Math 156 Applied Honors Calculus II Fall 2009
hw10 , due: Wednesday, December 2
section 10.4 (exponential growth and decay) page 657 / 11
section 12.2 (series) page $756 / 42,54,68$ (note: for \#54, sketch by hand)
section 12.3 (integral test for series) page $765 / 5,7$
section 12.4 (comparison test for series) page $770 / 29,37$
section 12.5 (alternating series) page $775 / 5$
section 12.6 (ratio test) page $782 / 31,33$

1. Show that the series given below are convergent and in each case find the smallest value of n which ensures that the nth partial sum s_{n} is accurate to within 10^{-6}.
a) $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}$
2. Recall from hw9: $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\int_{a}^{x} \frac{(x-t)^{2}}{2} f^{\prime \prime \prime}(t) d t$.
a) Now show that $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\int_{a}^{x} \frac{(x-t)^{3}}{3!} f^{(4)}(t) d t$. (hint: in the result from hw9, set $u=f^{\prime \prime \prime}(t), d v=\frac{(x-t)^{2}}{2} d t$, and integrate by parts)
b) Define the function $T_{3}(x)$ as below.

$$
T_{3}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}
$$

Note that $T_{3}(x)$ is a cubic function of x; it is called the Taylor polynomial of degree 3 for $f(x)$ at $x=a$. Show that $T_{3}(x)$ and $f(x)$ have the same function value, 1st derivative value, 2nd derivative value, and 3rd derivative value at $x=a$. We view $T_{3}(x)$ as a cubic approximation to $f(x)$ near the point $x=a$.
c) Note that part (a) says, $f(x)=T_{3}(x)+\int_{a}^{x} \frac{(x-t)^{3}}{3!} f^{(4)}(t) d t$.

In this case the error is the difference between the given function $f(x)$ and the cubic approximation $T_{3}(x)$. Show that the error satisfies the bound $\left|f(x)-T_{3}(x)\right| \leq \frac{1}{4!} M_{4}|x-a|^{4}$, where $M_{4}=\max \left|f^{(4)}(t)\right|$. This implies that if x is close to a, then $T_{3}(x)$ is a very very good approximation to $f(x)$.
d) In each case below find $T_{3}(x)$ and sketch $f(x), T_{1}(x), T_{2}(x), T_{3}(x)$ on the same graph.
(i) $f(x)=e^{x}, a=0$
(ii) $f(x)=\sin x, a=0$
(iii) $f(x)=\sin x, a=\frac{\pi}{4}$

