Math 156 Applied Honors Calculus II Fall 2009

hw10, due: Wednesday, December 2

section 10.4 (exponential growth and decay) page 657 / 11

section 12.2 (series) page 756 / 42, 54, 68 (note: for #54, sketch by hand)

section 12.3 (integral test for series) page 765 / 5, 7

section 12.4 (comparison test for series) page 770 / 29, 37

section 12.5 (alternating series) page 775 / 5

section 12.6 (ratio test) page 782 / 31, 33

1. Show that the series given below are convergent and in each case find the smallest value of n which ensures that the nth partial sum s_n is accurate to within 10^{-6} .

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$

2. Recall from hw9: $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \int_a^x \frac{(x-t)^2}{2} f'''(t) dt$. a) Now show that $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \int_a^x \frac{(x-t)^3}{3!} f^{(4)}(t) dt$. (hint: in the result from hw9, set u = f'''(t), $dv = \frac{(x-t)^2}{2} dt$, and integrate by parts) b) Define the function $T_3(x)$ as below.

$$T_3(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3$$

Note that $T_3(x)$ is a cubic function of x; it is called the <u>Taylor polynomial of degree 3</u> for f(x) at x = a. Show that $T_3(x)$ and f(x) have the same function value, 1st derivative value, 2nd derivative value, and 3rd derivative value at x = a. We view $T_3(x)$ as a <u>cubic approximation</u> to f(x) near the point x = a.

c) Note that part (a) says, $f(x) = T_3(x) + \int_a^x \frac{(x-t)^3}{3!} f^{(4)}(t) dt$.

In this case the error is the difference between the given function f(x) and the cubic approximation $T_3(x)$. Show that the error satisfies the bound $|f(x) - T_3(x)| \leq \frac{1}{4!}M_4|x - a|^4$, where $M_4 = \max |f^{(4)}(t)|$. This implies that if x is close to a, then $T_3(x)$ is a very very good approximation to f(x).

d) In each case below find $T_3(x)$ and sketch f(x), $T_1(x)$, $T_2(x)$, $T_3(x)$ on the same graph.

(i) $f(x) = e^x$, a = 0 (ii) $f(x) = \sin x$, a = 0 (iii) $f(x) = \sin x$, $a = \frac{\pi}{4}$