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ABSTRACT
Drowsy driving has a strong influence on the road traffic
safety. Relying on improvements of sensorial technologies, a
multimodal approach can provide features that can be more
effective in detecting the level of alertness of the drivers.
In this paper, we analyze a multimodal alertness dataset
that contains physiological, environmental, and vehicular
features provided by Ford to determine the effect of follow-
ing a multimodal approach compared to relying on single
modalities. Moreover, we propose a cascaded system that
uses sequential feature selection, time-series feature extrac-
tion, and decision fusion to capture discriminative patterns
in the data. Our experimental results confirm the effective-
ness of our system in improving alertness detection rates and
provide guidelines of the specific modalities and approaches
that can be used for improved alertness detection.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous
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alertness; drowsiness; multimodal; cascaded; driving safety

1. INTRODUCTION
According to a survey conducted by the National Sleep

Foundation [1], 60% of US adult drivers said they drove
while being fatigued, and as many as 37% admitted to have
fallen asleep at the wheel. A total of 4% of the drivers had
accidents or near accidents due to either drowsiness or falling
asleep. In addition to a significantly increased incidence of
accidents, a state of drowsiness also has other negative ef-
fects: another survey run by the National Sleep Founda-
tion found that from among those driving in a drowsy state,
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42% became stressed, 32% became impatient, and 12% drove
faster, with all these conditions having negative implications
on the safety on the road. An estimate made by the Na-
tional Highway Traffic Safety Administration indicated that
a low alertness level of a vehicle’s driver each year results
in 100,000 police-reported crashes, which in turn leads to
approximately 1,550 deaths, 71,000 injuries, and $12.5 bil-
lion in financial damage. However, statistics reported by the
National Highway Traffic Safety Administration [3] showed
that there existed a decrease of 17.3% in fatal crashes from
1995 to 2012 with the increase in vehicular technology and
safety features. According to these sleep studies, a lack of
alertness can negatively influence the safety of the drivers
and those around them, and therefore a system which can
automatically detect and measure the level of alertness of a
driver can have a significant positive impact on road safety.

Drowsy driving is a serious problem that can have fatal
consequences not only for the driver, but for the passen-
gers and all other road traffic participants (other motorists,
pedestrians, and cyclists). With the increase of work load,
daily stress, and sleep deprivation, fatigued driving has be-
come very common. Moreover, with the continuous busi-
ness extension and overnight shipping, driving for extended
amounts of time is prevalent.

Despite the presence of studies on the causes affecting
drivers’ alertness, there is no mean of measuring or detecting
their alertness levels. Moreover, driver’s license courses and
tests do not provide enough information on the importance
of keeping alert while driving. In order to reduce the risks
associated with drowsy driving, extensive research needs to
be conducted to detect the alertness level of vehicles’ drivers.

In this paper, we provide a preliminary analysis of the
capability of certain modalities on achieving improved de-
tection of drivers’ drowsiness, in preparation for collecting
a large multimodal alertness dataset that we plan to gather
in the near future. The paper presents the results on a
dataset provided by Ford which is composed of physiologi-
cal, environmental, and vehicular modalities. This dataset
was provided for the “Stay Alert! The Ford Challenge” in
2011 and is publicly available.1

Our analysis is different from previous work as it proposes

1Unfortunately, the dataset does not include information
on the individual features, and the Ford organizers of the
challenge were not able to provide us with any information in
addition to what is already included in the data distribution.



a cascaded system that utilizes sequential feature selection,
extracts time-series related features, and applies data trans-
formations to acquire patterns that cannot be obtained from
raw data. The system analyzes the drivers’ status using de-
cision fusion and can employ any type of classifier. The
main purpose of this research is to determine which modal-
ities have higher discrimination capability in measuring the
alertness level of the drivers and whether integration of mul-
timodal features can induce further improvement. Further-
more, this research provides us with guidelines on which
modalities and data types are essential for automated alert-
ness detection. Moreover, we evaluate the sensitivity and
specificity of the system to analyze the performance of each
of the alertness and drowsiness classes separately to avoid
the negative effects of having increased false alarms or miss-
ing drowsiness moments. Missed drowsy states can result
in traffic accidents while an increased rate of false alarms of
drowsiness can lead the driver to ignore serious threats.

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes the Ford dataset used in our
experiments. Section 4 analyzes the features and details our
approach in improving alertness detection. Our experimen-
tal results are discussed in Section 5. Finally, the conclusion
and guidelines for future work are provided in 6.

