1. For each formula below, find the first five terms of the sequence that is defined by the formula.

(a)
$$s_n = n + (-1)^n$$

(b) $q_k = (-1)^{k+1} \left(\frac{1}{2}\right)^{k-1}$
(c) $t_n = 2t_{n-1} + 3$ for $n > 1$, with $t_1 = 1$.

2. Match formulas (a)-(d) with graphs (I)-(IV).

(a)
$$s_n = 1 - 1/n$$

(b) $s_n = 1 + (-1)^n/n$
(c) $s_n = 1/n$
(d) $s_n = 1 + 1/n$

(I)

3. Match formulas (a)-(e) with graphs (I)-(V):

(a)
$$s_n = 2 - 1/n$$

(b) $s_n = (-1)^n \cdot 2 + 1/n$
(c) $s_n = 2 + (-1)^n/n$
(d) $s_n = 2 + 1/n$
(e) $s_n = (-1)^n \cdot 2 + (-1)^n/n$

- 4. Match formulas (a)-(e) with descriptions (I)-(V) of the behavior of the sequence as $n \to \infty$.
 - (a) $s_n = n(n+1) 1$
 - (b) $s_n = 1/(n+1)$
 - (c) $s_n = 1 n^2$
 - (d) $s_n = \cos(1/n)$
 - (e) $s_n = (\sin n)/n$

- (I) Diverges to $-\infty$
 - (II) Diverges to $+\infty$
 - (III) Converges to 0 through positive numbers
 - (IV) Converges to 1
 - (V) Converges to 0 through positive and negative numbers
- 5. Does the sequences below converge or diverge? If it converges, find its limit.

(a)
$$s_n = (-0.3)^n$$

(b) $t_n = \frac{2n+1}{n}$
(c) $p(k) = \cos(\pi k)$

6. Determine which of these sequences are bounded, which are increasing, which are decreasing, and which converge.

(a)
$$a_n = -\cos\left(\frac{\pi}{n}\right)$$

(b) $b_n = \left(\frac{4}{3}\right)^n$
(c) $c_n = (-1)^n$
(d) $d_n = \frac{2n + e^{-n}}{5n}$