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Abstract—With an estimated number of injuries in the mil-
lions, accidents caused due to drowsy driving remain a significant
source of financial costs and loss of life. Accurate detection
of driver’s drowsiness could provide a clear avenue towards
eliminating a great majority of the associated accidents and
losses. Existing research on the subject could be defined as
either contact-based or noncontact-based alertness detection.
This paper utilizes a novel multimodal driver’s alertness dataset
consisting of 45 subjects via seven recorded channels, including
four contact-based and three noncontact-based channels, to in-
vestigate the performance of said modalities in detecting driver’s
drowsiness as well as provide a novel comparison between the
results of multiple contact and noncontact methods. Our results
highlight the viability of noncontact methods to detect driver’s
drowsiness as an implementable technology in automobiles.

I. INTRODUCTION

Driving accidents pose one of the great dangers globally,
with the Center for Disease Control and Prevention (CDC) in
2020 estimating about three million non-fatal injuries yearly
in the United States alone [1]. Additionally, the World Health
Organization (WHO) reported in 2020 that annual road traffic
deaths are estimated to have reached 1.35 million globally [2].
In addition to the significant number of injuries and loss of
life, there are heavy costs impacted by motor vehicle accidents.
The CDC estimated a loss of $75 billion dollars in 2017
from medical care costs and productivity losses associated
with injuries and deaths from crashes [3]. Additionally, it is
estimated by Chen et al. [4] that the global macroeconomic
burden of road injuries between 2015 and 2030 will reach $1.8
trillion, a figure that does not include direct losses to capital.

Of the causes most associated with traffic accidents is
driver’s drowsiness, with an estimated seven percent of traffic
accidents in the United States in 2017, including 16 percent
of fatal accidents [5]. Additionally, in a study by AAA, it
was found that about 9% of all crashes and over 10% of
all crashes involving property damage, airbag deployment, or
injury, involved driver’s drowsiness [6]. Other studies indicate
that drowsiness might be significantly under-reported, with
data showing drowsiness as a contributing factor in 20% of all

crashes [7]. Drowsiness is significant as it results in impaired
reaction times, attention, mental processing, judgement, and
decision making according to the National Highway Traffic
Safety Administration (NHTSA) [8]. Additionally, previous
work has shown that prolonged drowsiness results in driving
behavior similar to driving under the influence of alcohol [9],
[10], [11].

Given the severity of the problem, there is a great deal of
interest in addressing this issue, especially when discussed
in the context of motor vehicle crashes. Driver’s alertness
has been researched extensively, including earlier work by
Brookhuis and Waard [12], which used contact-based sensors,
such as an electrocardiogram (ECG) to model driver’s states,
as well as the work by Reimer and Mehler [13], which used an
ECG and skin conductance electrodes to model driver’s states.
Other recent work focused on modeling driver’s alertness built
on data from sensors, such as electroencephalogram (EEG),
respiration rate and skin temperature sensors, among others
[14], [15], [16]. Finally, works such as those by Naqvi et al.
[17], Raorane et al. [18], Lopez et al. [19], and Kiashari et
al. [20], among others utilized noncontact methods, including
visual, and more recently, near infra-red (NIR) and thermal
imaging to model driver’s drowsiness.

In this paper, we present two main contributions. Firstly,
we model driver’s alertness and provide a novel comparison
between the performance of the different recorded channels.
Secondly, we introduce a novel multimodal dataset of 45
subjects, with each subject recorded across two recording ses-
sions in a simulated driver’s environment, and each recording
session consisting of two segments, as detailed in section
III. Importantly, this contribution includes eleven recorded
channels, as detailed in section III. For comparison, a review of
existing datasets found in literature can be found in Table I. In
review, the strengths of our dataset when compared to previous
work would include the relatively large subject body as well
as the large number of recorded channels and their varied
source modalities. Of the eleven available channels we use
seven in this study, namely: All four physiological channels,
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one visual RGB, one NIR, and one thermal channel. Using
our two main contributions, we aim to answer the following
research questions:

• How well do noncontact-based approaches compare to
contact-based methods?

