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Detection and Recognition of Driver Distraction Using
Multimodal Signals
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Distracted driving is a leading cause of accidents worldwide. The tasks of distraction detection and recog-

nition have been traditionally addressed as computer vision problems. However, distracted behaviors are

not always expressed in a visually observable way. In this work, we introduce a novel multimodal dataset

of distracted driver behaviors, consisting of data collected using twelve information channels coming from

visual, acoustic, near-infrared, thermal, physiological and linguistic modalities. The data were collected from

45 subjects while being exposed to four different distractions (three cognitive and one physical). For the pur-

poses of this paper, we performed experiments with visual, physiological, and thermal information to explore

potential of multimodal modeling for distraction recognition. In addition, we analyze the value of different

modalities by identifying specific visual, physiological, and thermal groups of features that contribute the

most to distraction characterization. Our results highlight the advantage of multimodal representations and

reveal valuable insights for the role played by the three modalities on identifying different types of driving

distractions.
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1 INTRODUCTION

Road traffic accidents have increasingly become a worldwide leading cause of death and injuries.
According to the Centers for Disease Control and Prevention (CDC) and the World Health

Organisation (WHO), every year traffic accidents claim the lives of 1.35 million people around
the world, resulting in almost 3,700 road casualties daily, which involve cars, buses, motorcycles,
bicycles, trucks, and/or pedestrians [29]. While having a devastating societal impact, road accidents
are highly correlated with severe financial losses as well. CDC reports that in just one year (2013),
the total lifetime medical and work loss costs associated with fatal and non-fatal road injuries in
the United States was estimated at 154.33 billion dollars, while 37% of the costs associated with
unintentional injury deaths in general during the same year were directly related to transportation
accidents [10, 30].

One of the most common causes of road accidents is distracted driving. Based on the National

Highway Traffic Safety Administration (NHTSA), over the span of one year (2018), 2,800 lives
were lost in US road accidents due to distracted driving and more than 400,000 thousand people
were injured [31]. NHTSA defines distracted driving as any activity that diverts attention from
driving, including talking or texting on the phone, eating and/or drinking, talking to people in
your vehicle, fiddling with the stereo, entertainment or navigation system or anything else that
takes driver’s attention away from the task of safe driving. According to the same source, texting
is the most alarming distraction. Sending or reading a text takes the driver’s eyes off the road for a
minimum of 5 seconds. At 55 mph, this is the same as driving the length of an entire football field
with the eyes closed.

NHTSA and CDC classify driver distractions into three major categories that occupy different
types of driver’s mental and motor capabilities [28]: Visual—taking your eyes off the road; Manual—
taking your hands of the wheel; and Cognitive—taking your mind off what you are doing. These
distraction categories may of course overlap and coexist in many types of driving distractions.

Motivated by this previous foundational work, this paper targets the following research
questions:

(1) How do different distractions affect driver’s behavior? We propose a novel dataset to-
wards understanding distracted and drowsy driving. The dataset covers a group of different
driving distractors and is designed with a special focus to induce different aspects of cogni-
tive inattention motivated by variant affective stimuli.

(2) How do different visual clues perform with respect to capturing distracted behav-

ior? We explore how visual cues in the form of Action Units can be modelled using machine
learning in order to detect and recognize different kinds of distracted behavior.

(3) How do different physiological signals perform with respect to capturing distracted

behavior? We explore how different physiological signals such as the heart rate, respiration
rate, skin conductance and skin temperature cues can be modelled using machine learning
in order to detect and recognize different kinds of distracted behavior.

(4) Can the thermal modality, as a relatively newer approach, detect distracted behav-

ior? We perform an in-depth evaluation of different scenarios and we identify the strengths
and weaknesses of each modality towards (a) detecting and (b) recognizing physical and
cognitive distractions.

(5) What are the most important features when detecting distracted behavior? We per-
form a modality-based feature analysis on the different trained models and highlight the
most informative features in each information channel.

The goal of this research is to gain insights into how distractions affect behavior. This is real-
ized by exposing the participants to different cognitive distractions induced by affective stimuli
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and identifying behavioral, physiological, and thermal features that can best characterize those
behavioral changes.

2 RELATED WORK

There have been several works in the past that used machine learning methods to detect distracted
driving, with the vast majority of them focusing on computer-vision based approaches and facial
analytics. One of the earlier papers published on the topic was the work proposed by Rongben
et al. [40] in 2004, which utilized mouth deformation tracking to detect potential behaviors of
risk on drivers, such as yawning or signs of conversation. Since then, multiple papers have been
published that aim to tackle the same problem following similar approaches but utilizing more
novel and sophisticated computational methods.

The work published in 2013 by Mbouna et al. [24] used a set of facial and head related features to
target distracted driving. Eye-state monitoring and head-pose patterns were tracked overtime to
classify between alert versus non-alert. This work highlighted the very rich information that can
be extracted from the head and eye regions and showed its great potential towards understanding
distracted behavior. The method proposed in 2015 by Liu et al. [22] tried to address the problem by
acknowledging and targeting a common issue across many machine learning applications; the lack
of labeled data. The research team proposed a semi-supervised method that, similar to works of the
past, utilized eye and head movements to detected distractions based on both labeled and unlabeled
data. In more recent works, deep-learning methods have been evaluated on similar experimental
setups. The works proposed in 2019 by Kose et al. [18] and Rao et al. [35] utilized convolutional
neural networks to classify video segments into 10 target classes using the dataset proposed by
Abouelnaga et al. [2]. These two papers were likely the first to go beyond distraction detection to
distraction recognition. However, their methods were highly dependent on discriminating physical
distractors by targeting labels such as “reaching behind” or “talking on phone with the right hand”,
thus being very limited to other kinds of passive distractors that relate to anxiety, frustration or
even verbal interaction.

An approach that is increasingly gaining the attention of related research as modern cars are
being equipped with more advanced sensors is physiological based driver modeling [27, 45]. The
review provided by Begum et al. [5] offered a detailed overview of the early approaches on dis-
tracted driving detection using physiological data. Since then, things have not drastically changed
as the community keeps addressing the topic based on signals related to respiration, heart rate,
muscle activity and visual clues. However, research has slowly shifted from understanding statis-
tical correlations to building driver-centric behavior models based on the aforementioned signals.

