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Abstract— Significant research is currently carried out with
a focus on autonomous vehicles; research is starting to focus on
areas such as the modeling of occupant states and behavioral
elements. This paper contributes to this line of research by
developing a pipeline that extracts physiological signals from
thermal imagery and modeling occupant enervation using a
fully non-contact based approach. These signals are obtained
via a multimodal dataset of 36 subjects across multiple channels,
including the thermal and physiological modalities. Moreover,
we provide a comparative analysis of non-contact and contact
based channels to model the enervation state of individuals.
Our analysis indicates that non-contact physiological signals
extracted from thermal imagery can reach and exceed the
performance of contact-based physiological signals. In addition,
modeling of enervation is possible using said non-contact phys-
iological signals and thermal features, with an accuracy of up
to 70% in identifying energized and enervated occupant states.
Our findings provide a novel approach for future research and
opens the possibility for integration of unrestrictive sensors in
future automobiles.

I. INTRODUCTION

Autonomous-vehicles and the technologies associated with
them represent a significant growth vector in the automobile
and technology sectors, with global investment in the area
exceeding $100 billion [22]. Among the associated tech-
nologies, one area that has not yet been well explored is
the study of the state and behaviors of the occupants of
autonomous vehicles. The importance of such study can be
highlighted by the opportunity to develop vehicles that are
able to seamlessly accommodate the needs of its occupants,
including their comfort and well-being.

Of the occupant states that is of value to monitor is the
circadian rhythm, as it can provide insight into the enervation
of the occupant, as well as any resulting ill effects [35]. In
[37], it was stated that the circadian rhythm refers to bio-
logical variations or rhythms with a cycle of approximately
24 hours that will persist even when the organism is placed
in an environment devoid of time cues, while the Center for
Disease Control and Prevention (CDC) states that circadian
rhythms are internally driven cycles that rise and fall during
a 24-hour period, helping one fall asleep at night and wake
up in the morning. In building a more complete interpretation
of occupants’ states, the autonomous vehicle could stimulate
occupant wakefulness through prompts, cues, or conversa-
tion. In addition, by coming to a better understanding of the
occupants’ associated physiological and visual cues, it could
maximize cabin comfort with adjustments in lighting, audio,
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and driving style to cater for a sleeping child or provide rest
over long trips. Works including [13] and [28] have studied
the identification of circadian states, but have largely done so
within the domains of psychology, medicine, and the study
of sleep disorders.

Detection of circadian rhythm is done primarily via
contact-based methods. For example, [13] utilized thermal
and skin conductance sensors, as well as an ingested ra-
diotelemetry pill while [8] utilized wrist-worn actigraphy,
polysomnography, and direct collection of saliva samples.
In addition, other works which aimed to directly detect
human behaviors such as alertness often utilize contact-
based methods [9]. These contact-based approaches might
not be feasible to apply on drivers in vehicles and would
not be readily accepted by drivers in the real-world due to
the impediment, discomfort, and hassle involved with their
utilization.

Motivated by the aforementioned challenges, we present
this paper with four main contributions. These include:

• Using a dataset consisting of 36 subjects with thermal,
audiovisual, physiological, and survey data. Recordings
consisted of a baseline recording, in addition to two
additional recordings, in line with previous studies such
as [12] and similar to [2].

• An unsupervised approach to extract physiological sig-
nals from thermal imagery via our proposed pipeline.

• A non-contact based classification system that utilizes
thermal features as well as the aforementioned extracted
physiological signals to model an individual’s enerva-
tion.

• A comparison of non-contact and contact-based chan-
nels for modeling the enervation state.

II. RELATED WORK

Numerous researchers investigated the use of thermal
imaging in detecting human behaviors. Several studies used
the thermal modality to detect alertness [20], [34]. Others
have explored its potential in detecting distraction [25], [26].
On the other hand, contact-based physiological measure-
ments have traditionally been employed to analyze human
behavior and emotion [9], [10]. However, the fact that these
sensors need to be connected to individuals made their usage
limited in practical situations.