• Does the integration of multiple noncontact-based modal-
ities as well as the combination of multiple contact-based
signals improve drowsiness detection?

II. RELATED WORK

Several studies have been conducted in the past to detect
driver alertness using different modalities, such as visual,
physiological, behavioral, and environmental data. The vast
majority of them used only one modality, while more recent
work combined multiple modalities to detect driver’s alertness
[38], [39], [40], [41], [31], [42].

As modern cars are being fitted with more advanced sensors,
drowsiness modeling utilizing contact-based methods is still
attracting the attention of related research [43]. The review
provided by Chowdhury et al. [44] showed that the type
of physiological signals did not see a drastic change as the
community keeps addressing the topic based on signals related
to respiration, heart rate, skin conductance, ECG, EEG, and
skin temperature. However, research has gradually moved from
statistical correlation to driver-centered behavioral models
focusing on the aforementioned signals. In the study of 2017
conducted by Awais et al. [14], results showed that combin-
ing both electrocardiogram (ECG) and electroencephalogram
(EEG) information could lead to better drowsiness detection.
Whereas, more recently in 2019, Persson et al. [15] utilized
ECG signals and were able to categorize different levels of
alertness by identifying specific features of interest. Finally,
the work proposed by Papakostas et al. in 2021 [16] used a
deep learning method on four different physiological signals,
including Blood Volume Pulse (BVP), respiration, skin con-
ductance, and skin temperature to detect both distracted and
drowsy driving.

Despite physiological features showing great potential in
detecting driver’s alertness, the necessity of contact-based
sensor intrusiveness is a major setback to the practicality of
the approach. For that reason, researchers explored noncontact
methods, such as visual and thermal. The work proposed by
D’Orazio et al. [45] in 2007 was an early work published
on this topic, which implemented a neural classifier to de-
tect driver’s drowsiness by detecting the closure of eyes in
image sequences. Several articles have been published since,
addressing the same problem using novel and sophisticated
computational methods. A set of facial and head movement
features were used by Mbouna et al. [46] to detect driver’s
alertness. In more recent works, deep-learning methods have
been used on visual features to tackle this problem. Naqvi et
al. [17] suggested a deep learning-based gaze detection system
based on a NIR camera sensor that takes the driver’s head
and eye expression into account. In order to obtain the gaze
features, the authors used a pre-trained CNN model to fine-

tune the extracted cropped images of the face, left eye, and
right eye using the VGG-face network.

As an alternative noncontact method, researchers began to
explore thermal imaging as a new noncontact-based modality.
Lopez et al. [19] used a Therm-App mobile thermal camera
to classify fatigued individuals by detecting, segmenting, and
aligning thermal facial images based on coordinates of the eye
and nose. They then utilized convolutional neural networks
to extract facial feature vectors, followed by using a Support
Vector Machine (SVM) to determine a subject’s condition as
in a state of fatigue or a state of rest. A study by Kiashari
et al. [24] showed that a person’s respiratory state can be
tracked with thermal imaging without interference to monitor
the variation in the driver’s respiration rate from wakefulness
to drowsiness. More recently, Kiashari et al. [20] extended
their previous work by implementing a SVM and K-Nearest
Neighbor (KNN) classifiers on 30 subjects to detect drowsi-
ness.

