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Abstract

We derive the factorizations of the Dickson polynomials Dn(X, a)
and En(X, a), and of the bivariate Dickson polynomials Dn(X, a) −
Dn(Y, a), over any finite field. Our proofs are significantly shorter and
more elementary than those previously known.

1. Introduction. Let Fq be the field containing q elements, and let p
be the characteristic of Fq. Let n be a nonnegative integer and a ∈ Fq.
The Dickson polynomial of the first kind, of degree n and parameter a, is
defined to be the unique polynomial Dn(X, a) ∈ Fq[X] for which Dn(Y +
(a/Y ), a) = Y n + (a/Y )n; the Dickson polynomial of the second kind, of
degree n and parameter a, is defined to be the unique polynomial En(X, a) ∈
Fq[X] for which En(Y + (a/Y ), a) = Y n+1−(a/Y )n+1

Y−(a/Y )
. The uniqueness of these

polynomials is clear; there are several ways to prove their existence, e.g. see
[1] or [5, Lemma 1.1] or [4, (2.2)]. These polynomials have been extensively
studied, and in fact a book has been written in their honor [4]. In this note
we shall derive the factorizations of the Dickson polynomials Dn(X, a) and
En(X, a), and of the bivariate Dickson polynomial Dn(X, a)−Dn(Y, a), over
any finite field Fq. In each case, our strategy will be to first write down the
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factorization over the algebraic closure Fq of Fq, then determine how to put
together certain factors over Fq in order to get the irreducible factors over Fq.

The factorizations of Dn(X, a) and En(X, a) have been carried out using
much lengthier methods by W.-S. Chou [2]. The purpose of this note is to
exhibit a simpler approach. Our methods can also be used to provide simple
proofs of various other factorization results; as an example we include the
factorization of Dn(X, a) − Dn(Y, a) over any finite field, which seems to
be new. Previously the factorization of this polynomial over the algebraic
closure of a finite field was known, due to K. S. Williams for n odd [7] and to
G. Turnwald for n even [5, Prop. 1.7]; we give simpler proofs of these results
as well. We are grateful to G. Turnwald for informing us that our proof of
this last result is similar to an argument of S. D. Cohen and R. W. Matthews
[3, p. 67].

We shall retain the notation of the first paragraph throughout this note.
Also, for any ξ ∈ Fq, by

√
ξ we shall mean a fixed square root of ξ in Fq; for

any positive integer d coprime to p, we will use ζd to denote a primitive d-th
root of unity in Fq.

2. The Dickson polynomial of the first kind, Dn(X, a). Write n =
prm with (p,m) = 1. Then it follows from the functional equation of Dn

that Dn(X, a) = Dm(X, a)p
r
; thus, in order to factor Dn, it suffices to factor

Dm. Our first result gives the factorization of Dm over Fq.

Theorem 1 For q odd,

Dm(X, a) =
2m−1∏
i=1
i odd

(
X −

√
a (ζ i4m + ζ−i4m)

)
;

for q even,

Dm(X, a) = X

m−1
2∏
i=1

(
X −

√
a (ζ im + ζ−im )

)2
.

Proof. Note that

Dm

(
Y +

a

Y
, a
)

= Y m + (a/Y )m =
∏

ξm=−1

(
Y − ξ a

Y

)
;
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in order to express the right-hand side as a function of Y + (a/Y ), we pair
the terms corresponding to ξ and 1/ξ, which gives(
Y − ξ a

Y

)(
Y − a

ξY

)
= Y 2−

(
ξ+

1

ξ

)
a+

a2

Y 2
=
(
Y +

a

Y

)2

−a
(√

ξ+
1√
ξ

)2

.

Thus, Dm(X, a) is the product of monic linear factors corresponding to the
ξ ∈ Fq for which ξm = −1, where the factors corresponding to ξ and 1/ξ
are X ±

√
a(
√
ξ + (1/

√
ξ)). The result for q even follows at once; for q odd,

the result follows from the fact that the numbers ±
√
ξ with ξm = −1 are

precisely the numbers ζ i4m with i odd and 0 < i < 4m.

For a = 0, the factorization of Dm(X, a) = Xm is trivial; our next two
results give the factorization of Dm(X, a) over Fq when a 6= 0.

Theorem 2 If q is odd and a 6= 0, then Dm(X, a) is the product of several
distinct irreducible polynomials in Fq[X], which occur in cliques correspond-
ing to the divisors d of m for which m/d is odd. To each such d there
correspond ϕ(4d)/(2Nd) irreducible factors, each of which has the form

Nd−1∏
i=0

(
X −

√
a
qi(
ζq

i

4d + ζ−q
i

4d

))
for some choice of ζ4d; here ϕ denotes Euler’s totient function, kd is the least
positive integer such that qkd ≡ ±1 (mod 4d), and

Nd =


kd/2 if

√
a /∈ Fq and kd ≡ 2 (mod 4) and qkd/2 ≡ 2d± 1 (mod 4d);

2kd if
√
a /∈ Fq and kd is odd;

kd otherwise.