In the study of 2014 conducted by Solovey et al. [48], results showed that working with physio-
logical data alone can provide high quality information regarding a driver’s cognitive workload; a
mental state which is highly correlated with distracted behavior. Similarly, the work by Dobbins
et al. [9] in 2018 showed that machine learning methods can be applied on physiological data to-
wards inferring driving and task related characteristics such as driving speed or the type of the road.
Taamneh et al. [49] designed a multimodal repository of simulated drivings targeting different
types of distractions. Taamneh’s paper investigated the problem under a user-centric multimodal
perspective using a rich set of devices. However, other than offering an in-depth and insightful sta-
tistical analysis of their findings, the research team did not provide any machine-learning based
results neither identified specific modality-based features related to different distractors, which
are two of the main scopes of this paper. Our work offers three additional contributions compared
to Taamneh’s dataset. We introduce more sensors such as multiple RGB, thermal and infrared
cameras of variant qualities, capturing different points of view, as well as additional physiological
markers such as the raw blood volume pulse, respiration and skin temperature measurements. In
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addition, we explore some more realistic scenarios such as the GPS interaction and the radio listen-
ing events, which are some of the most common activities that occur in today’s driving. Lastly, the
dataset here is designed to promote parallel investigation of drowsy and distracted driving states;
a characteristic that makes this resource quite unique. Even though drowsiness characterization
is out of the scope of this paper the data and the available labels have been specifically designed
to support such research in the future.

Most recently in early 2020, the paper by McDonald et al. [25] discussed the advantage of en-
semble learners to model driver behavior and classify distractors based on physiological markers.
Overall though, physiological data has been explored in further depth only during the recent past
and usually in combination with other information signals such as eye-lid movements or vehicular-
based feedback signals, showing very promising results and highlighting new research directions
[7, 53].

Thermal imaging was also investigated by researchers as a non-invasive modality. Avinash et al.
[3] presented a research that sought to monitor the driver’s distractions using a ThermoVision
SC6000 Mid-Wave Infrared (MWIR) camera. The authors suggested an approach that is based
on the face’s thermal signature of 11 individuals. They performed two experiments to evaluate the
validity of their method. The first experiment aimed to model the driver’s cognitive distraction
by permitting mobile phone usage while driving and the second experiment focused on the visual
distraction of drivers by permitting texting while driving. In order to extract the facial signature, a
smoothie tracker was applied to track the supraorbital region of the subjects. Their work showed
the potential of thermal imaging based on the facial physiological monitoring system in detecting
driver’s distraction. The works proposed by Kolli et al. [17] in 2011 used an infrared thermal camera
(“PathFindIR”) from FLIR systems with spectral band 8-14µwith the aim of classifying driver’s emo-
tions. In addition to detecting driver’s anger, disgust, fear, joy, sadness, and surprise, the authors
developed three different algorithms after analysing hundreds of thermograms to identify the face
region. In 2017, in order to classify individuals as fatigued or resting, Lopez et al. [23] processed
thermal images following three primary steps using a Therm-App mobile thermal camera. In the
first step, three sub steps were included which are detection, segmentation, and alignment of ther-
mal facial regions by using the position of the eyes and nose. The alignment of the images aimed to
reduce any potential discrepancy between the subjects and images. This sub step produced a collec-
tion of aligned thermal facial images as well as regions of interest. The second step employed two
separate convolutional neural networks to generate fixed-length deep feature vectors extracted
from facial images and regions. The third step then utilized these features with a Support Vector

Machine (SVM) to determine if a subject is fatigued or resting. In 2019, the research done by
Knapik et al. [16] proposed a unique method for detecting yawns using long-range infrared imag-
ing. Their results showed a great potential in detecting driver’s fatigue in both laboratory and real
car conditions. More recently in 2021, Schif et al. [42] measured the local temperature variation
distribution in order to detect sweating by characterizing surface roughness. This method could
be used to avoid driver’s distraction by regulating the car’s climate. Researchers also exploited the
potential of thermal imaging in detecting the driver’s physical state. For instance, Forczmanski
et al. [11] showed that thermal image analysis could be exploited to estimate the state of the eyes
and mouth, which can be used to detect driver’s drowsiness.

While several recent papers have tried to study the fluctuations of stress during driving [51, 52],
very few have focused explicitly on how different common driving distractors affect specific phys-
iological and behavioral reactions [55], and even fewer have explored the potential of multimodal
data for such purposes [6, 37].

This paper tries to fill some of the gaps that past research has not targeted extensively yet.
Firstly, we explore the problem of distraction detection. Next, we aim to understand how different
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Fig. 1. The data collection experimental setup.

distractions can be discriminated by addressing the problem of distraction recognition. Our
evaluation goes beyond physical distractions and tries to discriminate between distractions that
involve different types of cognitive effort, such as listening and commenting on emotionally
intriguing radio recordings or interacting with a faulty GPS that can cause frustration and mild
levels of anxiety. Recognising different types of distractions can also lead to more personalised
driving assistants, a utility that becomes more and more popular in modern vehicles.

Through this analysis, we hope to identify features that can be evaluated in the future to analyse
distractions and their impact on human performance in applications other than driving such as in
education, training and other task-oriented domains [33]. Secondly, we aim to explore the advan-
tages of three different modalities towards identifying different distractions. Our results highlight
the advantage of our approaches on distraction recognition and offer valuable insights for further
research on distraction characterization in driving and beyond.

3 HOW DO DIFFERENT DISTRACTIONS AFFECT DRIVER’S BEHAVIOR?
THE DATASET

We introduce a novel multimodal dataset that has been specifically developed for the purposes of
understanding distracted and drowsy driving. The dataset was collected under a simulated envi-
ronment using twelve different information signals on 45 subjects of varying ethnicity. Overall,
the dataset consists of 30 males and 15 females, all between 20 and 33 years old. Figure 1 illustrates
the experimental setup environment.

3.1 Experimental Procedure

For each participant, we held two recordings in a simulated environment. One recording took place
in the morning, usually sometime from 8am to 11am, and the second recording happened during
the afternoon/evening, between 4pm to 8pm. We asked all participants to schedule the morning
recording as the first task in their daily routines so that they are as least drowsy as possible. Next,
participants were asked to attend the afternoon recordings later in the day, usually before going
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home, and were specifically instructed not to nap in that day from the time they woke up until the
time of the recording. Our assumption was that at different times of day we could capture variant
levels of alertness and biological rhythms. The two recordings did not have to happen in the same
day or in any specific order. Each recording lasted on average 45 minutes and consisted of three
different sub-recordings; ‘baseline’, ‘free-driving’ and ‘distractions’. During each session, subjects
had to drive both on highways and in a city-like environment.

The ‘baseline’ recording consisted of two sub-parts; the ‘base part’ and the ‘eye-tracking’ part.
In the ‘base part’ participants were asked to sit still, breath naturally and stare at the middle of the
central monitor for 2.5 minutes. For the ‘eye-tracking’ part, subjects were shown a pre-recorded
video with a target changing its position every few seconds. Participants were asked to follow the
target with their gaze while acting naturally. This part lasted another 2.5 minutes.