III. DATASET

We collected a multimodal dataset from 45 subjects for
our experiments, which included thermal, visual, acoustic,
and physiological data. Of these 45 subjects, 30 were male
and 15 were female. Out of the 30 male participants six
were White/Caucasian, and 24 participants were Asian/Middle
Eastern. The group of female subjects consisted of five
White/Caucasians and 10 Asian/Middle Eastern subjects. In
total 11 participants were considered White/Caucasians and
34 were Asians/Middle Eastern. All subjects were between 20
and 33 years old. For the purposes of this research we focus
entirely on the thermal, visual, and physiological modalities .
The data was collected during two recording sessions. The
recordings were taken while the subjects were driving in
a driver’s simulator and included a recording taken usually
before 11 a.m. followed by an afternoon recording, usually
between 4 p.m. and 8 p.m. This setting was chosen to resemble
the typical day-to-day routine of ’nine-to-five’ employees as
closely as possible, where they are alert as they head to their
place of employment and drowsy after a long day of work.
According to [47], the 4:00 to 8:00 time slot was the slot
with the highest crashes throughout the day for both fatal and
nonfatal crashes in 2020, which coincided with our approach.
This is also similar to the approach taken by [48] and [49],
in which recordings taken earlier in the day are categorized
as alert, while later recordings are set as drowsy. We asked
all participants to schedule the earlier recording as their first
activity of the day in order to make sure the subjects were
alert while driving. On the other hand, the second recording
was captured later in the day to simulate drowsiness, where
the subjects were explicitly warned not to nap the whole day
prior to the recording time. Every session consisted of two
separate sub-recordings, ’baseline’ and ’free-driving’.

For the first half of the baseline recording, participants
were asked to remain still without moving, breathe naturally,
and look at the center of the central camera. In the second
half, they were asked to follow a target shown on the screens
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Paper
Reference

No. of
Channels

Modalities Used No. of
Subjects

[21] 2 Thermal, Visual RGB 6

[22] 3 EOG (Electrooculogram), ECG (Electrocardiogram),
EEG (Electroencephalogram) 6

[23] 7 ECG, EOG, EEG, EMG (Electromyogram),
Visual RGB, NIR (Near Infrared), Depth Map 14

[24] 2 NIR, Thermal 12
[25] 2 Cardiopulmonary, Thermal 12
[26] 1 ECG 12
[27] 4 Vehicle telemetry, Self-reported drowsiness ratings, ECG, EMG 15
[28] 1 Thermal 1
[29] 10 Eight physiological channels, Visual RGB, NIR 60 (All Male)
[30] 6 Visual RGB, NIR Depth map, Audio, Pulse, Vehicle telemetry 8
[31] 3 Visual RGB, Audio, Vehicle telemetry 30
[32] 4 Vehicle telemetry, Eye closure, Head position, Visual RGB 13
[14] 5 Four visual RGB cameras, ECG 22
[33] 4 EOG, Vehicle telemetry, Eye tracking, Survey 16
[34] 2 Visual RGB, NIR Depth Map, Audio, Pulse, Vehicle telemetry 36
[35] 4 Visual RGB, ECG, Pulse, Physioloigcal 30
[36] 3 EEG, EOG, EMG 10
[37] 3 EEG, Two NIR cameras 38

TABLE I: A review of existing datasets found in literature.

with their gaze while sitting normally. Each half lasted about
2.5 minutes on average. This was followed by the free-
driving recording, where the participants were directed to drive
using the virtual environment for approximately 15 minutes.
The subjects started driving on a low-traffic highway in the
simulated environment and then were allowed to freely stay
on the highway or divert to city-like driveways. No pedestrians
were included and clear weather conditions under daytime
were selected for our simulations.

A system of cameras and sensors was prepared and attached
to the driver’s simulator. In particular, the visual, NIR, thermal,
and physiological data has been captured during each record-
ing. By utilizing a suite of recording modalities, we intended
to account for the strengths and weaknesses of each recording
method in their respective environments. This would allow,
for example, the system to overcome the visual modality’s
weakness in low light with the NIR modality’s superior low-
light performance, or to overcome the thermal modality’s
weakness in an environment with fluctuating temperatures
by utilizing the visual modality’s respective robustness. By
providing varied input modalities, we intend to maximize the
system’s potential ability to overcome a variety of challenging
environments, including those found in real driving scenarios.

Our modalities were recorded using the following equip-
ment:

1) Logitech HD web camera recording at 30 fps with audio
and providing a top-down oblique view of the subject

2) Raspberry-Pi camera recording at 25 fps and providing
a face closeup view

3) RGB camera from Imaging Development Systems (IDS)
recording at 20 fps and providing a face closeup view

4) NIR camera from IDS providing a face closeup view,
recording at 20fps.