Proof. The previous result describes the roots of Dm(X, a); clearly these
roots are distinct, since ξ and ξ−1 are the only roots of the quadratic equation
Z + Z−1 = ξ + ξ−1. Thus Dm(X, a) is the product of its distinct monic
irreducible factors over Fq, and each such factor is the minimal polynomial
over Fq of a root α of Dm. These roots are given by α =

√
a (ζ4d + ζ−1

4d )
where d is a divisor of m with m/d odd, and ζ4d is a primitive 4d-th root of
unity. The minimal polynomial of α over Fq has the form

∏N−1
i=0 (X − αqi),

where N denotes the least positive integer such that αq
N

= α. We will show
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that N = Nd; since for fixed d there are ϕ(4d)/2 choices for α, the theorem
follows.

We now show N = Nd. Note that
(√

a (ζ4d + ζ−1
4d )
)qs

=
√
a
qs(
ζq

s

4d + ζ−q
s

4d

)
;

thus, N is the least positive integer s such that

√
a
qs(
ζq

s

4d + ζ−q
s

4d

)
=
√
a
(
ζ4d + ζ−1

4d

)
. (∗)

If
√
a ∈ Fq or s is even, then

√
a
qs

=
√
a, so (∗) just asserts that ζq

s

4d + ζ−q
s

4d =
ζ4d+ ζ−1

4d , or equivalently ζq
s

4d = ζ±1
4d , i.e. qs ≡ ±1 (mod 4d). If

√
a /∈ Fq and s

is odd, then
√
a
qs

= −
√
a, so (∗) is equivalent to ζq

s

4d = −ζ±1
4d , i.e. qs ≡ 2d± 1

(mod 4d). The result follows at once by inspection.

Theorem 3 If q is even and a 6= 0, then Dm(X, a)/X is the product of the
squares of several distinct irreducible polynomials in Fq[X], which occur in
cliques corresponding to the divisors d of m with d > 1. To each such d there
correspond ϕ(d)/(2kd) irreducible factors, each of which has the form

kd−1∏
i=0

(
X −

√
a
(
ζq

i

d + ζ−q
i

d

))
for some choice of ζd; here kd is the least positive integer such that qkd ≡ ±1
(mod d).

Proof. By Theorem 1, the roots of the polynomial
√
Dn(X, a)/X are the

elements α =
√
a (ζd + ζ−1

d ) where d | m and d 6= 1. As in the proof of

Theorem 2, we conclude
√
Dm(X, a)/X is the product of its distinct monic

irreducible factors over Fq, and each such factor is of the form
∏N−1

i=0 (X−αqi),
where N denotes the degree of α over Fq. Since q is even, a ∈ Fq implies√
a ∈ Fq; thus N is the least positive integer s such that ζq

s

d +ζ−q
s

d = ζd+ζ−1
d ,

i.e., qs = ±1 (mod d). Hence N = kd. Since for fixed d there are ϕ(d)/2
choices for α, we have the theorem.

3. The Dickson polynomial of the second kind, En(X, a). Write n+1
in the form pr(m + 1), where (p,m + 1) = 1. Using the functional equation
for En, we find

En(Y + a/Y, a) =
(Y m+1 − (a/Y )m+1)p

r

Y − a/Y
= Em(Y + a/Y, a)p

r

(Y − a/Y )p
r−1,
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and it follows that

En(X, a) = Em(X, a)p
r

(X2 − 4a)
pr−1

2 .

Thus, to factor En, it suffices to factor Em. Our first result gives the factor-
ization of Em over Fq; we omit the proof since it is nearly identical to that
of Theorem 1.

Theorem 4 For q odd,

Em(X, a) =
m∏
i=1

(
X −

√
a (ζ i2(m+1) + ζ−i2(m+1))

)
;

for q even,

Em(X, a) =

m/2∏
i=1

(
X −

√
a (ζ im+1 + ζ−im+1)

)2
.

When a = 0, the factorization of Em(X, a) = Xm is trivial. In Theorems
5 and 6, we present the factorization of Em(X, a) over the finite field Fq in
the case a 6= 0.

