1. For each formula below, find the first five terms of the sequence that is defined by the formula.
(a) $s_{n}=n+(-1)^{n}$
(b) $q_{k}=(-1)^{k+1}\left(\frac{1}{2}\right)^{k-1}$
(c) $t_{n}=2 t_{n-1}+3$ for $n>1$, with $t_{1}=1$.
2. Match formulas (a)-(d) with graphs (I)-(IV).
(a) $s_{n}=1-1 / n$
(b) $s_{n}=1+(-1)^{n} / n$
(c) $s_{n}=1 / n$
(d) $s_{n}=1+1 / n$
(I)

(III)

(II)
(IV)

3. Match formulas (a)-(e) with graphs (I)-(V):
(a) $s_{n}=2-1 / n$
(b) $s_{n}=(-1)^{n} \cdot 2+1 / n$
(c) $s_{n}=2+(-1)^{n} / n$
(d) $s_{n}=2+1 / n$
(e) $s_{n}=(-1)^{n} \cdot 2+(-1)^{n} / n$
(I)

(II)

(III)

(IV)

(V)

4. Match formulas (a)-(e) with descriptions (I)-(V) of the behavior of the sequence as $n \rightarrow \infty$.
(a) $s_{n}=n(n+1)-1$
(I) Diverges to $-\infty$
(b) $s_{n}=1 /(n+1)$
(II) Diverges to $+\infty$
(c) $s_{n}=1-n^{2}$
(III) Converges to 0 through positive numbers
(d) $s_{n}=\cos (1 / n)$
(e) $s_{n}=(\sin n) / n$
(IV) Converges to 1
(V) Converges to 0 through positive and negative numbers
5. Does the sequences below converge or diverge? If it converges, find its limit.
(a) $s_{n}=(-0.3)^{n}$
(b) $t_{n}=\frac{2 n+1}{n}$
(c) $p(k)=\cos (\pi k)$
6. Determine which of these sequences are bounded, which are increasing, which are decreasing, and which converge.
(a) $a_{n}=-\cos \left(\frac{\pi}{n}\right)$
(b) $b_{n}=\left(\frac{4}{3}\right)^{n}$
(c) $c_{n}=(-1)^{n}$
(d) $d_{n}=\frac{2 n+e^{-n}}{5 n}$
