1. A density function $p(x)$ satisfying (I)-(IV) gives the fraction of years with a given total annual snowfall (in m) for a city.
(a) $\int_{0}^{0.5} p(x) d x=0.1$
(c) $\int_{0}^{2.72} p(x) d x=0.5$
(b) $\int_{0}^{2} p(x) d x=0.3$
(d) $\int_{0}^{\infty} x p(x) d x=2.65$

Answer the following questions:
(a) What is the median annual snowfall (in m)?
(b) What is the mean snowfall (in m)?
(c) What is the probability of annual snowfall between 0.5 and 2 m ?
2. A screening test for susceptibility to diabetes reports a numerical score between 0 and 100. A score greater than 50 indicates a potential risk, with some lifestyle training recommended. Results from 200,000 people who were tested show that:

- 75% received scores evenly distributed between 0 and 50 .
- 25% received scores evenly distributed between 50 and 100 .

The probability density function (pdf) is below.

(a) Find the values of A and B that make this a probability density function.
(b) Find the median test score.
(c) Find the mean test score.
(d) Give a graph of the cumulative distribution function (cdf) for these test scores.
3. A quantity x has density function $p(x)=0.5(2-x)$ for $0 \leq x \leq 2$ and $p(x)=0$ otherwise. Find the mean and median of x.
4. A quantity x has cumulative distribution function $P(x)=x-x^{2} / 4$ for $0 \leq x \leq 2$ and $P(x)=0$ for $x<0$ and $P(x)=1$ for $x>2$. Find the mean and median of x.
5. While taking a walk along the road where you live, you accidentally drop your glove, but you don't know where. The probability density $p(x)$ for having dropped the glove x kilometers from home (along the road) is

$$
p(x)=2 e^{-2 x} \text { for } x \geq 0
$$

(a) What is the probability that you dropped it within 1 kilometer of home?
(b) At what distance y from home is the probability that you dropped it within $y \mathrm{~km}$ of home equal to 0.95 ?
6. Using Desmos on a screen everyone can see, sketch graphs of the density function of the normal distribution

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} .
$$

(a) Fix μ (for example, $\mu=5$) and vary σ (for example $\sigma=1,2,3$).
(b) Fix σ (for example $\sigma=1$) and vary μ (for example $\mu=4,5,6$).
(c) Explain how the graphs confirm that μ is the mean of the distribution, and that σ is a measure of how closely the data is clustered around the mean.
(d) Using calculus techniques, show that $p(x)$ has a maximum when $x=\mu$. What is that maximum value?
(e) Show that $p(x)$ has inflection points where $x=\mu+\sigma$ and $x=\mu-\sigma$.