2. RELATED WORK
Multiple approaches were used in order to detect drivers’

drowsiness using sensorial, physiological, behavioral, visual,
and environmental modalities. Earlier methods for drowsi-
ness detection considered the steering motion of vehicles as
an indicator of drowsiness [5, 11]. More recent approaches
used face monitoring and tracking to detect the alertness
levels of drivers. These methods relied on extracting facial
features related to yawning [4] and eye closure [9]. Addition-
ally, approaches that measured physiological signals such as
brain waves and heart rates were introduced in order to cor-
relate them to states of drowsiness [14].

Kithil et al. [8] developed an alertness detection system
using an overhead capacitive sensor array to track the ori-
entation of the head using records of 13 subjects collected
at different times through the day. Mao et al. [10] collected
physiological measurements such as heart rate, skin conduc-
tance, and respiration rate using multiple physiological sen-
sors to detect three drivers’ states, namely, alertness, tran-
sitional state, and fatigue.

Wahlstrom et al. [18] developed a gaze detection system
to determine the activity of drivers in real-time in order
to send a warning in states of drowsiness. Gundgurti et
al. [6] extracted geometric features of the mouth in addition
to features related to head movements to detect drowsiness
effectively. However their method suffered from poor illu-
mination and variations in the skin color. Sigari et al. [15]
developed an efficient adaptive fuzzy system that derived
features from the eyes and the face regions such as eye clo-
sure rates and head orientation to estimate the drivers’ fa-
tigue level using video sequences captured in laboratory and
real conditions. Rahman et al. [12] proposed a progres-
sive haptic alerting system which detected the eyes state
using Local Binary Pattern and warned the drivers using a
vibration-like alert. Jo et al. [7] introduced a system to sep-
arate between drowsiness and distraction using the drivers’
faces direction. The system utilized template matching and
appearance-based features to detect and validate the loca-

tion of the eyes using a dataset collected from 22 subjects.
However, these individual approaches faced challenges due
to errors resulting from signal disambiguation, loss of facial
tracking arising from sudden movements, and the invasive-
ness of signal extraction using contact-based sensors.

Near infrared (IR) spectrum was used to avoid the de-
crease in the detection rates of eye closure associated with
drivers with darker skin and those wearing eyeglasses [16].
Signals such as Electroencephalography (EEG) and electro-
cardiogram (ECG) were extracted and analyzed to discrim-
inate between the drivers’ drowsiness and alertness states
[20]. Vezard et al. [17] proposed a genetic algorithm to de-
tect alertness of individuals using EEG signals recorded us-
ing 58 electrodes. Linear discriminant analysis and common
spatial pattern were employed to select the electrodes that
provide the highest alertness detection rate.

Wang et al. [19] surveyed methods introduced to detect
drivers’ alertness and divided them into methods related to
drivers’ state such as eyelid movements and percentage of
eye closure, methods related to drivers’ performance such
as distance between vehicles and lane tracking, and multi-
modal methods that combined both approaches. Doering
et al. [13] recorded driving sessions in a driving simulator
with the participation of 60 males using a foggy highway to
introduce fatigue. Visual and physiological measurements
were extracted using a camera and multiple sensors to de-
tect drowsiness.

Figure 1: Visualization of multimodal data in-
cluding (a) a physiological feature, (b) an en-
vironmental feature, and (c) a vehicular fea-
ture. The figure is provided by Ford on
http://www.kaggle.com/c/stayalert/data.

3. DATASET
The publicly available Ford dataset [2], consisted origi-

nally of a training set, validation set, and test set of sequen-
tial data formed of physiological, environmental, and vehicu-
lar modalities. The data was collected from driving sessions
on the road and in a driving simulator. Later, the validation
and training sets were combined into a single training set.
The dataset consisted of recording sessions (trials) for a pe-
riod of two minutes each, collected from approximately 100
drivers of different ages, ethnic backgrounds, and genders.
Sequential measurements were collected every 100 millisec-
onds during the two minutes trial.

The feature distribution among the three modalities was 8
physiological features, 11 environmental features, and 11 ve-



hicular features. The total number of instances was 604,329
for the training set (formerly a separate training and val-
idation) and 120,840 for the test set, originating from 469
training, 31 validation, and 100 testing trials. Within the
same trial, alert and drowsy instances can be found. Visu-
alization of three features of this multimodal dataset can be
seen in Figure 1.

