1. We prove this by reverse induction on i.

Since Tor commutes with direct limit, we can reduce to the case where N is finitely generated. Since finitely
generated modules over a regular local ring has finite projective resolution (the length is at most dim(R)), we
have TorR

dim(R)+1(N, M) = 0. Now assume TorR
j (N, M) = 0 for all j ≥ i, we want to show that TorR

i (N, M) = 0.

We first consider the case when N = R/P is prime cyclic. Since R is CM (it’s even regular), we have a
regular sequence of the length ht(P), say x1, ..., xd. Then P is a minimal prime of I = (x1, ..., xd), which is also
an associated prime. So we have an exact sequence:

0→ R/P→ R/I → Q→ 0

for some R-module Q. Now apply TorR( , M) we get

· · · → TorR
i+1(Q, M)→ TorR

i (R/P, M)→ TorR
i (R/I, M)→ · · ·

By Proposition 5.6 above, we see that TorR
i (R/I, M) = 0. By induction hypothesis (all Tori+1 vanish),

TorR
i+1(Q, M) = 0, so TorR

i (R/P, M) = 0.

Now we do induction on the least number of factors in the finite filtration of N by prime cyclic modules.
Suppose N′ ⊆ N is a prime cyclic submodule, then

0→ N′ → N → C → 0

Again apply TorR( , M) we get

· · · → TorR
i (N′, M)→ TorR

i (N, M)→ TorR
i (C, M)→ · · ·

This time C has one less factor, so the Tor on both sides are zero, which implies that the middle one is also
zero. �
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6. PROPERTIES OF COHEN-MACAULAY RINGS

6.1. Algebras finitely generated over a CM ring. Trivially we see that if R is CM, then so is W−1R: note
that for any maximal ideal W−1m of W−1R, we have (W−1R)W−1m

∼= Rm. Meanwhile the quotient of R is not
always CM. However, we do have following:

Theorem 6.1. If a Noetherian ring R is CM, then so are R[x] and R[[x]].

Proof. In the case of R[[x]], note that x is in every maximal ideal Q: Kill Q we see that x is invertible, so
there is 1 = xy + z for some z ∈ Q. But then 1− yz is not invertible, which is a contradiction! It follows that
Q has the form xR[[x]] + PR[[x]] for some maximal ideal P. Since R[[x]]Q/(x)R[[x]] ∼= RP, any system of
parameters containing x will be a regular sequence on R[[x]]Q.

In the case of R[x], let Q be a maximal ideal and let P be its contradiction to R. Then we have a map
RP → (R[x])Q ∼= (RP[x])Q. Therefore we can assume that (R, P) is local. Let f1, ..., fn be a maximal regular
sequence on R, then they continue to be a regular sequence on R[x]Q. So killing them won’t affect any issue:
Thus we may assume that P is nilpotent. After killing m, we have R[x]Q/mR[x]Q ∼= R/P[x], which is a PID.
So QR[x]Q is generated by m and a monic polynomail f . Now R[x]Q has dimension 1 and f is an NZD on
R[x]Q (A monic polynomial is always an NZD on any polynomial ring). So the result follows. �

6.2. Catenary and universally catenary rings.

Definition 6.2. A Noetherian ring is called catenary if for any two prime ideals P ⊆ Q, any two saturated
chains of primes joining P to Q have the same length. In this case, the common length will be the same as
the dimension of the local domain RQ/PRQ.

A localization or homomorphic image of a catenary ring is automatically catenary. However, a catenary ring
adjoint an indeterminant is no longer catenary. So we have following defnition:

Definition 6.3. R is universally catenary if every polynomial ring over R is catenary. This implies that every
algebra essentially of finite type over R is catenary

By Theorem 5.4, we have following corollary:

Corollary 6.4. If (R, m, K) is Cohen-Macaulay, then R is equidimensional: every minimal prime P is such that
dim(R/P) = dim(R)

Proof. Since P is a minimal prime of R, we have an injection R/P→ R. Now by Theorem 5.4, we know that
dim(R/P) = dim(R). �

Now we are ready to prove following:

Theorem 6.5. A Cohen-Macaulay ring R is universally catenary

Proof. We only need to show following: Given two prime ideals P ⊆ Q in R, then every saturated chain
of primes from P to Q has length ht(Q) − ht(P). Once this is shown, the universal catenarity follows by
Theorem 6.1.

First of all, the issue is not affected if we localize at Q. Next we observe: let x1, ..., xd be a maximal regular
sequence in P on R, then killing x1, ..., xd changes nothing: R is still Cohen-Macaulay. So we may assume
that (R, Q) is local while P is minimal in R. We know that dim(R) = dim(R/P) and so at least one saturated
chain from P to Q has length ht(Q) − ht(P). To complete the proof, it sufficies to show that all saturated
chains from P to Q has the same length.

We use induction on dim(R): If dim(R) = 1 then there is nothing to prove. Now assume that it’s true
for any smaller dimensions: Choose two saturated chains from P to Q, let their second element in the
chain be P1 and P′1 respectively. Then ht(P1) = ht(P′1) = 1. Otherwise, say ht(P1) > 1, then we must have
ht(P1) < ht(Q) = dim(R). Therefore RP1 is a Cohen-Macaulay ring with smaller dimension, the saturated
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chain PRP1 ⊆ P1RP1 contradicts our induction hypothesis (every saturated chain should have the length of
dim(R)).

Now we have ht(P1) = ht(P′1) = 1. Choose x ∈ P1 and y ∈ P′1 such that none of these two is in any minimal
prime. Then xy is an NZD on R and P1 and P′1 are both minimal primes of xyR. Now pass to R/(xy) we see
that the saturated chain from P1/(xy) to Q/(xy) is of the same length as the saturated chain from P′1/(xy) to
Q/(xy). �


