Addendum to lecture 4

We want to prove part 1 of the Fundamental Theorem of Calculus (FTC):
Theorem. If f is continuous on $[a, b]$, then the function $F(x)=\int_{a}^{x} f(t) d t$ satisfies $F^{\prime}(x)=$ $f(x)$ for x in $[a, b]$.
Proof. We compute

$$
\begin{aligned}
F(x+h) & =\int_{a}^{x+h} f(t) d t \quad \text { (by definition) } \\
& =\int_{a}^{x} f(t) d t+\int_{x}^{x+h} f(t) d t \quad \text { (by property } 3 \text { of integrals) } \\
& =F(x)+\int_{x}^{x+h} f(t) d t \quad \text { (by definition). }
\end{aligned}
$$

Thus

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t .
$$

In class we argued a bit vaguely that $\int_{x}^{x+h} f(t) d t \approx h f(x)$, so indeed $F^{\prime}(x) \approx f(x)$. This can be made rigorous in a few ways. One is done in the book (pp. 342-343), by means of the Extreme Value Theorem and the Squeeze Theorem from Calculus I. Here is the argument I sketched in class: since f is continuous at x, for any $\epsilon>0$ there exists $\delta>0$ such that $f(x)-\epsilon<f(t)<f(x)+\epsilon$ whenever $x-\delta<t<x+\delta$. Choosing h such that $0<h<\delta$, and using property 4 of integrals, it follows that

$$
\int_{x}^{x+h}(f(x)-\epsilon) \leq \int_{x}^{x+h} f(t) d t \leq \int_{x}^{x+h}(f(x)+\epsilon) d t
$$

or in other words

$$
h(f(x)-\epsilon) \leq \int_{x}^{x+h} f(t) d t \leq h(f(x)+\epsilon)
$$

Thus

$$
f(x)-\epsilon \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq f(x)+\epsilon
$$

Since this holds for every h with $0<h<\delta$, the definition of limits implies that

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)
$$

so indeed $F^{\prime}(x)=f(x)$ as desired.
Let me know if you have any questions!