During the ‘free-driving’ recording, participants had to drive uninterrupted for approximately
15 minutes. Before the beginning of each ‘free-driving’ recording and after explaining the basic
operation controls, we gave participants a chance to drive for a few minutes so they can familiarize
themselves with the simulator. To minimize the biases introduced by the relatively unfamiliar
virtual-driving setup, for the purposes of this paper we used only five minute long data segments,
extracted from the last seven minutes of the free-driving recording, when subjects were already
used to the driving simulator.

The last part was the ‘distractions’ recording. This recording consisted of four different sub-parts
that simulated different types of common driving distractors. The largest portion of the analysis dis-
cussed in this work has been conducted on the data collected during this part. Bellow we describe
the four different distractors that participants were exposed to during each recording session.

• D1 - Texting. Participants were asked to type a short text message on their personal mobile
device. The text was a predefined 8-word message and was dictated to the participant by
the experiment supervisor on the fly. By using predefined texts we aimed to minimize the
impact of cognitive effort that subjects had to put when texting and focus more on the phys-
ical disengagement from driving. Nonetheless, texting combines all three distraction classes
defined by NHTSA and the CDC, which are Manual, Visual and Cognitive (see Section 1).
The mobile device was placed on an adjustable holder on the right side of the steering wheel
and participants had the freedom to adjust the positioning of the holder at will, so that it fits
their personal preferences, thus simulating a real-car setup as accurately as possible.
• D2 - N-Back Test. The second distractor was the N-Back test. This distractor aimed to

challenge exclusively the cognitive capabilities of the subjects while driving. N-Back is a
cognitive task extensively applied in psychology and cognitive neuroscience, designed to
measure working memory [15]. For this distractor, participants were presented with a se-
quence of letters, and were asked to indicate when the current letter matched the one from
n steps earlier in the sequence. For our experiments we set N=1 and deployed an auditory
version of the task where subjects had to listen to a prerecorded sequence of 50 letters.
• D3 - Listening to the Radio. For this distractor, participants were asked to listen to a pre-

recorded audio from the news and then comment about what they just heard by expressing
their personal thoughts. As with the N-Back Test, this distractor challenges mainly the cogni-
tive capabilities of the participant when driving but with one major difference. In contrast to
the neutral nature of the previous distractor here the recordings were emotionally provoca-
tive hence, motivating an affective response from the side of the subject. In particular, the
two recordings used as stimuli for this part were related to a) a potential active shooter event
that took place in the greater Detroit area, and b) reporting from a fatal road accident scene
which took place in the area of Chicago. These choices were made to help the users relate
better to the events described in the recordings.
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• D4 - GPS Interaction. At this step we asked participants to find a specific destination on
a ‘GPS’ through verbal interaction. The goal of this distractor was to induce confusion and
frustration to the participant; emotions that people are likely to experience when driving,
either by interacting with similar ‘smart’ systems or through the engagement with other
passengers or drivers on the road. In this case, the ‘GPS’ was operated by a member of
the research stuff in the background providing missleading answers to the participant and
repeating mostly useless information until the desired answer was provided.

What was most surprising about this section was that despite the fact that we were expect-
ing this to be mainly a cognitive/emotional challenge, we empirically observed that very of-
ten subjects tended to take their visual attention from the driving task and repeat (often quite
loudly) their commands while looking towards the direction of the speaker. Even though the
scenario tested here is purely experimental and no final conclusions can be made, this obser-
vation offers a valuable insight about the general driver behavior and reaction patterns on
various distractions.

Once the participants started driving they would not stop until the end of the recording. Thus,
they did not experience any interruptions when switching from the ‘free-driving’ to the ‘dis-
tractions’ parts. For each of the distractors we had two similar alternatives, which we randomly
switched between morning and afternoon recordings making sure that each subject would be ex-
posed to a different stimuli each time they participated.

3.2 Modality Description

During each recording the following visual, acoustic, near-IR, thermal, physiological and linguistic
modalities were recorded:

(1) Top-view RGB camera from Logitech, recording at 30 fps.
(2) Face closeup RGB camera from Raspberry, running on a Raspberry-Pi, recording at 25 fps.
(3) Face closeup RGB camera from IDS, capturing data at 20 fps.
(4) Near-Infrared close-up camera from IDS, capturing data at 20fps.
(5) Low quality thermal camera from Flir, capturing the face of the subject with a small angle

from the center, at an average of 7 fps.
(6) High quality thermal camera from Flir, capturing the subject’s face at 100 fps.
(7) Four physiological sensors from Thought Technology Ltd., 3 of them attached on the non-

dominant hand of the subject and one on the torso, measuring the following information:
(a) Blood Volume Pulse (BVP), (b) Skin Temperature, (c) Skin Conductance, and (d) Respira-

tion.
Raw data were captured with a sampling frequency of 2048 Hz. To avoid excessive amounts
of noise in the physiological data, we asked subjects to drive mostly using only their domi-
nant hand and use their other hand only if needed.

(8) Audio was recorded during the ‘Listening to Radio’ and the ‘GPS Interaction’ distractors,
where subjects had to provide verbal feedback.

(9) Transcriptions of the audio recordings are also available.

We also recorded the driver’s simulation run. For the purposes of this paper, we focus exclusively
on the data captured from the sensors in (3) and (7), i.e., the close-up RGB video recorded with the
IDS camera and the four physiological indicators.

4 METHODOLOGY

In this work, we try to address two different problems. Distraction detection, i.e., characterize the
subject as distracted or not and distraction recognition, i.e., identify the type of distraction that
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the subject is involved in. For each task we perform experiments using modalities individually.
In the following paragraphs we discuss the pre-processing and feature extraction steps for each of
the modeling approaches.

4.1 RGB close-up Image Processing

Inspired by the promising results of past research (see Section 2), we analyze features extracted
from the face and head regions using the Openface library [4]. Openface estimates a rich set of
facial and head positioning features based on a Constrained Local Model that consists of two main
components; a Point Distribution Model that is responsible for modeling the shape of a face and
a group of local detectors responsible to evaluate the probability of a landmark being aligned at
a particular pixel location [41]. Output features provided by Openface include head pose and eye
gaze information, facial landmark coordinates and action unit (AU) presence as well as intensity
values. We performed experiments with both individual and combinations of those features and we
conclude that AU intensity values were the ones encapsulating the richest amount of information
for our scope.

To describe AUs we first need to introduce the Facial Action Coding System (FACS). FACS is a
framework designed to group facial movements based on their appearance on the human face. This
grouping depends on slight instant changes in facial appearance caused by individual face muscles.
AUs are the individual units used by FACS to code complex facial expressions. Thus, AUs can be
seen as a mid-level representation of facial expressions, providing higher level of information than
just a group of facial landmarks but being much more descriptive than an affect-based classification
or regression model [50].