Several studies have attempted to extract physiological
signals from thermal images as an alternative to physiological
sensors [19]. The work by Sun et al. [32], presented a method
for extracting the pulse by using a Fast Fourier transform
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(FFT) at several points along a blood vessel to isolate the
thermal propagation component. In the study by Gault et al.
[15] they introduced an improvement to previous work by
applying wavelet based filtering instead of the FFT analysis.
The work by Fei et al. [11] used wavelet analysis in order to
extract the respiration signal. The authors in [33] analyzed
the impact of exercising on the skin temperature using
thermal images. More recently Bennett et al. [5] present a
comparison between temperature based-methods and motion-
based methods in extracting respiration rate from thermal
video. However, research in this area has been limited and
has generally focused on one signal at a time.

Despite using these modalities to model different human
behaviors, a very limited number of researchers explored
circadian rhythm [27]. Existing work in this area mainly
focused on contact-based physiological data analysis [6],
[23].

In the 2018 study by Koichi Fujiwara et al. [14], Heart rate
variability (HRV), which is the RR interval (RRI) fluctuation
in an ECG, measurements were gathered from 34 subjects,
and sleep onsets were evaluated using electroencephalogra-
phy (EEG) data by a sleep specialist. The results showed the
efficiency of a heart rate variability-based anomaly detection
system, which might be expanded to detect drowsiness as
well as predict epileptic seizures. The work published in
2019 by Stone et al. [31], used an ambulatory wrist-worn
blue light irradiance and skin temperature in addition to
a generalized neural network approach in order to allow
for the prediction of the circadian phase in a real-world
environment. More recently, Masuda et al. [24] employed a
smart wear garment to estimate the value of time and heart
rate (HR) to reach the lowest point in the circadian rhythm
by measuring electrocardiogram (ECG) during sleep. The
approach has shown promising potential in determining the
effects of jet lag on an individual’s circadian rhythm. Kaduk
et al. [21] established a theoretical foundation for integrating
circadian rhythmicity studies into driver’s state monitoring.
They demonstrated the significance of the circadian state in
system design. In a recent work by Cheng et al. [8], the
authors used wrist actigraphs to predict dim light melatonin
onset (DLMO) in fixed night shift workers.

Classification of circadian rhythm from two data points, in
this case early and late periods of the day, was previously per-
formed by [12]. In their study, they utilized the daily rate of
change in the timing of the peak metabolite aMT6s between
two urine collections. Others still evaluated circadian state
based on clock gene expression gathered from hair follicles
at three different points in the day [2].

III. DATASET

We collected data from 36 people of various ethnicities
for our experiments, with each person partaking in five
recordings in a smoke, alcohol, and drug-free state to model
their circadian rhythm. The dataset includes 24 males and
12 females ranging in age from 18 to 32 years old and
from various demographic backgrounds. Aside from thermal,

audiovisual, and physiological data, 10 surveys were col-
lected at various stages throughout the study that cover sleep
patterns, demographics, personality and behavior, including
the Karolinska Sleepiness Scale survey (KSS), which is a
one-question survey that scores the level of sleepiness at the
time of recording [3]. In addition to a baseline recording
obtained on an earlier day, there were two primary recording
sessions, one in the morning and one in the evening with two
recordings in each session, as explained below.

A. Instruments

An enclosed recording station was employed to simulate
the surroundings of a vehicle. The following instruments
were used to capture our multimodal dataset during each
recording which consisted of visual, acoustic, thermal, phys-
iological, and linguistic modalities. However, for the purpose
of this paper only the thermal and physiological modalities
were analyzed.

• Logitech HD web camera recording the subject’ upper
body from an elevated angle.

• RGB Raspberry-Pi camera recording with a close-up
face view.

• FLIR One consumer-grade thermal camera, recording
the face of the subject.

• FLIR SC6700 thermal camera, recording the subject’s
face at 100 fps, with a resolution of 640x512 pixels and
7.2M electrons.

• Four Thought Technology Ltd. physiological sensors:
Blood Volume Pulse (BVP) Sensor, Skin Temperature
Sensor, Skin Conductance Flex/Pro Sensor, and Respi-
ration Rate Sensor.

• A microphone is used to record the speech.