Prior to processing the data, we made two interesting ob-
servations. First, there were one physiological feature and
two vehicular features that had a value of zero among all
the instances in the training and test sets. Hence, these
three features, namely P8, V7, and V9, were eliminated re-
sulting in a final set of 7 physiological, 11 environmental,
and 9 vehicular features. Second, the challenge mentioned
Ford’s interest in developing a classification model that uti-
lizes fewer physiological features. Our interpretation of this
is that the physiological measurements were collected using
sensors that were connected to the drivers. Hence, Ford
was interested in avoiding the inclusion of additional dis-
tractions to the drivers by reducing the number of contact
sensors, as well as lowering the costs of the sensors used to
detect drowsiness.

4. METHODOLOGY
In order to extract meaningful features to discriminate

between states of alertness and drowsiness, we developed a
system which employed a cascaded series of feature selec-
tion, time-series feature extraction, and classification using
decision fusion processes. We used the training and vali-
dation sets through each step in this cascade. Finally, our
system was evaluated using the test set provided by Ford.

A general diagram of our proposed cascaded system is
shown in Figure 2. First feature selection algorithms were
applied on the raw data of the physiological, environmental,
and vehicular modalities using a sequential search strategy
to determine the most discriminative raw features. Second,
using the selected features and the fact that they stem from
a time-series, we slid windows of predetermined sizes on the
data instances to extract time-series related features such
as the moving average, maximum, and minimum, the stan-
dard deviation, the maximum cross- and auto-correlation,
the multilevel approximation coefficient specified by the dis-
crete wavelet transform of the instances in the window, the
maximum frequency amplitude of the Fourier transform of
the signal, and the power of the frequency domain signal.
The idea behind extracting such features was to capture the
relationships and dependencies of the data instances and fea-
tures whether the driver stayed constantly in a single state
or switched between alertness and drowsiness.

Third, a model was trained using the final set consisting
of the selected raw features combined with the time-series
features. Finally, our system was evaluated on the testing
set using decision fusion over all window sizes. Each of the
previous stages may contain sub-steps to realize its target.
Details of each of the aforementioned stages are provided in
the following sections.

To achieve our goal in specifying which modality had higher
capability of differentiating between alertness and drowsi-
ness, our model was applied on the features of each of the
three modalities separately and combined. We additionally
specified the percentage contribution of each of the three
modalities in the final trained model. Moreover, we calcu-
lated the sensitivity and specificity of our model, which were

not reported before on this particular dataset. Although we
believe detecting drowsy instances to be of higher impor-
tance, we decided to select alertness as the positive class
and drowsiness as the negative class as declared by Ford in
the dataset. The sensitivity metric specified the accuracy of
the alertness class (positive class) by dividing the number
of true positives by the total number of positive instances.
The specificity metric specified the accuracy of the drowsi-
ness class (negative class) by dividing the number of true
negatives by the total number of negative instances. False
positives can result in missing vital drowsiness periods while
increased false negatives can cause frequent false alarms, and
hence the driver may ignore serious threats.

5. EXPERIMENTAL RESULTS

5.1 Feature Selection
To specify our feature selection criteria, five different clas-

sifiers are trained with the 27 raw features from all three
modalities using the training set. The classification mod-
els are evaluated using the validation set by measuring the
overall classification accuracy. The five classifiers used are
decision tree, LibSVM with linear kernel, k-Nearest Neigh-
bor (k=7), Naive Bayes, and Feedforward Backpropagation
Neural Network. The decision tree and neural network clas-
sifiers are available in MATLAB R2014a. The training and
validation data were down-sampled for LibSVM to avoid
running out of memory.

Table 1: Percentage accuracy, specificity, and sen-
sitivity achieved by evaluating the validation raw
multimodal dataset with all 27 features using five
classifiers. The best results are highlighted in bold.

Classifier Accuracy Specificity Sensitivity

Decision Tree 66.41 41.17 84.57

LibSVM 60.63 6.50 99.61

K-NN 60.16 33.827 79.11

Naive Bayes 55.83 32.94 72.30

Neural Network 44.38 11.18 68.28

Based on the results shown in Table 1, a decision tree
classifier is selected as the evaluation criterion for the fea-
ture selection algorithms. It can also be seen that drowsiness
detection has a significantly deteriorated performance com-
pared to the alertness detection, which confirms the impor-
tance of further processing the data to avoid the increased
false alertness rate.

