1. Write the following Taylor polynomials:
(a) the 4th degree T.P. for $f(x)=\frac{1}{1+x}$ near $x=0$
(b) the degree 4 T.P for $f(x)=\cos x$ near $x=\pi / 2$
(c) the degree 2 T.P. for $f(x)=\sqrt[3]{1-x}$ near $x=0$
2. The function $f(x)$ is approximated near $x=0$ by the third degree Taylor polynomial

$$
P_{3}(x)=2-x-x^{2} / 3+2 x^{3} .
$$

Give the value of
(a) $f(0)$
(b) $f^{\prime}(0)$
(c) $f^{\prime \prime}(0)$
(d) $f^{\prime \prime \prime}(0)$
3. Suppose $P_{2}(x)=a+b x+c x^{2}$ is the second-degree Taylor polynomial for the function f about $x=0$. What can you say about the signs of a, b, c if f has the graph given below?

4. The Taylor polynomial of degree 7 of $f(x)$ is given by

$$
P_{7}(x)=1-\frac{x}{3}+\frac{5 x^{2}}{7}+8 x^{3}-\frac{x^{5}}{11}+8 x^{7} .
$$

Find the Taylor polynomial of degree 3 of $f(x)$.
5. Use the Taylor approximation for x near 0 ,

$$
\sin x \approx x-\frac{x^{3}}{3!},
$$

to explain why $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
6. The integral $\int_{0}^{1}(\sin t / t) d t$ is difficult to approximate using, for example, left Riemann sums or the trapezoid rule because the integrand $(\sin t) / t$ is not defined at $t=0$. However, this integral converges; its value is 0.94608... Estimate the integral using Taylor polynomials for $\sin t$ about $t=0$ of degree 3 and degree 5.
7. For each, use the third degree Taylor polynomial

$$
P_{3}(x)=4+2(x-1)-2(x-1)^{2}+(x-1)^{3} / 2
$$

of $f(x)$ about $x=1$ to find the given value, or explain why you can't.
(a) $f(1)$
(b) $f^{\prime}(1)$
(c) $f^{\prime \prime}(0)$
(d) $f^{(4)}(1)$