B. Scenarios

The individuals were instructed to arrange the first record-
ing (baseline) at least three days before the other recordings
in order to record their baseline data. Each participant
completed sleeps surveys, such as the Karolinska Sleep
Questionnaire (KSQ), Munich Chronotype Questionnaire
(MCQ), and the Morningness-Eveningness Questionnaire
(MEQ) Questionnaires, as well as the Drug and Drinking
Survey prior to beginning the two-minute baseline recording
using our system of cameras and sensors. During the record-
ing, participants were asked to sit quietly for two minutes
and breathe normally. Following this, they were requested
to complete the Big Five Inventory (BFI) personality survey
and the Demographic Survey.

Following the baseline recording by at least three days,
we held the morning and evening sessions. The participants
were instructed not to consume any caffeinated products on
the day of the recordings or the night before. One session
occurred in the morning, between 8 and 11 a.m., with a
few cases occurring around noon. In all cases, we requested
that the participants have their first session of the recordings
within one hour of waking up. The second session took place
later in the day, between 4 and 8 p.m., usually before going
home, with one case taking place between 10 and 11 p.m.,
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depending on when they woke up that day. The subjects were
not permitted to sleep in between the two sessions.

Our assumption is that the individuals would be energized
after waking up, whereas the control scenario in [4] suggests
that they would become enervated in the evening after
a long busy day. Each session lasted around 20 minutes
and included two recordings: Silent and Active. The Silent
recording consisted of two minutes where the subject was
asked to sit still and breathe naturally while staring at an
image reflecting the time of the recording. On the other
hand, the Active recording was five minutes long in which
the subjects were asked to speak freely about a topic of their
choice. During this time, the team in charge of the recordings
left the lab to allow the participants to talk freely.

At the end of each of the morning and evening ses-
sions, the participants were invited to complete new surveys.
Participants filled the KSS and Profile of Mood States 40
(POMS40) surveys at the end of the morning session, while
the Pittsburgh Sleep Quality Index (PSQI), POMS40, and
KSS surveys, as well as the open response, were completed
during the evening session. The participants showed no signs
of survey fatigue.

IV. METHODOLOGY

First, we will describe the contact based features that
were extracted from the physiological sensors in the next
subsection. Then we will describe the process of extract-
ing the thermal features as well as the non-contact (NC)
based physiological features from the thermal images in the
following subsections. Finally, we will describe how these
three different sets of features were utilized in order to detect
subjects’ enervation.

A. Contact Based Physiological Features

For our experiments, we processed the Blood Volume
Pulse (BVP), Skin Temperature, and Respiration Rate sig-
nals, which were recorded using the Thought Technology
Ltd hardware in order to extract statistical features. The
respiration rate sensor was attached to the subject’s torso,
while the skin temperature sensor was fastened around the
pinky finger and the heart rate sensor was attached to the
index. BVP was sampled at a rate of 2048 Hz, whereas the
other two signals were sampled at a true rate of 256 Hz, then
upscaled to 2048 Hz to preserve consistency throughout the
sensor suite.

The BVP features consist of time domain statistical fea-
tures such as maximum, minimum, and mean, in addition to
features representing the relation between IBI, NN, and pNN,
which describe patterns in the interval between two normal
heartbeats. Additionally, further distinct sets of statistical
features that explain the spectral power statistics for very-
low, low, and high frequency bands were computed. This
resulted in a total of 49 derived features from the BVP signal.

From each of the two sensors, a series of six time-
domain statistical features were computed. An additional
four features expressing BVP and Respiration Rate statis-
tical patterns were computed. Following the completion of

feature extraction, the average value for each feature for a
given subject’s recording had been calculated to represent
it as a single feature vector. These vectors represent the
contact based physiological features that will be used in our
experiments.

B. Thermal Region of Interest Identification & Tracking

Fig. 1: Points of interest detected in the face region

We processed the thermal videos following three main
steps. The first step consists of segmenting the thermal image
into five different regions: the whole face, the forehead, the
eyes, the cheeks, and the nose. Following that, we automati-
cally tracked these five regions throughout the recording [30].
Finally, we created a thermal map for each region of interest
(ROI) by extracting statistical features [1].