Openface provides AU intensity in the form of a continuous variable for 17 different AUs. In-
tensity values may range from zero (AU is not present) to five (maximum intensity). The AUs
monitored by Openface can be seen in Figure 7.

We compute intensity values for all 17 AUs for every frame in our video data. Following that a
sliding window technique is applied to the sequence of frames. For our experiments, a two second
window with 50% overlap was used. Hyper-parameters were tuned through an exhaustive grid
search approach. A smaller window size was selected as per the findings from Lee et al. [19], which
found that early warning times greatly reduced collisions caused by driver distraction. For every
window we extract the following features describing the distribution of AU intensities within a
window; minimum and maximum values, average, variance, skewness and kurtosis. At the end of
this process each window is summarized to a 17 × 6 = 102 feature vector.

4.2 Physiological Data Processing

As discussed in Section 3.2 we collect four physiological indicators with a sampling rate of
2048 Hz. For each of these signals, domain-specific statistical features are extracted using the Bi-
oGraph Infiniti data processing platform [26]. Every feature value computed over a group of raw
measurements, is also used as a padding value until the next computation, so that the final output
matches the sampling rate of the raw data.

In total, 73 domain-specific features are extracted through BioGraph in the form of time-series
from all four raw data streams. From these 73 features, 49 are related to BVP, six to Skin Tem-
perature, eight are extracted from Respiration, six are bi-products of Skin Conductance and four
features are statistics correlating heart rate with breaths per minute.

The BVP related features, which have the lion’s share in the final data representation are ex-
tracted from both the temporal and frequency domains of the raw signal. In particular, there are
ten features describing the statistical behavior of the inter-beat intervals of the BVP signal, i.e.,
distance between BVP peaks. Moreover, twelve features are related to heart rate (HR) and heart
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rate variability (HRV), describing temporal statistics of HR and frequency related information
for HRV such as low to high frequency ratio, peak frequency and others. Additionally, 24 fea-
tures are computed to describe the spectral power statistics of different frequency bands on the
BVP signal by grouping the frequencies into three frequency groups, very-low (<0.04 Hz), low
(0.04–0.15 Hz) and high frequencies (0.15–0.4 Hz). For each frequency band eight power related
statistics are calculated describing the total power of that frequency band, its mean and standard
deviation and their corresponding percentages with respect to the complete signal at the time
that the measurement is taken. Lastly, three features are extracted to describe the behavior of the
amplitude of the raw BVP signal at each timestamp.

The remaining 24 features extracted from the Skin Temperature, Respiration and Skin Conduc-
tance streams are statistics describing exclusively the temporal behavior of each of the signals and
the correlation of individual measurements with respect to their maximum and minimum values.
Adding the four raw data measurements to the 73 features described above, we end up at each
timestamp with a set of 77 domain-specific “core features” describing the physiological state of
the participant.

Next, we segment the 77 information streams using again a sliding window approach with a
window size of four seconds and a 50% overlap. As before, hyper-parameters are tuned using
an exhaustive grid search approach. Past research also found that physiological signals provided
better feature quality and performance with smaller window sizes [36, 54]. At every temporal
window we compute for every feature the same six statistics mentioned in Section 4.1 plus the
zero-crossing rate [38]. Zero crossing rate indicates the rate of sign-changes of a signal during the
duration of a particular frame and is often used for audio and physiological signal modeling tasks.

From each of the 77 information streams, we thus compute seven statistics resulting in a
539 features set. In addition, we compute the first order difference between the current and the
previous frame, eventually resulting in a final feature vector of 1,078 features representing four
seconds of physiological measurements.

4.3 Thermal Data Processing

To analyze the thermal features, we first located five different regions, including the whole face,
forehead, eyes, cheeks, and nose. Afterwards, these regions were tracked throughout the thermal
videos by applying the tracking algorithm proposed in [46]. Specifically, the process is divided into
three steps: face segmentation, tracking, and the creation of a thermal map, using our approach
provided in [1]. The final step consists of extracting statistical features for all Regions Of Interest

(ROIs) to form a thermal map in addition to segmenting the thermal features using three window
sizes of two, four and eight seconds, each with a 50% overlap.

Looking more closely at these steps, we began by manually locating the ROIs by defining their
bounding boxes in the first frame, as automatic facial detection methods, including contour track-
ing methods and template matching, did not perform well on thermal images. Thereafter, points
of interest in the detected ROIs were captured using a variation of the Shi-Tomasi corner detection
algorithm [44] by computing the weighted square difference between two successive frames. As
the method compares an image patch I1 (xi ) with a shifted version of the image, I1 (xi + Δu), an
auto-correlation function S was used.

S (Δu) =
∑

i

w (xi ) (I0 (xi + Δu) − I0 (xi ))2 (1)

where u is the displacement vector andw (xi ) is a window function. The function is approximated
using Taylor Series expansion into
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Fig. 2. Points of interest detected in the face region.

S (Δu) ≈
∑

i

w (xi ) (∇I0 (xi ).Δu)2 (2)

where,

∇I0 (xi ) =

(
∂I0
∂x
,
∂I0
∂y

)
(xi ) (3)

We used a fixed-size Gaussian filter to smooth the calculated gradient. Thus, S can be rewritten as:

S (Δu) = ΔuTVΔu (4)

where V denotes the auto-correlation matrix. The interesting corner points to be tracked were
located using the variation in S by computing the minimum eigenvalues from V. Figure 2 highlights
the points of interest discovered in the facial region with a lower threshold, allowing for more
detected points. These points suggested the presence of a blood vein regulating the temperature
of the surrounding region where sharper changes in the colors were present.

We tracked the ROI bounding box for the duration of the videos using a fast version of the the
Kanade-Lucas-Tomasi (KLT) tracking method [46], which provides accurate results for stabi-
lizing the ROI bouding box. The tracking algorithm estimates the relocation of points of interest
between two successive frames by assuming a small displacement between pixels in a frame at
time t and t + τ , which was ideal for our tracking needs. Afterwards, a geometric transformation
was applied to estimate the transformation of interesting points based on similarity between the
frames. As a precaution, we established a threshold of 95% of correctly mapped points between
two successive frames to account for any occlusion, such as not having the subject face in the
frame or just obtaining it partially. In the occurrence of occlusion, the current frame is skipped
and tracking resumes to the following frame. Lastly, for each ROI, we generated a thermal map
that reflected the thermal distribution. This was accomplished through the steps of ROI segmen-
tation, Segment binarization, Image masking, and finally Thermal map cropping. This process is
illustrated in Figure 3.