5) FLIR ONE thermal camera, recording the subject’s face
at a slight angle at 7 fps

6) FLIR SC6700 thermal camera, capturing the subject’s
face at 100 fps

7) Thought Technology Ltd.’s four physiological sensors;
three of them were attached to the subject’s non-
dominant hand and one to the torso, capturing at 2048
Hz: a) BVP, b) Skin Temperature, c) Skin Conductance
and d) Respiration. To reduce noise in the physiological
data, we asked subjects to drive mostly with their domi-
nant hand and only use their other hand when necessary.

Fig. 1 illustrates the experimental setup environment with
each channel labeled accordingly.

Fig. 1: Experimental setup showing sensor layout

After processing the data from each modality, we obtained a
total of 367 recordings per modality, with 182 of the record-
ings belonging to the alert class and 185 of the recordings
belonging to the drowsy class. The imbalance in the recordings
between the classes occurred due to missing recordings for
three subjects in the Morning session in the thermal modality.

Finally, of note is that the institutional review board of the
University of Michigan has reviewed and approved all research
procedures using the identification code HUM00132603.
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IV. MODALITY PROCESSING

A. Thermal Modality

For the thermal modality, we formed a thermal map by ex-
tracting the following features from the thermal frames: mean,
maximum, minimum, range, and a histogram over the values
of the pixels that represented the temperature distribution in
the Regions of Interest (ROI).

To form the thermal map, three main processing steps have
been followed. The first step consists of segmentation of the
frame into five different regions, including the entire face,
forehead, eyes, cheeks, and nose. Afterwards, those regions
were tracked throughout the recording using the thermal-
based tracking algorithm we proposed in [50]. A variation
of the Shi-Tomasi corner detection algorithm [51] was used
to detect points of interest in the Regions of Interest (ROIs)
by computing the weighted square difference between two
successive frames. The algorithm predicts the relocation of
points of interest from one frame to another, with a small
displacement between the pixels, which is very suitable for
our tracking needs. A geometric transformation has been
applied to map the points of interest between frames following
the tracking process and the displacement estimation. This
above geometric transformation estimated the transformation
of interesting points on the basis of similarity.

Finally, we generated a thermal map that illustrates the
thermal features in the ROIs, in order to extract potentially
indicative thermal features of drowsy behavior in our five areas
of interest. To that end, the following steps were taken in this
order: a) ROI segmentation, b) segment binarization, c) image
masking and d) thermal map cropping for each ROI. This
method can be seen in Fig. 2.

Fig. 2: The process of segmenting, binarizing, masking and
cropping the thermal faces

Ultimately, we created the final thermal feature vectors
from the generated thermal maps for all ROIs. The feature
vectors were created by extracting the mean pixel values
within the ROI, the minimum temperature, the maximum
pixel value representing the highest temperature, the difference
between the maximum and the minimum temperatures, and the
histogram above the pixel values in the ROI that represents the
temperature distribution in that region to form a total of 24
features per feature vector. After all features were extracted,
they were then averaged across the whole recording to create
a single feature vector per subject and then normalized using

the afternoon baseline recording. The goal here is to explore
and compare the behavior of the contact versus noncontact
modalities in classification. Accordingly, each recording is
represented as a single instance of being alert or drowsy in
order to observe the performance of the different modalities
and decide on the feasibility of using a fully noncontact
approach, in addition to allowing us to exclusively explore the
behavior of the modalities in the classification comparison. It
should be noted also that the metrics varied no more than 1-
2% depending on whether the morning or afternoon baseline
was used for normalization.

B. Visual Modality

In processing the data from our visual modality, we utilized
the OpenFace library to extract features from our RGB and
NIR cameras. These features include facial landmarks, eye
gaze, head pose, and a series of detected Action Units (AUs),
which represent facial deformations due to facial muscle
movement as defined by the Facial Action Coding System
(FACS) [52]. To extract these features, we deployed a Convo-
lutional Experts - Constrained Local Model (CE-CLM) within
OpenFace, as described by Zadeh et al. [53].