For feature selection, we employ forward feature selection
and backward feature selection methods. The algorithms
perform a sequential search strategy to detect the optimal
set of features which results in an improved classification
model on the validation set. Forward feature selection adds
the best single feature at each step based on the evalua-
tion on the validation set. Backward feature selection starts
with the total number of features and eliminates the worst
performing feature at each step in search for the optimal set.

Both methods are applied on each modality separately
and on the whole set of 27 features combined. The selected



Figure 2: General flow diagram of the major stages of our proposed cascaded system to detect drivers’ alert-
ness including sequential feature selection, time-series feature extraction, model training, and final evaluation.

Table 2: Indices of the selected features using forward and backward feature selection as labeled in the
dataset provided by Ford before the removal of the zero-valued feature vectors P8, V7, and V9. “P” denotes
physiological, “E” denotes environmental, and “V” denotes vehicular modalities.

Dataset Forward Feature Selection Backward Feature Selection

Physiological P5 P6 P5 P7

Environmental E4 E5 E6 E7 E8 E9 E10 E11 E4 E7 E9

Vehicular V10 V11 V11

Multimodal P1 P2 P6 E3 E4 E5 E6 E8 E10 E11 V5 V10 V11 P5 P7 E5 E6 E7 E8 E9 E10 V11

features using both feature selection algorithms are shown
in Table 2. Note, however, that the indices provided in
the table are the original values as provided by Ford before
removing the zero-valued feature vectors P8, V7, and V9 as
mentioned earlier.

Table 3 lists the overall accuracy achieved using both fea-
ture selection methods applied on individual and combined
modalities. “Phys+Env+Veh” presents the fusion of the se-
lected features from each of the physiological, environmen-
tal, and vehicular modalities, which were selected separately.
“Multimodal” denotes the features selected from all 27 fea-
tures combined. It can be seen that using backward fea-
ture selection on the“Multimodal” features achieves the best
overall accuracy outperforming forward feature selection and
feature selection on individual modalities. Clearly applying
the feature selection algorithms on individual modalities and
combining the selected features does not result in detecting
the optimal feature set. Hence, the set of features selected
using backward feature selection is picked for the feature
extraction step for the multimodal dataset. To evaluate in-
dividual modalities using our cascaded system, the best set
of features for each modality determined in Table 2 and Ta-
ble 3 are selected, which are P5 and P7 for the physiological,
E4, E7, and E9 for the environmental, and V10 and V11 for
the vehicular modalities.

It can also be noted that for the multimodal dataset, the
majority of the selected features originates from the envi-
ronmental modality. Two features originate from the physi-

ological and only one is selected from the vehicular modality.
The percentage contribution of each of the physiological, en-
vironmental, and vehicular modalities in the final set of se-
lected features is 22.22%, 66.67%, and 11.11%, respectively.

Table 3: Overall accuracy percentages achieved us-
ing decision tree by training the training set and
evaluating the validation set using forward and back-
ward feature selection on individual and combined
modalities. “Phys+Env+Veh” presents the fusion
of the selected features from each of the individual
physiological, environmental, and vehicular modal-
ities. “Multimodal” denotes the features selected
from the whole set of 27 features.

Dataset Forward Backward

Physiological 66.58 66.58

Environmental 69.27 69.31

Vehicular 68.02 66.93

Phys+Env+Veh 73.67 60.22

Multimodal 74.11 74.68



5.2 Time-Series Feature Extraction
In order to extract time-series related features using the

set of selected features from the previous step, we slide a
window that ends at the current data instance and starts
with a lag that is equivalent to the size of the window. The
sizes of the windows used in our experiments are 3, 5, 10,
20, and 50. The windows are applied on separate record-
ing sessions or trials. For example, if the current instance
within the current trial during the feature extraction pro-
cess is 120 and the window size is 20, then the time-series
features are extracted from instances 101 to 120. Given that
the measurements were collected every 100 ms, the windows
lags cover a period of 30 ms to 5 seconds.

We create a number of redundant copies of the first in-
stance equivalent to the window size to be able to extract
our statistical measurements using lagged instances from the
first few instances in a given trial. Using these lagged in-
stances, we extract relationships between different instances
as well as features to provide meaningful information on the
variations that occur prior to a state of alertness or drowsi-
ness.

