Math 156 Applied Honors Calculus II Fall 2009
hw7, due: Tuesday, November 3
section 9.3 (center of mass) page $606 / 26,33,44$
hint for $44(\mathrm{c})$: try $m=n+1$ for $n=0,1,2, \ldots$
chapter 9 (problems plus) page $621 / 9$
hint: you need to derive an equation and find the solution; to find the solution you may use a calculator or the fsolve command in Maple (type?fsolve in Maple to get the description of this command)
section 9.5 (probability) page $617 / 2,3,7$

1. Evaluate the following limit. $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$
2. Sketch the region R in the $x y$-plane and find the center of mass. (Assume $\rho=1$.)
a) $R=\{(x, y): 0 \leq y \leq \sin x, 0 \leq x \leq \pi\}$
b) $R=\{(x, y): 0 \leq y \leq x, 0 \leq x \leq 1\}$
3. The circle $x^{2}+(y-a)^{2}=r^{2}$ is rotated about the x-axis. Assume that $a>r$, so that the resulting shape is a torus. Use the theorem of Pappus to find the volume of the torus.
4. The pdf for a normal distribution is $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$, where $\mu, \sigma>0$ are constants. Derive the following results. You may use the fact that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.
a) $\int_{-\infty}^{\infty} f(x) d x=1$
b) $\int_{-\infty}^{\infty} x f(x) d x=\mu$
c) $\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\sigma^{2}$

This verifies that μ is the mean and σ is the standard deviation of the pdf $f(x)$ given above.
5. True or False. Justify your answer.
a) For a normal distribution, the median is equal to the mean.
b) If (\bar{x}, \bar{y}) denotes the center of mass of a region in the $x y$-plane with density $\rho=1$, then the area of the region to the left of the line $x=\bar{x}$ is the same as the area of the region to the right of the line.
6. Find the antiderivative.
a) $\int \sinh x d x$
b) $\int \cosh x d x$
c) $\int \tanh x d x$
d) $\int \operatorname{sech} x d x \quad, \quad$ where $\operatorname{sech} x=\frac{1}{\cosh x}$