For each of the five ROIs, we thereby extract a total of 24 features, including 20 histogram re-
lated and four statistical measures derived from those regions. The histogram features describe
the temperature distribution in the ROI over 20 bins, while the four statistical features represent
the mean temperature, the range of temperatures, the minimum temperature value, and the max-
imum temperature value, all taken per frame. Next, we segment the thermal features using three
window sizes of two, four and eight seconds respectively, with a a 50% overlap for both, which
were selected in order to be compared against the RGB and Physiological modalities. For each
window, six statistical features were collected as desrcibed in Sections 4.1 and 4.2, those being the
mean, minimum and maximum, variance, skewness and kurtosis. We end the extraction process
with a feature vector for each window comprising of 5 × 24 × 6 = 720 features in total. Using
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Fig. 3. Segmenting, binarizing, masking and cropping the thermal ROI.

the full dataset of recordings, we arrive at approximately 17 hours of free-driving based thermal
data and approximately 9 hours of distractor based thermal data at our disposal for training and
classification.

4.4 Classification

To evaluate the effectiveness and robustness of the proposed modality representations, we compute
the classification performance using different types of classifiers. Here we report results for two
classifiers:

(1) Ensemble Voting: A Random-Forest (RF) classifier using 100 Decision Trees, with a maxi-
mum depth of 100 features per tree. We used entropy as a metric to ensure maximum infor-
mation gain at each node [21].

(2) Ensemble Boosting: A Gradient Boosting (GB) classifier that estimates a final set of
weights for each sample based on an iterative process. For our experiments we used
100 weak estimators [12].

We also experimented with an SVM classifier with a linear and an RBF kernel but the results
were always comparable or worse than the other two alternatives. In addition, an important benefit
of the ensemble classifiers compared to SVM is the interpretability of results. These observations
are also in line with other related studies [25]. In Section 5.2, we decompose the different ensemble
models to better understand feature importance and contribution to the final results.

5 EXPERIMENTAL FINDINGS

We conduct three types of evaluation experiments. Initially we target the traditional problem
of distracted versus non-distracted driving. Next, we look deeper into the distractions and
instigate two novel experimental setups towards better understanding the nature of different
distractors. First we address the binary task of discriminating between physical (D1-Texting)
and mental (D2-NBack, D3-Radio and D4-GPS) distractors. Second, we repeat the experiment by
considering each distraction as an individual class. We approach all problems using each modality
independently. After the quantitative analysis provided by the classification results we discuss a
qualitative evaluation that aims to identify features that contributed the most.
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Table 1. Total Duration of Available Data under Each Recording Segment

Recording Segment

Freedriving
Texting
Physical

NBack
Cognitive
Neutral

Radio
Cognitive
Emotional

GPS
Cognitive

Frustration

#Data
(hours)

∼7.4 ∼3.1 ∼2.2 ∼3.4 ∼2

5.1 How do Different Visual and Physiological Modalities Perform with Respect
to Capturing Distracted Behavior?

For all our results we perform a leave one subject out cross validation and report performance in
terms of average F1. Given the variant complexity and nature of each problem addressed in this
paper we believe that average F1 offers the ground to produce comparable and balanced results
that avoid data distribution biases affecting other metrics such as accuracy. For the models with
maximum F1 on the task, we visualize the averaged confusion matrices and evaluate deeper by
discussing recall performances of individual classes. In all the following tables, bold values corre-
spond to the best result in each experimental setup.

Finally, we run each experiment following three different modeling approaches:

(1) User Independent: We used all the data from 44 users for training and the remaining user
for testing. We repeated the process 45 times until all users were used as a test set. At the
end, the results of all 45 models were averaged.

(2) User Dependent: We used all the data from 44 users for training. For the 45th user we in-
cluded one of his recordings (morning or afternoon) in the training data and the remaining
recording was used for testing. We repeated the process 90 times until all users were used
as a test set. At the end, the results of all 90 models were averaged.

(3) User Exclusive: For each user we used one of their recordings (morning or afternoon) for
training and their remaining recording for testing. No data from other users were included
in the training or testing set in this case. We repeated the process 90 times (2 times for each
of the 45 users). At the end, the results of all 90 models were averaged.

For all our experiments we compare with two baselines. First we show results based on a
weighted classifier which always led to maximum average F1. For this baseline the chance of
assigning a label to a sample is equal to the percentage of samples available for each class in
the training dataset. Since the baseline predictions were weighted based on the class probabilities
the final average F1 (computed across all folds) always converged to 1

#classes
. We refer to that base-

line as “Balanced”. As an additional baseline we report average performance when assigning the
same label to all test samples. This can be considered as a more balanced version of the majority
class classifier since the final result takes into account performance across all the individual classes.
We refer to this classifier as “Single label”. The reported results were evaluated for significance us-
ing a non-parametric Wilcoxon test showing always strong evidence of difference against baseline
with p values ranging from 1−14 to 0.03.

Given the different experimental setups tested, the exact amount of training and testing data
used in each fold of each experiment varies. Table 1 shows the total duration of data used for our
experiments under each recording segment.

5.1.1 Distraction Detection. For this experiment we first segment 5-minute long recordings
coming from the last seven minutes of the free-driving recording part (see Section 3.1). The
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Table 2. Results on Distracted VS Non-distracted Driving Classification with

Respect to Average F1

Baseline Visual Physiological
Single Label Balanced RF GB RF GB

User Independent 0.32 0.5 0.69 0.7 0.86 0.84
User Dependent 0.32 0.5 0.73 0.75 0.87 0.84
User Exclusive 0.32 0.5 0.68 0.65 0.53 0.53

Fig. 4. Confusion matrices on distracted VS non-distracted driving classification for the best results of

Table 2.

distracted class contains samples collected during the distraction recording parts and are a mix of
all four distractors. Distraction samples correspond to 60% of the samples while free-driving data
occupy the remaining 40%. Table 2 shows the classification results, while Figure 4 illustrates the
confusion matrices for the best results using each modality.

The results of Table 2 indicate that tuning the model with user-specific data enhances F1 per-
formance compared to just training on generally observable behavioral patterns. In addition, the
matrices of Figure 4 reveal that the physiological model greatly outperformed the visual one in
terms of recall performance for the ‘Distracted’ class. The physiological model showed an abso-
lute improvement of 18%, by correctly identifying 97% of the distracted samples. The two models
have very comparable performance on detection of ‘non-distracted’ samples. In general, the ‘User
Dependent’ model of the physiological sensors trained on an RF classifier, offered the best results
with 87% average F1 and 97% and 71% average recall for the distraction and non-distraction classes
accordingly. This highlights the robustness of the physiological modalities on detecting patterns
of inattention that are not visually observable, as head and face based features are.

