Math 156 Applied Honors Calculus II Fall 2009
hw8, due: Tuesday, November 10
section 9.5 (probability) page $617 / 9,13,14$
note: you may use Maple or a calculator to evaluate the integral in problem 13.
section 10.1 (differential equations) page $627 / 3,4,9$
section 10.4 (exponential growth and decay) page $656 / 3,7,20$

1. Let X be a random variable. Show that $\sigma(X)^{2}=\mu\left(X^{2}\right)-\mu(X)^{2}$. (Note: if X is a random variable with pdf $f(x)$, then X^{2} is also a random variable with pdf $f(x)$, i.e. you may assume $\mu(X)=\int_{-\infty}^{\infty} x f(x) d x$ and $\mu\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x$.)
2. Consider a given function $f(x)$ and a point $x=a$. In this exercise, x is a variable and a is a constant. We will derive a linear approximation to $f(x)$ near the point $x=a$.
a) Show that $f(x)=f(a)+f^{\prime}(a)(x-a)+\int_{a}^{x}(x-t) f^{\prime \prime}(t) d t$. (hint: start with the integral term and integrate by parts with $u=x-t, d v=f^{\prime \prime}(t) d t$.)
b) Define the function $T_{1}(x)$ as below.

$$
T_{1}(x)=f(a)+f^{\prime}(a)(x-a)
$$

Note that $T_{1}(x)$ is a linear function of x; it is called the Taylor polynomial of degree 1 for $f(x)$ at $x=a$. Show that $T_{1}(x)$ and $f(x)$ have the same function value and 1st derivative value at $x=a$. This implies that $T_{1}(x)$ is tangent to the graph of $f(x)$ at $x=a$ and hence we view $T_{1}(x)$ as a linear approximation to $f(x)$ near the point $x=a$.
c) Note that part (a) says,

$$
f(x)=T_{1}(x)+\int_{a}^{x}(x-t) f^{\prime \prime}(t) d t
$$

The error is the difference between the given function $f(x)$ and the linear approximation $T_{1}(x)$. Show that the error satisfies the bound $\left|f(x)-T_{1}(x)\right| \leq \frac{1}{2} M_{2}|x-a|^{2}$, where $M_{2}=$ $\max \left|f^{\prime \prime}(t)\right|$. This implies that if x is close to a, then $T_{1}(x)$ is a good approximation to $f(x)$.
d) In each case below find $T_{1}(x)$ and sketch $f(x), T_{1}(x)$ on the same graph.
(i) $f(x)=e^{x}, a=0$
(ii) $f(x)=\sin x, a=0$
(iii) $f(x)=\sin x, a=\frac{\pi}{4}$
3. a) Show that $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$. (hint: set $\sinh ^{-1} x=y$, so that $x=\sinh y$, then set $u=e^{y}$ and solve for u in terms of x, then substitute back to obtain y in terms of x)
b) The antiderivative $\int \frac{d x}{\sqrt{x^{2}+1}}=\ln \left(x+\sqrt{x^{2}+1}\right)$ was derived in class using the trig substitution $x=\tan \theta$ (this came up in connection with the arclength of a parabola). Rederive the antiderivative using the substitution $x=\sinh y$.
4. Consider Newton's law of cooling/heating, $y^{\prime}=k(y-T)$. In class we derived the solution $y(t)=T+\left(y_{0}-T\right) e^{k t}$ by separation of variables. Check that the given expression for $y(t)$ does in fact satisfy the differential equation.

Announcement

The Math Department is interested in attracting more majors. If you're already committed to another major, then please consider doing a math minor - it requires only 101 math classes (in base 2) beyond Math 156. www.math.lsa.umich.edu/undergrad/minor.shtml