The five ROIs were manually determined in the first
frame of each video recording. Using a variation of the Shi-
Tomasi corner detection algorithm [29], we then automati-
cally detected points of interest in the detected ROIs. These
points suggest the existence of a blood vein affecting the
temperature of the surrounding region. Fig. 1 depicts the
points of interest found in the face region while utilizing a
lower threshold, which allows for more points to be detected.

To stabilize the ROI bounding box, a fast version of
the Kanade–Lucas–Tomasi (KLT) tracking method [30] was
used on the detected points during the duration of the videos.
Tracking of the points of interest was accomplished by
measuring the displacement between two subsequent frames.
Following that, we used geometric transformation [18] to
map the important points between the frames by predicting
their transformation based on similarity. To accommodate
for probable occlusion, we established a threshold of 95%
of properly mapped points between two successive frames as
a precaution. When an occlusion was present, the frame was
skipped, and tracking resumed at the point when the occlu-
sion terminated. Finally, for each ROI, we generated a ther-
mal map that represented the thermal distribution. This was
accomplished through the procedures of ROI segmentation,
segment binarization, image masking, and finally thermal
map cropping [27]. The final feature vector that represented
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each recording consisted of 125 features, including a 20-bin
histogram, maximum, minimum, range, mean, and the mean
of the top highest 10% of temperatures in the region.

These vectors represent the thermal features that were used
in our experiments. In addition, the ROI tracking process
is beneficial to the NC physiological features extraction, as
described in the following subsections.

C. Non-Contact Physiological Features

In addition to thermal feature vectors, we also extracted the
three aforementioned physiological signals from the thermal
videos to provide an NC alternative. In order to extract
the respiration rate signal from thermal images, we chose
the maxillary (nose) region as the region of interest, as
it clearly shows the subject’s breathing rate with cool air
entering and warm air exiting the nostrils. For the heart
rate, we chose the ocular (eyes) region and the forehead
region as a whole, as well as the blood vessels located in the
forehead and the inner corners of the eyes (inner canthus).
In the next subsections we describe the latter two in further
detail. In all cases, the raw thermal signals were created
by averaging the pixel values inside the zones of interest
for each video frame. After producing the feature vectors
of the selected ROI, we processed the data to extract the
relevant signal. Our signal extraction pipeline consists of six
steps, namely: Differencing, Normalization, Downsampling,
Continuous Wavelet Transform, Filtering, and Rate Calcula-
tion. These steps are detailed below. Finally, the correlation
between signals retrieved from thermal images and those
obtained by the ground truth contact based physiological
sensors were also calculated.

1) Blood vessels detection: We experimented different
regions in the thermal faces for extracting the heart rate. First,
we detected the heart rate from thermal images by tracking
superficial blood vessels on the face [16]. To segment the
blood vessels from the the forehead region, we used several
well-known edge detection methods, including Canny, Pre-
witt, Roberts, and Sobel. The Canny edge detection method
proved to be the most effective in our experiments. The
forehead was chosen in particular as it provides a semi-flat
surface for cleaner detection of blood vessels. Following the
segmentation, we were able to generate our vascular map.
Furthermore, edge detection may miss the core of the vein,
where the effect of heat transfer caused by blood circulation
is most prominent. As a result, we enlarged the edges by one
pixel in each direction to ensure that we extracted the heat
coming from the center of each vein near the skin’s surface.

2) Inner canthus detection: We experimented the eyes
corners regions. The eye corner (inner canthus) represent the
warmest region through the recording [7]. In order to locate
the inner canthus, we used image binarization in the region
of the eyes with a threshold equal to 1:

Threshold =Maximum− (Maximum−Median)/2
(1)

3) Signal Extraction Pipeline:
i) Differencing: We calculate the differences between

adjacent elements of the signal S(t) to produce the
transformed signal Ŝ(t)

Ŝ(t) = S(t)− S(t− 1) (2)

ii) Normalization: The signal’s amplitude was normal-
ized using µ and σ as the mean and standard deviation
of Si respectively. The transformed signal S(t) has
mean µ = 0 and standard deviation σ = 1.