Using the group of instances in each window, we extract
10 total time-series related measurements including the mov-
ing maximum, minimum, mean, and standard deviation of
each of the selected features from the previous stage. These
statistical measurements indicate the magnitude of the vari-
ations which occurred in each feature during this period of
time. By extracting auto- and cross-correlation information
from the features, we explore the relations between indi-
vidual features and lagged copies of themselves as well as
the mutual relations between multiple features. Assume the
window size is W , the lag range for the cross- and auto-
correlation is 2W − 1. This information can be useful for
the training process of our model to discriminate between
the relations that lead to an alert or drowsy state.

As we treat a time-series data, extracting frequency-based
features can reveal discriminative information which is not
directly detected using the time domain signal. In par-
ticular, we employ discrete wavelet transform using Haar
wavelet and Fourier transform for this purpose. Discrete
wavelet transform aims at discovering patterns in the time-
frequency domain by decomposing the signal into sub-bands.
The resulting coefficients have proven successful in discover-
ing patterns and improving classification results in many ap-
plications. For our experiments, we extract the approxima-
tion coefficient using the lowest decomposition level. Fourier
transform transfers the time-series signal into its frequency
components. We extract the maximum frequency amplitude
of the signal in a given window in addition to the average sig-
nal power distributed over the frequency components. The
average power is calculated as the summation of the abso-
lute squares of the signal divided by the length of the win-
dow. The first component of the Fourier transformed signal
is eliminated as it is the constant component summing up
the values in the time-series signal. The feature extraction
process is performed on both the training and testing sets.
However, it does not take the class labels into consideration.
The set of extracted features is appended to the selected fea-
tures from the previous stage.

5.3 Model Training
The final training set is fed into a classifier for the training

process. The same five aforementioned classifiers are used

for training. Each of the classifiers is trained five times for
the five window sizes, resulting in five different models for
each of the five classifiers. The decisions of the five models
are combined for each classifier to finally evaluate the testing
set.

5.4 Final Evaluation
The testing set is evaluated using each of the trained mod-

els of each of the five classifiers: decision tree, LibSVM,
K-NN, Naive Bayes, and neural network. The distribution
of the training set is 238,882 for the drowsy instances and
328,026 for the alert instances, which creates an imbalance
towards the alertness class during training. The distribu-
tion of the testing set is 29,914 drowsy instances and 90,926
alert instances, which results in a random guessing baseline
performance of 24.76% for the drowsiness class and 75.42%
for the alertness class. We evaluate each of the physiologi-
cal, environmental, and vehicular modalities separately and
all the modalities combined. The evaluation metrics include
the overall accuracy, specificity, sensitivity, receiver oper-
ating characteristic (ROC) curves, and the area under the
curve (AUC).

5.4.1 Decision Fusion
The decisions of the models trained using the same clas-

sifier with different window sizes are combined using deci-
sion fusion. The final prediction of the drivers’ state is then
determined using the fused model. The decisions are com-
bined using majority voting to determine the final overall
accuracy, specificity, and sensitivity. Assume the decision
for a given test instance x using each model fi(x) is given
by label yi ∈ Y = {1, 2}, where 1 is the drowsy class label
and 2 is the alert class label. The fused decision is

F (x) = arg max
y

N∑
i=1

fi(x) (1)

where N is total number of windows; N = 5 in our experi-
ments.

To specify the thresholds to create the ROC curves and
be able to calculate the AUC, we additionally compute an
average score for the fused decisions of different models in
the range [1, 2]. The score S(x) for a given test instance x
is calculated as

S(x) =
1

N

N∑
i=1

fi(x) (2)

5.4.2 Individual Modalities
The individual modalities are evaluated using our cas-

caded system to determine their separate capability of de-
tecting alertness. In order to determine whether the pro-
posed system improve the performance, we evaluate the test-
ing set using raw data, following feature selection, and fol-
lowing decision fusion. For the feature selection stage, the
best set of features for each modality determined in Table 2
and Table 3 are evaluated, which are P5 and P7 for the phys-
iological, E4, E7, and E9 for the environmental, and V10
and V11 for the vehicular modalities. The size of the fea-
ture vector for each instance following the feature extraction
process for the physiological, environmental, and vehicular
modalities is 24, 42, and 24, respectively.

Table 4 evaluates the performance of different modalities
using five classifiers by measuring the overall accuracy, speci-



Table 4: The percentage accuracy, specificity, and sensitivity for individual modalities using five classifiers.
The best results for each modality-classifier combination are highlighted in bold.

