1. Write these using \sum :
(a) $\frac{1}{2} x+\frac{1 \cdot 3}{2^{2} \cdot 2!} x^{2}+\frac{1 \cdot 3 \cdot 5}{2^{3} \cdot 3!} x^{3}+\ldots$
(b) $(x-1)^{3}-\frac{(x-1)^{5}}{2!}+\frac{(x-1)^{7}}{4!}-\frac{(x-1)^{9}}{6!}+\ldots$
2. For which values of x do these power series converge? Diverge?
(a) $\sum_{n=0}^{\infty} n^{3} x^{n}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{n}$
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
(d) $\sum_{n=0}^{\infty} \frac{n^{2} x^{2 n}}{2^{2 n}}$
3. Find the interval of convergence. This INCLUDES checking the endpoints!!
(a) $\sum_{n=1}^{\infty} \frac{x^{2 n+1}}{n!}$
(b) $\sum_{n=1}^{\infty} \frac{(5 x)^{n}}{\sqrt{n}}$
4. For all t-values for which it converges, the function f is defined by the series

$$
f(t)=\sum_{n=0}^{\infty} \frac{(t-7)^{n}}{5^{n}}
$$

(a) Find $f(4)$.
(b) Find the interval of convergence of $f(t)$.
5. The series $\sum C_{n} x^{n}$ converges when $x=-4$ and diverges when $x=7$. Decide whether each of the following is true or false, or whether this cannot be determined.
(a) The power series converges when $x=10$.
(b) The power series converges when $x=3$.
(c) The power series diverges when $x=1$.
(d) The power series diverges when $x=6$.
6. If $\sum C_{n}(x-3)^{n}$ converges at $x=7$ and diverges at $x=10$, what can you say about the convergence at $x=11$? At $x=5$? At $x=0$?
7. For all x-values for which it converges, the function f is defined by the series

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

(a) What is $f(0)$?
(b) What is the domain of f ?
(c) Assuming that f^{\prime} can be calculated by differentiating the series term-by-term, find the series for $f^{\prime}(x)$. What do you notice?
(d) Guess what well-known function f is.