Ŝ(t) =
S(t)− µ

σ
(3)

iii) Downsampling: Downsampling was performed on
the thermal signal to reduce the signal rate to 8 Hz
from 100 Hz for the original signal. This matched
the frequency of the physiological signal, which itself
was downsampled to 8 Hz from 2048 Hz as part of
the pre-processing procedure in order to increase the
computational efficiency without noticeable degradation
of information.
iv) Continuous Wavelet Transform: The Mexican Hat
a.k.a. the Ricker Wavelet was used as the mother
wavelet ψ(t). Equation 4 describes the Ricker Wavelet
in which σ represents the standard deviation and t repre-
sents time. Equation 5 describes the continuous wavelet
transform in which S is the input signal function, t
is time, a is the scale value and b is the translation
value. The scale which best represents the physiological
signal component of the recordings was selected based
on a separate validation set. Lower scales of a wavelet
transform are more likely to contain noise, while higher
scales are more likely contain metabolic contributions.
Considering that a normal heart rate has a higher
frequency than normal breathing rate, and in order to
avoid excessive ’smoothing’, we utilized a lower scaling
for heart rate and a higher scaling for breathing rate.

ψ(t) =
2√

3σπ1/4

(
1−

(
t

σ

)2
)
e−

t2

2x2 (4)

Sw(a, b) =
1√
|a|

∫ ∞

−∞
S(t)ψ

(
t− a

b

)
dt (5)

v) Filtering: Next, we apply an Elliptic filter to isolate
the breathing rate. An Elliptic bandpass was selected
for its sharper transition between filtered and unfiltered
frequencies. On the other hand, for the heart rate, we
used the butterworth bandpass filter [36].
vi) Rate Calculation: Next, the number of peaks in the
wave are counted. However, the smaller peaks found in
some waveforms are not necessarily consistent with the
breathing function and are more closely attributed to
noise. This issue is addressed with a constraint known
as peak prominence which is introduced when selecting
the peaks. Peak prominence measures the height of a
peak relative to its nearby surrounding peaks. As the
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signal levels vary across our subjects as well as between
the sensor and thermal signals, utilizing this additional
step is suitable for our dataset.
a) Respiration: For respiration, the prominence pa-

rameter is set to a certain threshold of the range of
the signal in order to filter out noise relative to the
signal level. The respiration rates are then calculated
by counting the resulting peaks and dividing by the
length of the recording. The distribution of rates
across recordings can be found in Fig. 2a, which
shows the majority of recorded subjects falling within
the normal range of 12 to 20 breaths per minute [39].

b) Heart Rate: Finally, all of the extracted signals
from thermal recordings were found to fall within
the normal range of 60 to 100 beats per minute,
with the exception of one outlier, as shown in Fig.
2b [17]. It may also be noted here that the thermal
recordings seem to outperform the ground truth
when determining the number of recordings that
fall within normal range, with about 90% of the
contact based physiological signal recordings falling
between 60 and 100 beats per minute. While further
investigation would be needed, this may be due to
noise caused by subject movement, an issue which
is more likely to occur with contact-based sensors.

TABLE I: Differences in Breathing Rates Across Observed
and Ground Truth

BPM Difference Respiration
<0.5 51
<1 77
<2 93
Total Recordings 128

Cross correlation was used to find the maximum correla-
tion between shifted copies of the sensor and thermal signals
for the respiration rate. By utilizing cross correlation, we
aimed to perfectly align the signals at sub-second accuracy,
as shown in Fig. 3a and Fig. 3b.

4) Skin Temperature Signal: According to studies in the
literature, changes in core and total skin temperature occur
extremely gradually over a period of minutes or even hours
in steady, comfortable environmental conditions [38]. As
a result, we used multiple regression models to determine
the long-term trend of the thermal signal retrieved from
the thermal faces and to evaluate the performance of the
NC approach to extract skin temperature compared to the
sensor-based skin temperature. We used the whole face
region to extract the NC skin temperature and to report our
results using Linear regression, Polynomial regression, Lasso
regression, Ridge regression, and ElasticNet regression.