Stage
Physiological Environmental Vehicular

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

Decision Tree

Raw Features 58.42 30.44 67.62 66.33 66.34 66.33 61.77 30.16 72.17

Feature Selection 59.79 21.79 72.30 57.58 65.54 54.96 68.33 16.17 85.49

Decision Fusion 60.04 24.16 71.85 60.82 59.73 61.18 65.08 17.50 80.73

LibSVM

Raw Features 68.49 9.27 87.97 83.68 55.37 93.00 73.15 3.78 95.97

Feature Selection 74.41 0.80 98.62 67.23 44.45 74.73 75.09 0.73 99.55

Decision Fusion 75.25 0 100 62.93 61.82 63.30 75.25 0 100

K-Nearest Neighbor

Raw Features 60.39 23.51 72.53 63.22 66.79 62.04 64.69 26.18 77.36

Feature Selection 62.33 23.59 75.08 62.24 59.55 63.12 63.51 18.05 78.47

Decision Fusion 63.60 16.75 79.02 64.10 57.80 66.17 68.49 12.01 87.06

Naive Bayes

Raw Features 68.38 11.86 86.97 72.65 58.90 77.18 42.04 77.04 30.53

Feature Selection 75.23 0 99.99 62.27 57.54 63.83 39.12 81.12 25.30

Decision Fusion 42.87 39.86 43.86 60.50 70.40 57.24 39.22 80.87 25.52

Neural Network

Raw Features 75.25 0 100 78.10 57.07 85.02 71.97 20.38 88.94

Feature Selection 75.25 0 100 62.196 65.48 61.12 75.25 0 100

Decision Fusion 75.24 0 99.999 62.78 61.69 63.14 69.78 9.14 89.73

ficity, and sensitivity. It can be noted that the environmental
modality provides the best discriminant features to detect
alertness. This specific modality also has significantly higher
drowsiness detection rates (specified using specificity metric)
compared to other modalities which cannot seem to be able
to detect drowsiness effectively in most cases.

A problem can be noticed with the usage of the overall
accuracy metric with the distribution of the alertness and
drowsiness test instances. For example, in several cases for
the drowsiness class, the classifier is unable to learn its dis-
tribution correctly, and hence classifies all test instances as
states of alertness. Yet, the overall accuracy reaches 75%
as it is overwhelmed by the large number of alertness test-
ing instances. Therefore, we provided other metrics to fairly
assess the performance.

Using the fused decision of our cascade compared to raw
features and selected features, the best overall accuracy is
achieved 7 out of 15 times for all modality-classifier combi-
nations. In general the physiological and vehicular modal-
ities are close in performance but clearly are not able to
discriminate between alertness and drowsiness if used indi-
vidually. The environmental modality provides reasonable
performance, which moves us to the evaluation of the mul-
timodal dataset for comparison.

5.4.3 Integrated Modalities
For the multimodal dataset, the feature selection stage

specified nine features: P5, P7, E5, E6, E7, E8, E9, E10,
and V11 as the optimal multimodal set. Following the time-
series feature extraction stage, each instance has a total size
of 153. Each of the 10 extracted measurements provides
nine features in addition to the nine raw features, except
for the correlation measurements which provide a total of
81 features formed from nine auto-correlation and 72 cross-
correlation features.

By comparing the accuracy of the decision fusion stage of
each of the five classifiers using the multimodal approach in
Table 5 with the accuracy of each individual modality us-
ing the corresponding classifier, it is evident that the multi-
modal approach has a significantly improved performance in
all cases except for Naive Bayes classifier. Moreover, the de-
tection rates of the drowsiness class are significantly higher
than the baseline without any noticeable drop in the alert-
ness detection rates.

In our experiments, we used predetermined window sizes.
In order to analyze the preferred sizes to employ, we compare
the accuracy achieved using each window size in Table 6. It
is clear that in the majority of the cases, the best perfor-
mance is achieved by smaller window sizes. This indicates



Table 5: The percentage accuracy, specificity, and
sensitivity for the multimodal approach using five
classifiers. The top results of each classifier are high-
lighted in bold.

