Math 156 Applied Honors Calculus II Fall 2009

hw8 , due: Tuesday, November 10

section 9.5 (probability) page 617 / 9, 13, 14

note: you may use Maple or a calculator to evaluate the integral in problem 13.

section 10.1 (differential equations) page 627 / 3, 4, 9

section 10.4 (exponential growth and decay) page 656 / 3, 7, 20

1. Let X be a random variable. Show that $\sigma(X)^2 = \mu(X^2) - \mu(X)^2$. (Note: if X is a random variable with pdf f(x), then X^2 is also a random variable with pdf f(x), i.e. you may assume $\mu(X) = \int_{-\infty}^{\infty} xf(x)dx$ and $\mu(X^2) = \int_{-\infty}^{\infty} x^2f(x)dx$.)

2. Consider a given function f(x) and a point x = a. In this exercise, x is a variable and a is a constant. We will derive a linear approximation to f(x) near the point x = a.

a) Show that $f(x) = f(a) + f'(a)(x-a) + \int_a^x (x-t)f''(t) dt$. (hint: start with the integral term and integrate by parts with u = x - t, dv = f''(t) dt.)

b) Define the function $T_1(x)$ as below.

$$T_1(x) = f(a) + f'(a)(x - a)$$

Note that $T_1(x)$ is a linear function of x; it is called the <u>Taylor polynomial of degree 1</u> for f(x) at x = a. Show that $T_1(x)$ and f(x) have the same function value and 1st derivative value at x = a. This implies that $T_1(x)$ is tangent to the graph of f(x) at x = a and hence we view $T_1(x)$ as a <u>linear approximation</u> to f(x) near the point x = a.

c) Note that part (a) says,

$$f(x) = T_1(x) + \int_a^x (x-t) f''(t) dt.$$

The error is the difference between the given function f(x) and the linear approximation $T_1(x)$. Show that the error satisfies the bound $|f(x) - T_1(x)| \leq \frac{1}{2}M_2|x-a|^2$, where $M_2 = \max |f''(t)|$. This implies that if x is close to a, then $T_1(x)$ is a good approximation to f(x).

- d) In each case below find $T_1(x)$ and sketch f(x), $T_1(x)$ on the same graph.
 - (i) $f(x) = e^x$, a = 0 (ii) $f(x) = \sin x$, a = 0 (iii) $f(x) = \sin x$, $a = \frac{\pi}{4}$

3. a) Show that $\sinh^{-1}x = \ln(x + \sqrt{x^2 + 1})$. (hint: set $\sinh^{-1}x = y$, so that $x = \sinh y$, then set $u = e^y$ and solve for u in terms of x, then substitute back to obtain y in terms of x) b) The antiderivative $\int \frac{dx}{\sqrt{x^2+1}} = \ln(x + \sqrt{x^2+1})$ was derived in class using the trig substitution $x = \tan \theta$ (this came up in connection with the arclength of a parabola). Rederive the antiderivative using the substitution $x = \sinh y$.

4. Consider Newton's law of cooling/heating, y' = k(y - T). In class we derived the solution $y(t) = T + (y_0 - T)e^{kt}$ by separation of variables. Check that the given expression for y(t) does in fact satisfy the differential equation.

Announcement

The Math Department is interested in attracting more majors. If you're already committed to another major, then please consider doing a math minor - it requires only 101 math classes (in base 2) beyond Math 156. www.math.lsa.umich.edu/undergrad/minor.shtml