5) Final Non-Contact Physiological Feature vectors: Fol-
lowing the extraction of the NC based physiological signals,
we formed their final feature vectors using the detected
beats per minute for the heart rate and breaths per minute
for the respiration rate. Moreover, we generated statistical

(a) Distribution of breathing
rates (b) Distribution of heart rates

Fig. 2: Histograms showing the rates per minute of Res-
piration and Heart Rate, showing the number of subjects
(vertically) that fall into BPM bins (horizontally)

(a) Recording 1-04-b before
cross correlation adjustment

(b) Recording 1-04-b after
cross correlation adjustment

Fig. 3: Alignment of signals before and after cross correlation

features from the extracted signals. The features include
a 10 bin histogram that describes the signal distribution,
the minimum, the maximum, the mean, the variance, the
skewness, the kurtosis, the inter-quartile range, the standard
error of the mean, and the median.

D. Classification

The final set of experiments we present in this paper
utilizes the contact based physiological signals, the thermal
features, and the extracted NC based physiological features
to train different classifiers in order to detect the subjects’
enervation. In addition to running classification for these
three sets of features, we generated a larger feature vector
per recording by merging features from the thermal modality
with the NC based physiological signals before training our
classifiers in order to provide a meaningful comparison. In
our experiments, we defined our classification labels based
on the Time hypothesis (hereafter referred to as the Time
label), in addition to the KSS based labels (hereafter referred
to as the KSS label), which are derived from the KSS survey
results.

The Time label was built on the presumption that par-
ticipants were energized within an hour of waking up and
enervated in the evening after a long busy day, as discussed
earlier in Section III. While, for the KSS labels, a KSS
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score was obtained from the subjects for each session, with
values ranging from one to nine; here, one indicated that
the subject was the most energized and nine indicated the
most enervation. We converted this range into a binary
classification problem, with one to five being energized and
six to nine being enervated.

In this paper, we are using a total of 159 recordings which
consist of 33 baseline recordings, 64 morning recordings, and
62 evening recordings. A few recordings were missing due
to errors in data collections.

In our experiments, we explored several supervised ma-
chine learning classifiers; however, we settled on Random
Forest Classifier (RFC), and Extreme Gradient Boosted
Machine (XGB) as these two classifiers performed well in
literature [25]. To establish the baseline metrics, a baseline
classification utilizing random guessing was used. This Base-
line Classifier (BC) serves as a simple baseline against which
other more complex classifiers can be compared. Leave-
One-Subject-Out Cross Validation was used to evaluate per-
formance; this allowed for the training set to exclude one
subject’s recording set at a time, with that subject’s recording
then used for testing for a given fold.

V. EXPERIMENTAL RESULTS

Our results for this paper are categorized in two sections.
The first section presents the results of our evaluation of
the NC physiological features extracted from the thermal
modality, while the second section presents the results of
the classification models using the different sets of features,
described earlier, to detect enervation.

A. Evaluation of Non-Contact Physiological Features

1) Non-Contact Respiration and Heart Rate Scoring
Method: To understand the performance of our system,
we scored our results with a cumulative threshold method.
This involved determining the signals’ rates, as described
in section IV, which were detected for both the contact-
based physiological and NC based physiological signals of
the same recording. Next, we took the total difference in the
number of peaks between the two modalities relative to the
length of the recording to devise a score.
(A) Respiration Rate: Based on the difference between
the NC signal and the contact-based signal, we determine
whether the rates from both signals represent a match, by
falling within a defined threshold value, or not, by exceeding
the threshold value. The accuracy is then calculated as the
total number of matches divided by the total number of
recordings. The complete set of results are shown in Fig.
4. Using this scoring method, the figure shows we found an
overall accuracy of 80% for the respiration and for the NC
signal for the Heart Rate generated from the median inner
canthus at the corresponding threshold.

Additionally, the number of recordings within certain
breath-per-minute differences of the contact based ground
truth are found in Table I.

Fig. 4: NC Heart Rate and NC Respiration Accuracy as a
Function of Threshold

2) Skin Temperature: In order to evaluate whether the
extracted NC skin temperature matches the contact based
skin temperature we used regression for each recording’s
data separately, with 80% as training data and 20% as testing
data.

