2. Let $g(x) = x^2$, and let

$$h(x) = \begin{cases} 0, & x \text{ rational} \\ 1, & x \text{ irrational.} \end{cases}$$

- For which y is $h(y) \le y$? (i)
- For which y is $h(y) \le g(y)$? (ii)
- What is g(h(z)) h(z)? (iii)
- For which w is $g(w) \leq w$? (iv)
- For which ε is $g(g(\varepsilon)) = g(\varepsilon)$? (v)

Find the domain of the functions defined by the following formulas. 3.

(i)
$$f(x) = \sqrt{1 - x^2}$$
.

(ii)
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

(i)
$$f(x) = \sqrt{1 - x^2}$$
.
(ii) $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$.
(iii) $f(x) = \frac{1}{x - 1} + \frac{1}{x - 2}$.

(iv)
$$f(x) = \sqrt{1 - x^2} + \sqrt{x^2 - 1}$$
.

(v)
$$f(x) = \sqrt{1-x} + \sqrt{x-2}$$
.

For which numbers a, b, c, and d will the function

$$f(x) = \frac{ax + b}{cx + d}$$

satisfy f(f(x)) = x for all x (for which this equation makes sense)?

(a) If A is any set of real numbers, define a function C_A as follows: 9.

$$C_A(x) = \begin{cases} 1, & x \text{ in } A \\ 0, & x \text{ not in } A. \end{cases}$$

Find expressions for $C_{A\cap B}$ and $C_{A\cup B}$ and $C_{\mathbf{R}-A}$, in terms of C_A and C_B . (The symbol $A \cap B$ was defined in this chapter, but the other two may be new to you. They can be defined as follows:

$$A \cup B = \{x : x \text{ is in } A \text{ or } x \text{ is in } B\},$$

 $\mathbf{R} - A = \{x : x \text{ is in } \mathbf{R} \text{ but } x \text{ is not in } A\}.$

- (b) Suppose f is a function such that f(x) = 0 or 1 for each x. Prove that there is a set A such that $f = C_A$.
- Show that $f = f^2$ if and only if $f = C_A$ for some set A.

A function f is **even** if f(x) = f(-x) and **odd** if f(x) = -f(-x). For example, f is even if $f(x) = x^2$ or f(x) = |x| or $f(x) = \cos x$, while f is odd if f(x) = x or $f(x) = \sin x$.

- (a) Determine whether f + g is even, odd, or not necessarily either, in the four cases obtained by choosing f even or odd, and g even or odd. (Your answers can most conveniently be displayed in a 2×2 table.)
- (b) Do the same for $f \cdot g$.
- (c) Do the same for $f \circ g$.
- (d) Prove that every even function f can be written f(x) = g(|x|), for infinitely many functions g.

*13. (a) Prove that any function f with domain **R** can be written f = E + O, where E is even and O is odd.

(b) Prove that this way of writing f is unique. (If you try to do part (b) first, by "solving" for E and O you will probably find the solution to part (a).)

- *17. If f(x) = 0 for all x, then f satisfies f(x + y) = f(x) + f(y) for all x and y, and also $f(x \cdot y) = f(x) \cdot f(y)$ for all x and y. Now suppose that f satisfies these two properties, but that f(x) is not always 0. Prove that f(x) = x for all x, as follows:
 - (a) Prove that f(1) = 1.
 - (b) Prove that f(x) = x if x is rational.
 - (c) Prove that f(x) > 0 if x > 0. (This part is tricky, but if you have been paying attention to the philosophical remarks accompanying the problems in the last two chapters, you will know what to do.)
 - (d) Prove that f(x) > f(y) if x > y.
 - (e) Prove that f(x) = x for all x. Hint: Use the fact that between any two numbers there is a rational number.
- 21. Prove or give a counterexample for each of the following assertions:
 - (a) $f \circ (g+h) = f \circ g + f \circ h$.
 - (b) $(g+h) \circ f = g \circ f + h \circ f$.
 - (c) $\frac{1}{f \circ g} = \frac{1}{f} \circ g$.
 - (d) $\frac{1}{f \circ g} = f \circ \left(\frac{1}{g}\right)$.