Log in to your umich account, open Maple, then click on File, then select New, then click on Worksheet Mode. Type each command on this page and hit return to get the result. Use the arrow keys to maneuver left/right on a line, or up/down to move to different lines.

Arithmetic

$>2+2$;
$>2^{\wedge} 6$;
$>\operatorname{sqrt}(64)$;
$>\mathrm{a}:=3 ; \quad$ Be sure to include the colon before the equal sign.
$>\mathrm{a}^{\wedge} 2$;
$>\mathrm{Pi}$;
$>\operatorname{evalf}(\mathrm{Pi}) ; \quad$ evalf $=$ evaluate
You can put several commands on a single line.

```
> sin(Pi); cos(Pi); tan(Pi);
> erf(0); erf(1); evalf(erf(1)); }\operatorname{erf}(x)=\frac{2}{\sqrt{}{\pi}}\mp@subsup{\int}{0}{x}\mp@subsup{e}{}{-\mp@subsup{t}{}{2}}dt:\underline{\mathrm{ error function (see hw3)}
> abs(-1);
> I; I^2; I I = \sqrt{}{-1}, an imaginary number, written" " " in math books
> exp(1); evalf(exp(1));
> exp(Pi}\mp@subsup{}{}{*}\textrm{I}); that's right, e *i = -1; you'll learn why in December
```


Limits

$>$ with(student); This loads the student commands.
$>\operatorname{Limit}(1 / \mathrm{x}, \mathrm{x}=$ infinity $)$;
$>$ value(\%); $\quad \%$ refers to the expression on the previous line
$>\operatorname{limit}(1 / \mathrm{x}, \mathrm{x}=$ infinity $) ; \quad$ Limit displays the limit, limit evaluates it.
$>\operatorname{limit}(1 / \mathrm{x}, \mathrm{x}=0)$;
$>\operatorname{limit}(1 / \mathrm{x}, \mathrm{x}=0$, left $) ; \operatorname{limit}(1 / \mathrm{x}, \mathrm{x}=0$, right); This gives one-sided limits.
$>\operatorname{limit}\left(\mathrm{x}^{*} \exp (-\mathrm{x}), \mathrm{x}=\right.$ infinity $)$; Maple knows l'Hopital's rule.

Plotting

At the top of the screen, click Maple 12, then Preferences, then Display, then in the Plot display menu, change Inline to Window, and click Apply to Session. This opens each plot in a separate window.
$>\operatorname{plot}(1 / \mathrm{x}, \mathrm{x}=0 . .5, \mathrm{y}=0 . .5) ; \quad$ After viewing, close the plot to avoid clutter.
$>\operatorname{plot}\left(\left[1 / \mathrm{x}, 1 / \mathrm{x}^{\wedge} 2\right], \mathrm{x}=0 . .5, \mathrm{y}=0 . .5\right) ; \quad$ Which curve is $1 / x$? $\ldots 1 / x^{2}$?
$>\operatorname{plot}\left(\tan (\mathrm{x}), \mathrm{x}=-2^{*} \mathrm{Pi} . .2 * \mathrm{Pi}, \mathrm{y}=-4 . .4\right) ; \quad \tan (x)$ has vertical asymptotes at $x= \pm \pi / 2, \ldots$
$>\operatorname{limit}(\tan (\mathrm{x}), \mathrm{x}=\mathrm{Pi} / 2)$;
$>\operatorname{limit}(\tan (\mathrm{x}), \mathrm{x}=\mathrm{Pi} / 2$, left $) ; \operatorname{limit}(\tan (\mathrm{x}), \mathrm{x}=\mathrm{Pi} / 2$,right $) ;$
$>\operatorname{plot}\left(\arctan (\mathrm{x}), \mathrm{x}=-2^{*} \mathrm{Pi} . .2^{*} \mathrm{Pi}, \mathrm{y}=-4 . .4\right) ; \quad \arctan (x)$ has horizontal asymptotes as $x \rightarrow \pm \infty$
$>\operatorname{limit}(\arctan (\mathrm{x}), \mathrm{x}=$ infinity $)$;
$>\operatorname{plot}\left(\left[\exp (-\mathrm{x}), \exp \left(-\mathrm{x}^{\wedge} 2\right)\right], \mathrm{x}=0 . .3, \mathrm{y}=0 . .1\right)$; Which curve is e^{-x} ? ... $e^{-x^{2}}$?
The next plot is an example of a parametric curve using polar coordinates.
$>\operatorname{plot}\left(\left[\sin \left(4^{*} \mathrm{t}\right), \mathrm{t}, \mathrm{t}=0 . .2^{*} \mathrm{Pi}\right]\right.$, coords=polar); Try changing 4 to 7 (for example).
Maple can explain each command, e.g. as on the next line.

$$
>\text { ?plot }
$$

Riemann Sums

$>$ rightbox $\left(\mathrm{x}^{\wedge} 2, \mathrm{x}=0 . .1,2\right) ; \quad$ This plots the right-hand Riemann sum for $\int_{0}^{1} x^{2} d x$ with $n=2$. $>\operatorname{rightsum}\left(\mathrm{x}^{\wedge} 2, \mathrm{x}=0 . .1,2\right)$; evalf($\%$); This evaluates the Riemann sum. $\Delta x=$?, $x_{i}=$?
Repeat these two commands for $n=4,8,16$ using the arrow keys or mouse to position the pointer and change n. Do the results converge to the correct value $\int_{0}^{1} x^{2} d x=1 / 3=0.333 \ldots$?