Table III presents the average mean squared error for the
evaluation of different models using the following thermal
features taken across the frame: the average, the maximum,
and the 10% highest temperature. The mean squared error
provides a better understanding of the correlation between
the two signals. Thus, a lower error indicates higher correla-
tion. The linear and polynomial models have the lowest error
of 0.54 and 0.44 degrees Fahrenheit respectively using the
10% highest temperature feature, which shows high correla-
tion between the contact and NC physiological signals.

B. Classification Of Enervation State

For evaluation of enervation detection, we report the
average overall accuracy and the mean recall using each
of the three individual contact based physiological signals,
each of the three NC based physiological signals, the thermal
features, and different combinations of the contact as well as
the NC signals.

Based on our preliminary results, the heart rate signal
extracted from the inner canthus showed better performance
compared to the NC extracted heart rate signal from the other
thermal regions, described earlier. Thus, for our enervation
classification, we will utilize the results of the heart rate
signal extracted from the inner canthus.

Regarding the thermal features, the forehead region
demonstrated better performance compared to the other
regions in literature [1]. Therefore, this region is utilized to
represent the thermal features for our enervation classifica-
tion.

Table II describes the overall accuracy and the mean recall
for the different classification schemes. It shows a compari-
son of NC based features against the contact based features
as follows: First, the performance of each set of physiological
features were individually assessed. As presented in the
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TABLE II: Comparison of Contact and NC-based Classifications Of Enervation State, H: heart rate signal, R: Respiration
rate signal, S: Skin temperature signal, F: Thermal forehead region, TL: Time Label, KL: KSS Label, GB: Gradient Boosted,
RF: Random Forest, BC: Baseline Classifier. The highest accuracy in each column is presented in bold.

Non-Contact Based Contact Based
H R S F HR HS SR HSR FH FR FS FHR H R S HR HS SR HSR

TL

GB Accuracy 50.8 49.2 57.9 61.1 53.2 63.5 59.5 58.7 63.5 66.7 60.3 63.5 50.0 36.5 44.5 48.4 50.8 42.1 50.0
Recall 50.7 49.2 57.9 61.1 53.1 63.5 59.6 58.7 63.4 66.6 60.3 63.4 50.0 36.5 44.5 48.4 50.7 41.9 50.0

RF Accuracy 59.5 42.1 58.7 65.9 57.9 61.1 56.3 54.0 69.8 65.9 63.5 62.7 55.6 44.4 42.9 51.6 51.6 46.8 47.6
Recall 59.5 42.0 58.7 65.8 57.8 61.0 56.3 53.9 69.8 65.9 63.5 62.6 55.5 44.3 42.8 51.5 51.5 46.7 47.6

BC Accuracy 50.8 42.1 46.0 49.2 56.3 45.2 50.8 51.0 47.6 49.2 51.6 50.0 57.1 46.8 50.0 53.2 50.8 43.7 44.4
Recall 50.9 42.1 46.0 49.1 56.4 45.1 50.9 50.7 47.6 49.2 51.6 50.0 57.2 46.8 50.0 53.3 50.7 43.5 44.3

KL

GB Accuracy 42.5 49.2 49.2 53.3 45.0 47.5 45.0 52.5 45.8 52.5 53.3 49.2 52.5 53.3 45.8 53.3 55.8 47.5 52.5
Recall 40.7 45.9 47.0 50.9 42.3 44.4 40.9 49.0 43.3 49.9 51.1 46.1 50.7 52.6 43.0 51.4 54.4 45.6 49.9

RF Accuracy 43.3 51.7 44.2 50.8 47.5 45.0 45.8 45.8 55.0 59.2 50.8 52.5 54.2 50.0 57.5 54.2 55.0 49.2 53.3
Recall 39.7 47.7 39.9 47.6 43.6 41.1 41.9 41.3 50.6 55.6 46.1 48.7 51.2 46.6 55.0 51.3 52.6 46.7 50.9

BC Accuracy 46.7 43.3 50.8 47.5 51.7 46.7 53.3 48.3 48.3 50.8 46.7 47.5 52.5 52.5 52.5 45.8 55.0 45.0 55.8
Recall 47.4 43.14 50.1 48.4 51.1 47.7 52.6 49.1 49.1 51.0 46.3 47.9 53.9 52.1 53.6 46.7 54.9 44.3 55.9