5.1.2 Distraction Recognition. In this scenario, we try to identify different distractions based
on their nature. For the binary problem, i.e., physical versus mental distractions, the latter
represent the dominant class with 71% of the total number of samples. For the 4-class problem
29% of the data belongs to distractor D1, 20% to D2, 32% comes from D3, and 19% from D4. Table 3
shows the results on each experiment, and Figures 5 and 6 show their corresponding confusion
matrices.
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Fig. 5. Confusion matrices on distraction recognition as a 2-class problem for the best results of Table 3.

Fig. 6. Confusion matrices on distraction recognition as a 4-class problem for the best results of Table 4.

Table 3. Results Distraction Recognition as a 2-class Problem with Respect

to Average F1

Baseline Visual Physiological
Single Label Balanced RF GB RF GB

User Independent 0.32 0.5 0.84 0.86 0.89 0.88
User Dependent 0.32 0.5 0.85 0.88 0.90 0.88
User Exclusive 0.32 0.5 0.85 0.79 0.63 0.59

Overall, all unimodal modeling approaches in Table 3 perform very well on discriminating phys-
ical from mental distractors. The physical activity demanded by the subject to text, generates
motion patterns that both modalities can easily pick-up. What is interesting is the very high per-
formance observed by the visual modality in the ‘User Exclusive’ experiment, shown in Table 3,
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Table 4. Results on Distraction Recognition as a 4-class Problem with Respect

to Average F1

Baseline Visual Physiological
Single Label Balanced RF GB RF GB

User Independent 0.1 0.25 0.47 0.53 0.64 0.63
User Dependent 0.1 0.25 0.5 0.58 0.65 0.64
User Exclusive 0.1 0.25 0.51 0.47 0.31 0.31

Table 5. Results of Distraction Recognition as a

4-class Problem with Respect to Precision

Visual Physiological
RF GB RF GB

User Independent 0.54 0.54 0.67 0.4
User Dependent 0.58 0.59 0.69 0.65
User Exclusive 0.51 0.47 0.33 0.32

where the available training data were very limited compared to the other two experimental-setups.
This highlights the value of the vision-based method on detecting physical distractions. However,
AU-based modeling seems unable to depict considerable behavioral differences across subjects,
which translates to the minor increase in performance in the ‘User Independent’ and ‘User Depen-
dent’ approaches compared to the corresponding improvements observed between the different
physiological models.

On the other hand, when we increase the resolution of the targeted classes, physiological
sensors are much more robust on discriminating between cognitive distractors of different stimuli.
The lack of appreciable motion activity makes the visual sensor a weaker descriptor and in
general less flexible to compete. This can be confirmed by both Table 4 and Figure 6. We can also
see from Table 5 the improved precision when using the physiological sensors for distraction
recognition.

5.2 What are the Most Important Features when Detecting Distracted Behavior?

Figure 7 illustrates the intensities of different AUs with respect to the four distractors. There are
some clear trends in several cases such as in AU4 and AU14 which, seem to be more present in the
D1-‘Texting’ distractor. Similarly AU6, AU15 and AU26 seem to be quite active during distractor
D4 - ‘GPS Interaction’, which was designed to induce communication dissonance and frustration
to the subject. AU15, AU17 and AU25 are also present during distractor D3 - “Listening to the
Radio”. There are no clear trends between AU intensities and the NBack - neutral distractor.

Next we look into the importance of different statistical features extracted from each modal-
ity. Feature importance is calculated as the increase in information gain at each node or in other
words the decrease of information entropy caused by each feature. The higher the value, the more
important the feature.

We use Python’s Scikit-learn implementation for estimating feature importance [34]. For visu-
alization purposes, we average feature importance values across all models trained on all three
unimodal classification tasks given a classifier and a modality. For the visual modality, we use as a
reference the GB classifiers, and for the physiological the RF models, as they respectively showed
best performance on each corresponding modality. Figures 8(a) and 8(b) show feature importance
values for each feature, i.e., 102 visual and 1,078 physiological features (see Sections 4.1, 4.2).
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Fig. 7. AU Intensities per distractor. AU ID numbers are defined by FACS.

Table 6. Top Five Features of Each Modality

Based on Feature Importance

AU Physiological

#1 AU05 BVP IBI pNN Intervals (%)
#2 AU10 BVP IBI pNN Intervals
#3 AU06 BVP HF % power mean
#4 AU23 BVP LF % power mean
#5 AU01 BVP IBI NN Intervals

Table 6 presents the top#5 performing “core features” from each signal. By “core features”, we
refer to the initial intensities for the 17 AUs and the 77 domain-specific physiological features
before extracting window-based statistics.

It is worth observing that across the visual features (Figure 8(a)), some of the most informa-
tive ones come from AUs that show overall low intensity levels when judging from Figure 7, in
particular AU1, AU5 and AU23. This indicates that differences in AU intensity that seem minor
to the naked eye may be crucial towards identifying distracted behavior. For the physiological
sensors (Figure 8(b)), BVP related features seem to account the most for the good results offered
by the modality. However, as seen in Figure 8(b), all physiological indicators contributed to the
final results despite the fact that the vast majority of features were related to BVP. The top#5 most
informative physiological measurements are presented below:

• BVP IBI pNN Intervals (%): the percentage of successive intervals that differ by more than
50 ms.
• BVP IBI pNN Intervals: the number of successive intervals that differ by more than 50 ms.
• BVP HF power mean: the mean of power in the high frequencies.
• BVP LF power mean: the mean of power in the low frequencies.
• BVP IBI NN Intervals: interval between two normal heartbeats.
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Fig. 8. Feature importance for each modality based on information gain.

pNN features are known to be highly correlated with sympathetic and parasympathetic
modulation of the nervous system [13, 39]. The sympathetic nervous system is responsible to
release hormones that accelerate the heart rate, while the parasympathetic has the opposing role.
Factors as stress, caffeine, and excitement may temporarily accelerate heart rate stimulated by
the sympathetic system [20].

To emphasize the importance of the features reported on Table 6 and get a deeper understanding
of their impact in the overall decision making we repeat all the best performing experiments (User-
Dependent scheme) using only those top#5 variables from each modality. We show our results in
Figures 9(a) and 9(b).

Interestingly enough, almost in all cases only a minor decrease in performance is observed,
highlighting the increased performance of the selected features over the complete set. The deepest
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Fig. 9. Performance comparison between best models (User-Dependent scheme) trained on the top five fea-

tures of each modality VS all the available features.

decrease in performance can be found on the visual modality for the distraction recognition task.
In both the 2-class and 4-class scenarios, visual-only performance had an absolute decrease of more
than 15% in terms of average F1, signifying again how volatile the visual features can be on this
task when used as a standalone modality.