The corresponding commands for the left-hand Riemann sum are leftbox, leftsum, and for the midpoint rule they are middlebox, middlesum. Repeat the previous commands, substituting left and middle in place of right. For a given value of n, which type of Riemann sum is the most accurate?

Antiderivatives

$>\operatorname{Int}\left(\mathrm{x}^{\wedge} \mathrm{n}, \mathrm{x}\right)$; value(\%);
$>\operatorname{int}\left(\mathrm{x}^{\wedge} \mathrm{n}, \mathrm{x}\right)$; \quad Int displays the integral, int evaluates it.
$>\operatorname{int}(\ln (\mathrm{x}), \mathrm{x}) ; \operatorname{diff}(\%, \mathrm{x})$;
$>\operatorname{int}\left(1 /\left(x^{\wedge} 2+1\right), x\right) ; \operatorname{diff}(\%, x)$;
$>\operatorname{int}\left(1 / \operatorname{sqrt}\left(\mathrm{x}^{\wedge} 2+1\right), \mathrm{x}\right) ; \operatorname{diff}(\%, \mathrm{x}) ; \quad$ We'll discuss $\sinh (x)$ later in the semester.
$>\operatorname{int}\left(\exp \left(-\mathrm{x}^{\wedge} 2\right), \mathrm{x}\right) ; \operatorname{diff}(\%, \mathrm{x})$;
recall : $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$
$>\mathrm{f}:=\mathrm{x}^{\wedge} 3 / \operatorname{sqrt}\left(1-\mathrm{x}^{\wedge} 8\right)$;
$>\operatorname{int}(\mathrm{f}, \mathrm{x})$; We can also use substitution to find the antiderivative, as follows.
$>\mathrm{a}:=\operatorname{Int}(\mathrm{f}, \mathrm{x})$;
$>\mathrm{b}:=$ changevar $\left(\mathrm{x}^{\wedge} 4=\mathrm{u}, \mathrm{a}\right) ; \quad u=x^{4}, d u=4 x^{3} d x$
$>\mathrm{c}:=$ value(b);
$>\mathrm{d}:=\operatorname{subs}\left(\mathrm{u}=\mathrm{x}^{\wedge} 4, \mathrm{c}\right) ; \quad$ This returns to the original variable.
$>\operatorname{diff}(\mathrm{d}, \mathrm{x}) ; \quad$ This checks the answer.

Definite Integrals

$>\operatorname{Int}(\mathrm{x}, \mathrm{x}=\mathrm{a} . . \mathrm{b})$; value(\%); \quad Oops - we need to clear variables a and b.
$>\mathrm{a}:=$ 'a'; b:='b'; Int(x,x=a..b); value(\%);
ok
$>\operatorname{Int}\left(\operatorname{sqrt}\left(1-\mathrm{x}^{\wedge} 2\right), \mathrm{x}=-1 . .1\right)$; value(\%);
area of a semi-circle with radius 1
$>\operatorname{Int}\left(x^{\wedge}(-2), x=1\right.$..infinity); value(\%);
$>\operatorname{Int}\left(x^{\wedge}(-2), x=-1 . .1\right)$; value(\%);
$>\operatorname{Int}\left(x^{\wedge}(-1), x=1\right.$..infinity $)$; value(\%);
$>\operatorname{Int}(\exp (-\mathrm{x}), \mathrm{x}=0$..infinity $)$; value(\%);
$>\operatorname{Int}\left(\mathrm{x}^{*} \exp (-\mathrm{x}), \mathrm{x}=0\right.$..infinity); value(\%); Maple knows integration by parts.
$>\operatorname{Int}\left(\exp \left(-\mathrm{x}^{\wedge} 2\right), \mathrm{x}=0\right.$..infinity); value(\%); This requires multivariable calculus (Math 255).
Homework Assignment (hand in with hw4 on Tuesday Oct 6)
In class and on hw2 we computed Riemann sums for the integral $I=\int_{0}^{1} f(x) d x$ with $f(x)=$ e^{x}, e^{-x}, and we found that if Δx decreases by a factor of $1 / 2$, then the error in the right-hand Riemann sum R_{n} decreases by about $1 / 2$ and the error in the midpoint rule M_{n} decreases by about $1 / 4$. Do the same results hold when $f(x)=\sqrt{x}$? To answer this question, construct a table with the following data (you may use Maple or a calculator). column 1: n (take $n=2,4,8,16$), column 2: Δx, column 3: R_{n}, column 4: $\left|I-R_{n}\right|$, column 5: M_{n}, column 6: $\left|I-M_{n}\right|$. For a given value of n, which method gives a more accurate answer? How do the results for \sqrt{x} compare with the results for e^{x}, e^{-x} ? What is similar? ... different? Explain your observations.

