
WRITING INEQUALITIES

1. Standard functions to compare against

The following are some common integrals one uses for comparison test:

• The integral

∫ ∞

0

eax dx converges if a < 0, and diverges if a ⩾ 0.

• The integral

∫ ∞

1

1

xp
dx converges if p > 1 and diverges if p ⩽ 1

• The integral

∫ 1

0

1

xp
dx converges if p < 1 and diverges if p ⩾ 1.

Note:

• The interval of integration in the two p-tests.
• Both the integrals in the p-test diverge when p = 1.

Because these functions are commonly used in applying the comparison test for integrals,
you may find yourself trying to write inequalities involving these functions frequently.

2. Standard range restrictions

The following are useful and commonly-used inequalities:

−1 ⩽ sin(x) ⩽ 1

−1 ⩽ cos(x) ⩽ 1

−π

2
⩽ arcsin(x) ⩽

π

2
0 ⩽ arccos(x) ⩽ π

−π

2
⩽ arctan(x) ⩽

π

2
But you should know how to use these to get other inequalities. Try your hand at proving
the following:

(1) Show that 2 ⩽ 2 + sin2(x) ⩽ 3 for all x.

(2) Show that
1

t+ π
⩽

1

t+ arccos(t)
⩽

1

t
for all t > 0.

1
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3. Techniques for writing inequalities

Here are some recipes to come up with inequalities. Remember that you are writing
inequalities because you want to get to simpler function in the end than the one you are
starting with. Usually, this is because the simpler function you want to get is a) one of the
above “common functions” used in the comparison test, or b) easier to integrate directly.

• Standard range restrictions. It is frequently useful to use the standard range
restrictions listed above when writing inequalities.

For example, since −1 ⩽ sin(x) ⩽ 1, we know that
1 + sin(x)

x2
≤ 2

x2
.

• Making the numerator bigger/smaller. It may be useful for you to make the
numerator bigger/smaller. Making the numerator bigger gives you an upper bound,
and making it smaller gives you a lower bound.

For example, on (0,∞): Given
x2 + 4

x3
, we can “forget” the +4 to get the inequality

x2 + 4

x3
⩾

x2

x3
=

1

x
.

• Making the denominator bigger/smaller. It may be useful for you to make
the denominator bigger/smaller. Making the denominator bigger makes the fraction
smaller, giving you a lower bound, and making the denominator smaller gives you an
upper bound.

For example, on (5,∞): Given
x2

x4 + 2x2
, we can “forget” the +2x2 to get the in-

equality
x2

x4 + 2x2
⩽

x2

x4
=

1

x2
.

• Leading term/lagging term analysis. When deciding to add or drop terms while
making the numerator/denominator bigger or smaller, you want to decide which term
to make bigger or which term to drop by considering each term’s growth rate.
In the previous example, for instance, we dropped the 2x2 rather than the x4 in the
denominator, since as x → ∞, x4 dominates. In the first example, we dropped the
5
√
x, since as x → ∞, the x2 term dominates.

• Increasing/decreasing functions. If you know that a function is increasing for
x ⩾ a, then you get the inequality f(x) ⩾ f(a). Similarly, once you know that a
function is decreasing for x ⩾ a, then you get the inequality f(x) ⩽ f(a).
For example, e−x is a decreasing function. Therefore, e−x ≤ e−0 = 1 for all x ≥ 0.

Therefore, for x ≥ 0,
e−x

x2 + x+ 1
≤ 1

x2 + x+ 1
.

• Concavity. Sometimes concavity of the function can help produce inequalities with
linear functions. If a function f(x) is concave up (resp. concave down) on an interval
[a, b], then the secant line between the end points (a, f(a)) and (b, f(b)) lies above
(resp. below) the graph f(x) on the interval [a, b]. Also, if f(x) is concave up (resp.
concave down) on (a, b), then f(x) lies above (resp. below) its tangent line (except
at the point of contact between the graph and the tangent line).
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For example, consider sin(x) on the interval [0, π/2]. On this interval, sin(x) is
concave down. Therefore it lies above the secant line between (0, 0) and (π/2, 1),

which is the line y =
2

π
x, and so sin(x) ≥ 2

π
x on [0, π/2].

For an example concerning the tangent line, we consider ln(x) on the interval
(0,∞). The function ln(x) is concave down, and therefore lies below the tangent line
to ln(x) at x = 1, which is the line y = x− 1. Therefore, we have ln(x) ≤ x− 1.

In the context of Improper Integrals

• Guessing behavior. When faced with determining convergence or divergence of an
improper integral, the first thing to do is make an educated guess about the behavior
of the function and its integral – will the integral converge or diverge? Remember
that if you want to show convergence, you’d need a convergent upper bound, and if
you want to show divergence, you need a divergent lower bound. To guess the shape
of the inequality you need (i.e., an upper bound or a lower bound?), you can use the
growth rate of the function in the integrand and use it to arrive at a guess of whether
you think the integral will converge or diverge.

For example, if we are given the integral

∫ ∞

1

1

x2 + 5
√
x
dx, note that as x tends to

infinity, x2 dominates
√
x, and therefore the denominator “behaves like x2 for large

x-values”. Therefore we guess that

∫ ∞

1

1

x2 + 5
√
x
dx behaves like

∫ ∞

1

1

x2
dx, which

converges. Note: The fact that x2 dominated 5
√
x depended on the fact that the

interval considered here was (1,∞). If we were on (0, 1), 5
√
x would dominate x2.

• Eventual behavior matters. When trying to show a certain convergence/divergence
behavior, remember a) you are allowed to introduce your own (definite) constants,
and b) it is frequently enough to have an inequality for all x ≥ x0 for some number
x0.

For example, consider the integral

∫ ∞

1/2

1

x
e−x dx. The integrand is not less than e−x on

the full interval of integration. But it is less than e−x for all x ≥ 1. Since

∫ 1

1/2

1

x
e−x dx

is not improper, the behavior on [1,∞) is the main ingredient.