After extracting landmarks in the region associated with
the eyes, the system estimated the direction of the gaze by
comparing the location of the center of the pupil and the
eyeball sphere, then defining a ray intersecting them. This
produced a feature vector describing the position of each pupil.
Additionally, utilizing the facial landmarks of the face at every
frame of the video, the system estimated the 3D positioning of
the head, producing a feature vector describing the pose of the
head. Finally, the system extracted facial appearance features
by finding the difference between the expression found in the
current frame and a neutral expression. These features were
then summarized through the use of AUs, which represented
a higher-level abstraction of individual features into common
facial expressions; in addition, these AUs were recorded with
the detected intensity. Examples of such AUs are shown in
Fig. 3.

Fig. 3: AU definitions and their numbering as defined by FACS
[54], [52]

After extraction of all 709 features across every frame of
a given recording with OpenFace, the features were averaged
across all frames, collapsing the time dimension per recording.
These results were then normalized by dividing against the
corresponding subjects’ baseline recording.
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Fig. 4: Representation of Fusion for Noncontact (left) and
Contact (right) based Modalities

C. Physiological Modality

Four primary sensors were used to collect physiological
data; the BVP sensor at a 2048 Hz sample rate, and the Skin
Conductance, Skin Temperature and Respiration sensors at a
256 Hz sample rate. The latter three sensor data feeds were
then upscaled to 2048Hz to match the sample rate of the
BVP sensor. Statistical features were then computed across
the four modalities for the time and frequency domains. For
BVP, mean, minimum, maximum, and standard deviation were
extracted to describe overall behavior, as well as obtain infor-
mation on the consecutive inter-beat interval. Further normal
to normal heart beat related features provided information on
the interval between two normal heartbeats. Finally, in order
to describe spectral power statistics for the BVP channel,
power related statistics for three frequency bands were also
calculated. This resulted in a total of 49 features from the BVP
channel. Standard time domain statistics were computed from
the remaining three modalities to provide 24 more features,
including mean, minimum, maximum, and standard deviation,
among others.

The readings were then normalized using the afternoon
baseline recording. This normalization resulted in a vector
representing the variations of the subjects’ features compared
to their baseline for the alert and drowsy recordings. Finally,
an average feature vector per recording was obtained by
taking the mean value per feature across a given recording.
Using each sensor feed separately provided four different types
of contact-based signals. The extracted features of all four
sensors were also combined to form a fused contact-based
physiological modality.

V. EXPERIMENTAL DISCUSSION

A. Experimental Setup

Prior to experimentation, all the data was normalized using
the afternoon baselines, as described for each modality in
the previous section. The afternoon baseline was selected
experimentally over the morning baseline due to its improved
performance. For our experiments, we looked at the perfor-
mance of contact-based modalities versus noncontact-based
ones. The target label was the alertness level of the driver, be-
ing modeled as a binary label of being either Alert or Drowsy.
Two classifiers were used for training, namely, Random Forest
Classifier (RFC), and Extreme Gradient Boosted Classifier

(XGB) due to their improved performance in literature [55],
[56]. Model performance was evaluated based on the metrics
of accuracy, F1 score, specificity (alertness recall) and sensi-
tivity (drowsiness recall), using Leave-One-Subject-Out cross
validation. This form of Cross Validation means that each fold
used during testing contained all recordings belonging to a
single subject at a time, so that at no point during training,
a classifier would have prior knowledge about any of the test
subject data.

Following the evaluation of each separate channel, we
explored the performance of noncontact versus contact-based
modalities. In particular, we fused the features extracted from
the visual RGB, NIR, and thermal data to form the non-
contact integrated modality, and the features from all four
physiological sensors to form the integrated contact-based
modality as represented in Fig. 4. This fusion can be described
as early fusion, where we concatenated features across all
modalities before using the merged feature set for training
a classifier. This fusion is beneficial as each unique recording
is represented by a larger feature vector that encompasses
information from multiple modalities, which provides richer
information for the classifiers during the training phase. This
process resulted in a total of 1538 features for the fused
noncontact modalities, and 73 features for the fused contact-
based modalities.