Stage
Multimodal Dataset

Accuracy Specificity Sensitivity

Decision Tree

Raw Features 70.36 60.37 73.64

Feature Selection 72.34 61.28 75.99

Decision Fusion 77.46 59.09 83.51

LibSVM

Raw Features 87.43 51.23 99.34

Feature Selection 87.49 53.07 98.81

Decision Fusion 83.78 42.371 97.40

K-Nearest Neighbor

Raw Features 62.77 30.65 73.33

Feature Selection 74.65 64.79 77.89

Decision Fusion 74.86 61.33 79.32

Naive Bayes

Raw Features 63.65 67.65 62.33

Feature Selection 73.04 57.46 78.17

Decision Fusion 42.09 95.26 24.60

Neural Network

Raw Features 83.79 57.73 92.36

Feature Selection 83.56 52.87 93.66

Decision Fusion 85.82 53.29 96.52

that using a fewer number of lagged instances to extract
time-series features can capture useful patterns to separate
between states of alertness and drowsiness.

As mentioned earlier, the overall accuracy may not be the
best indicator of performance given the test set distribution.
Hence, we decided to use the ROC curves and the AUC
metric to analyze the performance of our cascaded systems
using the scores specified in Equation (2) for each classi-
fier separately. The ROC curves plot the false positive rate
(1-specificity) on the x-axis versus the sensitivity on the y-
axis. Unlike the accuracy metric, where there can be a high
rate of false positives yet high accuracy, the ROC and AUC
measure the capability of different classifiers to balance the
performance on the alertness and drowsiness classes given
their imbalanced distribution. Additionally, we add an op-
tional step in the evaluation process by combining the final
decisions made by all types of classifiers using the same equa-
tion. This step results in a single overall decision for each
instance and is specified as the “All Classifiers” curve in Fig-
ure 3. This step is not necessary when the efficiency of the
system is of great importance for real-time applications.

Figure 3 shows the ROC curves for each classifier along
with the “All Classifiers” curve. The “All Classifiers” and

Table 6: The average accuracy achieved following
the feature extraction and prior to the decision fu-
sion stages of the cascaded system using different
window sizes.

Dataset W2 W5 W10 W20 W50

Decision Tree 72.73 73.68 73.75 74.47 73.22

LibSVM 84.06 74.40 73.54 75.08 75.25

K-NN 73.86 73.63 72.85 71.88 70.08

Naive Bayes 58.75 53.99 41.15 35.37 35.28

Neural Network 86.43 85.79 85.22 84.72 85.03

Figure 3: ROC curves following decision fusion of
each classifier. “All Classifiers” is formed by further
fusing the decisions of all classifiers.

the decision tree curves have the top performance while the
Naive Bayes has the lowest performance. To further confirm
this observation, Table 7 lists the AUC results of each curve.
The best AUC is achieved using the fused classifier reaching
0.8212 and the second best is achieved by decision tree.

6. CONCLUSION
This paper provided an analysis of multimodal features of

a dataset provided by Ford in relation to detecting drivers’
alertness. The dataset consists of features from physiologi-
cal, environmental, and vehicular modalities. The main tar-
get of this research was to analyze individual and integrated
modalities and their capability of discriminating between
states of alertness and drowsiness in preparation of collect-
ing a larger multimodal alertness dataset that we plan to
gather and make publicly available.

Our experimental results showed that the environmental
modality had higher capability of detecting the alertness
level of the drivers compared to other individual modali-
ties. However, using environmental features was not suffi-
cient for determining the drivers’ alertness state. Integrating
selective features from different modalities proved to outper-
form all single modalities. Hence, we are planning to create



Table 7: AUC results using our cascaded system.

DT SVM KNN NB FFNN All

AUC 0.7830 0.7291 0.7490 0.6873 0.7640 0.8212

a multimodal dataset that combines visual, physiological,
thermal, environmental, vehicular, and linguistic modalities
which, to our knowledge, was never conducted before.

Moreover, we proposed a cascaded system that used se-
quential feature selection, time-series feature extraction, and
decision fusion to effectively detect alertness/drowsiness of
the drivers and can be implemented for road safety appli-
cations. Evidently, extracting time-series and frequency-
related features discovered patterns that were not realized
using raw data and resulted in an improved separability be-
tween the alertness and drowsiness states. Using windows
of lagged instances to extract features, we recommend us-
ing windows of smaller sizes as larger windows appeared to
blend these patterns especially with rapid switches between
alertness and drowsiness states. Furthermore, our proposed
system can employ any type of classifier or ensemble of clas-
sifiers for a more confident decision.
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