TABLE III: Per Recording Average Mean Squared Error
Evaluation Metric Using Regression Models

Features Average Maximum 10% maximum
Linear Model 0.8105 0.6464 0.5469
Polynomial Model 0.7316 0.5251 0.4498
Lasso Model 0.8089 0.6349 0.5403
Ridge Model 0.8435 0.6383 0.5553
ElasticNet Model 0.9507 0.8922 0.9629

table, the NC based modalities outperformed the contact
based modalities using the Time label. Classification using
the thermal features (presented as ‘F’ in the table) attained
65.87% accuracy using Random Forest, outperforming the
other individual modalities. Regarding the KSS label, the
skin temperature using the contact based features outperform
the other individual modalities with an accuracy of 57.5%.

Moreover, we evaluated the performance of merging the
different physiological signals in addition to merging the
thermal features with the NC based physiological signals.
The aforementioned table also shows that the NC based
combinations outperform the contact based method for both
the KSS and Time labels. The combination of thermal
features and NC heart rate signal (presented as ‘FH’ in the
table) in particular attained an accuracy of approximately
70% using the Random Forest classifier with the Time label;
this was also an improvement compared to the individual
NC signals. In assessing classification results, we found
that NC respiration did not perform well as an individual
modality classifying enervation, but improved other results
when merged with other signals. Its poorer performance may
be explained by the fact that the subjects’ breathing was
irregular during recordings where the subject is speaking.
The KSS label was not very promising in term of ener-
vation classification compared to the Time label, as the
greatest accuracy attained was approximately 60%, using
the combination of the forehead thermal features with the
NC respiration rate signal (presented as ‘FR’ in the table).
As for classifying enervation with contact-based sensors,
performance was comparable to the baseline classifier, which
may be caused by noise due to the subjects movement, an
inherent problem to contact-based sensors. This motion may
have distorted patterns related to enervation detection.

Considering the complete set of results, we can see that the
performance of the individual signals is enhanced through
the merging of additional features, and in particular this
was the case for the NC features. Accordingly, the NC
features provided promising results in terms of enervation
classification, which is practical when being applied in a
vehicle.

VI. CONCLUSION

In this paper, we use a multimodal dataset for circadian
rhythm detection, as well as propose a pipeline utilizing
waveform transformations and bandpass filtering as part of a
framework able to extract heart rate, respiration rate, and skin
temperature from thermal images to provide an NC based
alternative. In addition, we classified enervation using contact
and NC approaches, and demonstrated the efficacy of the NC
approach. This provides the opportunity to move towards an
implementable technology in autonomous vehicles that does
not rely on uncomfortable, restrictive contact-based sensors.

Our research focused on said comparison by investigating
and comparing in-depth results of both contact and NC
modalities. We found that thermal images processed through
our pipeline generated physiological signals with comparable
output to the ground truth contact-based sensors. More
specifically, the NC respiration signal was found to match
the contact-based signal with a high accuracy, while the NC
heart rate signal extracted from the median inner canthus was
found to match the contact-based signal with high accuracy.
Finally, the skin temperature signal showed a high correlation
between the retrieved signal with the contact physiological
skin temperature with an average mean squared error of 0.44
and 0.54 using polynomial and linear models respectively.

In addition, as part of a second stage of analysis, we
found that classifying the subjects’ enervation states across
the Time label using these NC physiological signals demon-
strated promising results, reaching approximately 70% ac-
curacy. It achieved a marked improvement in performance
when compared against the KSS label’s self-reported sleepi-
ness levels. Among the modalities used in classification, the
forehead thermal region performed best, and the NC respira-
tion performed worst. While further investigation would be
needed, this may be explained by the inherent instability of
the respiration signal when the subject is speaking, compared
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to the inherent stability of the forehead-based signal. This
work contributes to an improved knowledge of the status of
a vehicle’s occupants in order to enhance their comfort and
well-being.

VII. ACKNOWLEDGMENTS

This material is based in part upon work supported by
the Ford Motor Company. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of Ford Motor Company or any other Ford entity.

REFERENCES
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