5.3 Performance of the Thermal Modality in Capturing Distracted Behavior

For the thermal modality we use the same experimental setups as discussed above for the visual
and physiological modalities, carrying out three experiments:

(1) Binary distraction detection between free-driving and distracted driving.
(2) 2-class distraction recognition between physical and mental distractors.
(3) 4-class distraction recognition between physical, cognitive, emotional and frustration

distractors.

For each experiment we evaluate the performance using the average F1-score against two base-
lines, one single label and the balanced label, as discussed earlier in Section 5.1. Performance across
three window sizes are observed, all using a 50% overlap between segments. Similar to the exper-
iments for the visual and physiological modalities, three modeling approaches, including User
Independent, User Dependent and User Exclusive are used. Leave one subject out cross validation
is used to assess the performance.

Table 7 outlines the results obtained when using each of the three modeling approaches over the
three window sizes for the distraction recognition problem. We can observe that a longer 8-second
window is more beneficial to User Independent and Dependent modeling approaches. However,
User Exclusive benefits from smaller 2-second window sizes. This implies that highly personalized
detection might be more likely to be classified more efficiently.

RF classifiers are the best performing classifiers for all modelling approaches, with the User
Dependent modelling with an 8-second window achieving the best performance with an average
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Table 7. Results on Distracted VS Non-distracted Driving Classification with Respect to Average F1

using the Thermal Modality

Thermal

Baseline
2 second window,

50% overlap
4 second window,

50% overlap
8 second window,

50% overlap
Single Label Balanced RF GB RF GB RF GB

User Independent 0.32 0.5 0.704 0.704 0.71 0.715 0.743 0.735
User Dependent 0.32 0.5 0.711 0.716 0.738 0.73 0.747 0.746
User Exclusive 0.32 0.5 0.619 0.608 0.617 0.606 0.616 0.578

Fig. 10. Confusion matrices on distracted VS non-distracted driving classification for the best results of

Table 7 for each modeling approach.

F1-score of 74.71%. Looking at the confusion matrices in Figure 10, we observe that the thermal
modality is much better at classifying freedriving over distraction. This, however, could be an effect
of a class imbalance, as freedriving recordings are at a 1.8:1 ration to the distracted recordings. In
this context, it is possible having more distractor data to balance the classes would improve the
performance.

As seen in Table 8, we observe that the thermal modality performs the best in 2-class distraction
recognition, with an average F1-score as high as 94.21% when using an 8-second window in a User
Dependent modelling approach. A similar trend of benefiting the User Exclusive approach using
smaller window sizes is seen here as well, where the GB classifier achieves an F1-score of 86.29%
when using 2-second windows. All modeling approaches have better classification for the mental
distractor class, as seen in the confusion matrices in Figure 11. It should be noted that for User
Independent and Dependent modeling, the imbalance is much lower compared to the distraction
detection experiment.

Finally, for the third experiment, a 4-class distraction recognition problem, the results are tab-
ulated in Table 9. Here, we see that the GB classifier is the best performer for all modelling ap-
proaches, with the User Dependent 8-second window approach achieving an F1-score of 79.68%.
By looking at the confusion matrices in Figure 12 we see that the models are the best at correctly
identifying the physical and frustration distractors. This could be happening due to an increase in
the subjects’ movements and more exclusive variations in expressions that are captured in these
two distractors over the cognitive and emotional ones.
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Table 8. Results on Distraction Recognition as a 2-class Problem with Respect to Average F1

using the Thermal Modality

Thermal

Baseline
2 second window,

50% overlap
4 second window,

50% overlap
8 second window,

50% overlap
Single Label Balanced RF GB RF GB RF GB

User Independent 0.32 0.5 0.933 0.928 0.935 0.932 0.94 0.936
User Dependent 0.32 0.5 0.934 0.929 0.938 0.935 0.942 0.94
User Exclusive 0.32 0.5 0.699 0.863 0.69 0.798 0.688 0.708

Fig. 11. Confusion matrices on distraction recognition as a 2-class problem for the best results of Table 8 for

each modeling approach.

At this stage, we observe some key trends consistent across all experiments:

(1) User Independent and Dependent modeling approaches are by far the stronger modelling ap-
proaches compared to the User Exclusive one. This is possibly due to the much larger amount
of training data available for these approaches, which aids in developing much more robust
and generalized models. On the other hand, the User Exclusive modelling approach gets to
use only a single subject’s data for training, severely limiting the scope of data available for
use.

(2) User Dependent modeling is slightly better in performance compared to User Independent
modeling in all experiments. This is most likely due to the model gaining specific intuitive
knowledge for a given subject when it is allowed to use some of the subject’s data during
training. However, the increase in performance is not too great, in the range of 0.3-0.5%.

(3) While the longer 8-second window generates the best results, the 4-second window is
only 2% short of matching those results. The small trade off in performance to halve the
classification time can prove valuable for scenarios where a real-time prediction is required
on the expense of a small loss in accuracy.

5.4 Performance of ROIs in the Thermal Modality for Classification

Looking at the performance of the thermal modality in detecting and recognizing distractions,
Figure 13 outlines the features that were selected to be the most important for classification for
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Table 9. Results on Distraction Recognition as a 4-class Problem with Respect to Average F1

using the Thermal Modality

Thermal

Baseline
2 second window,

50% overlap
4 second window,

50% overlap
8 second window,

50% overlap
Single Label Balanced RF GB RF GB RF GB

User Independent 0.1 0.25 0.728 0.739 0.744 0.757 0.758 0.784
User Dependent 0.1 0.25 0.746 0.76 0.762 0.773 0.768 0.797
User Exclusive 0.1 0.25 0.442 0.561 0.424 0.492 0.413 0.422

Fig. 12. Confusion matrices on distraction recognition as a 4-class problem for the best results of Table 9 for

each modeling approach.

each experiment respectively. Lasso Leave One Subject Out Cross Validation was used with the RF
classifier to determine feature selection.

For both the 2-class and 4-class distraction recognition, we see that the cheeks are the most
important ROI contributing to the majority of the features used. The cheeks being a strong per-
former likely indicates that thermal imaging, being based on temperature readings, would benefit
from clear visibility of the skin for accurate measurement. However, for distraction recognition,
the cheeks are not the single most important ROI, with the face and nose being contributors to the
selected features as well.

However, taking a look at the ROI performance when using only one ROI at a time instead
of the fusion normally used for the modality as a whole in Figures 14 and 15, respectively, we
see that the individual ROI performances do not correlate with the feature importance. In almost
all experiments regardless of window size, it was the face that performed the best, especially in
distraction detection and 4-class distraction recognition.