B. Contact-based Modality Results

First, we present the performance of contact-based modali-
ties, as shown in Fig. 5a. It can be observed that the respiration
rate features provide the best signal for alertness detection,
with an accuracy of 77.5% and a drowsy class recall of
80% using the Gradient Boosted classifier. Skin temperature
and BVP have performance metrics in the mid-60s, with skin
conductance being the worst indicator for this target label.
Overall, the performance of the respiration signal indicates a
superior and more reliable performance in modeling driver’s
alertness amongst the contact-based modalities.

C. Noncontact-based Modality Results

Next, we evaluated the performance of noncontact-based
modalities, as shown in Fig. 5b. We observed improved
performance compared to the contact-based modalities, with
average accuracy for all three modalities above 71%. The
best performing modality is the NIR modality, scoring 82% in
average accuracy and 87% in recall for the drowsy class when
using the Gradient Boosted classifier. However, the Random
Forest classifier is preferred for this modality as it has the same
accuracy as that of Gradient Boosting, but does not suffer from
the recall tradeoff, having a more uniform recall of 83% for
both classes instead.

D. Contact versus Noncontact-based Results

As shown in Fig. 6a, it is clear that the noncontact-based
modalities outperform contact-based modalities in all metrics
measured. One possible theory as to why noncontact-based
modalities outperform contact-based ones is that visual signals
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(a) Performance of Contact-based Modalities

(b) Performance of Noncontact-based Modalities

Fig. 5: Performance of Contact-based versus Noncontact-based
methods

are less susceptible to noise when factoring driver’s move-
ments and their effect on contact-based signals. If this theory
proves to be true, it would further reinforce the practicality of
noncontact-based methods within an automotive environment.

However, of further interest is the effect of fusion on
the modalities’ performance. Fig. 6b shows the comparative
results of the best performing modality from the contact-based
and noncontact-based modalities, being respiration and NIR
respectively. When using the Random Forest classifier, we
observe that the fusion of contact-based modalities performs
worse than the single modality of respiration alone, implying
that fusion here is detrimental to classification. But on the
contrary, for noncontact-based modalities, we see that the
fusion outperforms NIR slightly by about 1% when using the
Random Forest classifier. This implies that fusion is beneficial
to the noncontact-based modalities by allowing the possibility
for multiple modalities to work well in tandem as a combined
feature set without degrading performance. This would imply
that different non-contact modalities could address each other’s
weaknesses when needed while ensuring the best possible
performance at any time.

VI. CONCLUSION

In this paper we presented a multimodal dataset that eval-
uated a variety of contact and noncontact-based modalities in
order to model driver’s drowsiness. We see that noncontact-
based modalities performed better than contact-based ones,
highlighting the viability of using NIR and visual cameras as

(a) Comparison of Contact versus Noncontact-based
Modality Performance using Early Fusion

(b) Comparison of the best Contact (Respiration) ver-
sus Noncontact (NIR) based Modality Performance

Fig. 6: Performance comparison of Contact-based versus
Noncontact-based methods

a noninvasive way of monitoring a person’s alertness state.
On the other hand, the respiration rate signal provided a
significantly improved performance compared to other contact-
based signals. However, its performance was not superior to
that of the combined noncontact-based modalities or the the
NIR modality by itself. The benefits of using such noncontact-
based modalities include cheaper and easier to install hard-
ware in vehicles, as well increased driver’s convenience and
acceptance of noninvasive monitoring methods. Furthermore,
we showed the potential of fusion when using noncontact-
based modalities, using more than one modality to monitor the
subject’s drowsiness state, which provides a more reliable and
supported decision potentially resulting in developing better
warning systems in vehicles if driver’s drowsiness is detected.
In future work, we are planning to explore the temporal
dimension of the dataset using segmentation as well.
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