The eyes are the best performing ROI in the 2-class distraction recognition, however, implying
that this ROI is suitable for differentiating between physical and mental distractors once distraction
has been detected. The eyes region include ducts that carry a large amount of blood indicating the
possibility that the blood flow in this region changes between physical and mental distractions,
resulting in different temperature patterns. The cheeks were in no case the best ROI for detection
or recognition, coming in second or third for performance.

In all cases, using the thermal modality with all ROIs together results in equal or better per-
formance for all experiments and modelling approaches when compared to using individual ROIs.
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Fig. 13. Feature importance for Thermal modality based on Lasso CV.

Table 10. Comparison of Results between the Three Modalities When Using the User

Dependent Modelling Approach

Visual Physiological Thermal
Distraction Detection

2 Class
0.75 0.87 0.747

Gradient Boosted Random Forest Random Forest
Distraction Recognition

2 Class
0.88 0.9 0.94

Gradient Boosted Random Forest Random Forest
Distraction Recognition

4 Class
0.58 0.65 0.797

Gradient Boosted Random Forest Gradient Boosted

While certain ROIs might have a better affinity towards certain kinds of detection or recognition
tasks, their combination as a whole is still much more suited as a universal approach for distraction
detection and recognition.

5.5 Comparison of the three Modalities in Distraction Detection
and Recognition Tasks

Table 10 highlights the best F1-score obtained per modality. In all cases the User Dependent ap-
proach is the best modelling approach regardless of aiming for detection or recognition. We can
observe that for distraction detection, the physiological modality is the best performer with an
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Fig. 14. Performance metrics on distracted VS non-distracted driving classification for each ROI in the

Thermal modality.

87% F1-score. However, in case of distraction recognition, the thermal modality outperforms the
visual and physiological modalities, with F1-scores of 94.7% and 79.7% in the 2-class and 4-class
recognition tasks, respectively. The thermal modality outperforms other modalities for the 4-class
distraction recognition in all respects, being able to identify individual distractors more accurately
than the other modalities. Additionally, the physiological modality has a better recall for the dis-
traction class in distraction detection whereas the thermal modality achieves a higher recall when
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Fig. 15. Performance metrics on distraction recognition for each ROI in the Thermal modality for each mod-

eling approach.

it comes to the freedriving class. This indicates that the physiological signals show greater perfor-
mance in case of the presence of any type of drivers’ distraction. However, the thermal modality
is expected to show further improvement in detecting distraction with more balanced instances
among the two classes. The thermal maps provide better discrimination between the different
types of distractors once distraction is detected. This also indicates the potential of using thermal
imaging as a non-contact and less invasive approach to detect and recognize distraction.

Table 11 details some of the F1 sores that we obtained when performing preliminary experiments
on the data using a SVM with a RBF kernel. As discussed in 4.4, we chose to not use this classifier
as its performance is almost always superseded by those using ensemble classifiers alongside a
much longer training time.

6 CONCLUSIONS

In this paper, we presented a data-driven, machine-learning-based analysis for the tasks of
driving distraction detection and recognition through visual and physiological sensors. Despite
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Table 11. Results when using the SVM-RBF Classifier Across the Visual (V), Physiological (P),

and Thermal 8-second Window (T) Modalities with Respect to Average F1

Distraction
Detection, 2-class

Distraction
Recognition, 2-class

Distraction
Recognition, 4-class

V P T V P T V P T
User

Independent
0.68 0.85 0.75 0.85 0.86 0.91 0.52 0.64 0.75

User
Dependent

0.68 0.85 0.77 0.86 0.87 0.91 0.53 0.65 0.76

User
Exclusive

0.65 0.52 0.65 0.81 0.31 0.37 0.48 0.17 0.42

the experimental nature of our setup, there is substantial research evidence to support the direct
application and integration of our methods in modern vehicles [8, 14, 32, 43, 47].

Our work highlights the trade-offs that each of the explored modalities brings to the table. In
addition, it provides a fine-grained list of modality specific features which are crucial towards
detecting and characterizing common physical and cognitive driving distractions.

Revisiting the research questions defined in Section 1, the contributions of this paper can be
summarized as follows:

How do different distractions affect driver’s behavior? We proposed a novel dataset to
explore this question. The dataset includes twelve different modalities and was designed to ad-
dress drowsy and distracted driving, with a focus on cognitive distractions. Our initial experiments
proved the value of this resource in identifying behavioral features associated with distracted be-
havior. We aim to research this question further by investigating the additional resources presented
in Section 3.2. Our findings showed that different stimuli are correlated with specific physiological
and behavioral features.

How do different visual and physiological modalities perform with respect to captur-

ing distracted behavior? Our findings indicate that the visual modality came short of charac-
terizing cognitive inattention. Physiological signals proved to be more effective for this task and
showed a more robust performance in general. On the other hand, the visual modality showed
a clear advantage in detecting physical distractors even when data were very limited. However,
AU-based modeling seemed to be limited in scalability as performance was not drastically affected
when the number of training samples increased.

What are the most important physiological features when detecting distracted behav-

ior? While other features seem to contribute primarily through their absence, in terms of physio-
logical measures, the features describing the power of spectrum on the BVP signal are by far the
most effective. The rest of the signals had less of an impact on the final result even though their
contribution remained notable.

How does the thermal modality perform in detecting and recognizing distracted behav-

ior? The thermal modality is more attuned towards detecting driver attentiveness more accurately
than it is with distraction. This could be an effect of the class imbalance. Within the task of dis-
traction recognition as a 2-class problem, it performs very well in distinguishing between physical
and mental distractors. When modelling distraction recognition as a 4-class problem, the modality
performs better in detecting physical and frustration distractors, falling behind on the cognitive
and emotional ones. The primary ROIs contributing to classification are the face, eyes and the
cheek, but the fusion of all five ROIs provide better performance metrics for all the conducted
experiments.
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How does each modality compare for the distraction detection and recognition prob-

lems? We found that the physiological modality is suited for distraction detection, with a better
recall in detecting distraction. However, with a more balanced data in terms of classes, we ex-
pect the thermal modality to show further improvement. For distraction recognition, the thermal
modality is the best performing modality for both 2-class and 4-class tasks, performing with up to
94% F1-score in the 2-class variant.

In conclusion, we presented a novel dataset consisting of thermal, visual and physiological
modalities on which we performed experiments to understand the applications of distracted behav-
ior detection using machine learning. More specifically, we found that the visual and physiological
modalities are better at distraction detection, with the physiological modality reaching F1-scores of
81% in this task. Finally, we looked at the thermal modality, observing that it was the best modality
for distraction recognition, with 94% F1-scores in the 2-class variant of the task.
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