Theorem 5 If q is odd and a 6= 0, then Em(X, a) is the product of several
distinct irreducible polynomials in Fq[X]. These occur in cliques correspond-
ing to the divisors d of 2(m+ 1) with d > 2. To each such d there correspond
ϕ(d)/(2Nd) irreducible factors, each of which has the form

Nd−1∏
i=0

(
X −

√
a
qi(
ζq

i

d + ζ−q
i

d

))
for some choice of ζd, unless a is a nonsquare in Fq and 4 - d; in this
exceptional case there are ϕ(d)/Nd factors corresponding to each of d = d0

and d = 2d0, where d0 > 1 is an odd divisor of m + 1, and the factors
corresponding to d0 are identical to the factors corresponding to 2d0. Here
kd is the least positive integer such that qkd ≡ ±1 (mod d), and

Nd =


kd/2 if

√
a /∈ Fq and d ≡ 0 (mod 2) and kd ≡ 2 (mod 4)

and qkd/2 ≡ d
2
± 1 (mod d);

2kd if
√
a /∈ Fq and kd is odd;

kd otherwise.
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We omit the proof since it is similar to that of Theorem 2. We remark
that the corresponding result in [2], namely Thm. 3.1, is false in case a is a
square in Fq and 4 - d; this case should be included in item (5) of that result
rather than item (6).

Theorem 6 If q is even and a 6= 0, then Em(X, a) is the product of the
squares of several distinct irreducible polynomials in Fq[X], which occur in
cliques corresponding to the divisors d of m + 1 with d > 1. To each such d
there correspond ϕ(d)/(2kd) irreducible factors, each of which has the form

kd−1∏
i=0

(
X −

√
a
(
ζq

i

d + ζ−q
i

d

))
for some choice of ζd; here kd is the least positive integer such that qkd ≡ ±1
(mod d).

Proof. When the characteristic is 2, we observe that

Em(Y + a/Y, a) =
Y m+1 − (a/Y )m+1

Y − a/Y
=
Dm+1(Y + a/Y, a)

Y + a/Y
;

hence Em(X, a) = Dm+1(X, a)/X, so the desired factorization follows imme-
diately from Theorem 3.

4. The bivariate Dickson polynomial, Dn(X, a) − Dn(Y, a). Write
n = prm, where (m, p) = 1. Then the functional equation implies Dn(X, a)−
Dn(Y, a) = [Dm(X, a) −Dm(Y, a)]p

r
; thus, to factor Dn(X, a) −Dn(Y, a), it

suffices to factor Dm(X, a) − Dm(Y, a). As the factorization of Dm(X, 0) −
Dm(Y, 0) = Xm− Y m is trivial, we shall assume a 6= 0 throughout. Our first
result gives the factorization of Dm(X, a)−Dm(Y, a) over Fq.

Theorem 7 Let αi = ζ im + ζ−im and βi = ζ im − ζ−im . Then for m odd,

Dm(X, a)−Dm(Y, a) = (X − Y )

(m−1)/2∏
i=1

(
X2 − αiXY + Y 2 + β2

i a
)
,

and for m even,

Dm(X, a)−Dm(Y, a) = (X − Y )(X + Y )

(m−2)/2∏
i=1

(
X2 − αiXY + Y 2 + β2

i a
)
.
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Proof. Observe that

Dm

(
W +

a

W
, a
)
−Dm

(
Z +

a

Z
, a
)

= Wm + (a/W )m − Zm − (a/Z)m

= [Wm − Zm]
[
1−

( a

WZ

)m]
=

∏
ξm=1

[(
W − ξZ

)(
1− ξ a

WZ

)]
.

In order to express the last expression as a function solely of W + a/W and
Z + a/Z, we pair the terms corresponding to ξ and 1/ξ; writing α = ξ+ ξ−1

and β = ξ − ξ−1, this gives(
W − ξZ

)(
1− ξ a

WZ

)(
W − Z

ξ

)(
1− a

ξWZ

)
=

(
W +

a

W

)2

−α
(
W +

a

W

)(
Z +

a

Z

)
+
(
Z +

a

Z

)2

+ β2a

if ξ 6= 1/ξ (i.e. ξ 6= ±1), and(
W − ξZ

)(
1− ξ a

WZ

)
=
(
W +

a

W

)
− ξ
(
Z +

a

Z

)
otherwise. The factorization given in the theorem follows at once. Moreover,
one can immediately check that the given linear and quadratic factors are
irreducible over Fq; hence the stated factorization is complete.

Our next result gives the factorization of Dm(X, a)−Dm(Y, a) over Fq.

Theorem 8 The polynomial Dm(X, a)−Dm(Y, a) is the product of distinct
irreducible polynomials in Fq[X], which occur in cliques corresponding to the
divisors d of m. To each such d 6= 1, 2 there correspond ϕ(d)/(2kd) irreducible
factors of degree 2kd, each of which has the form

kd−1∏
i=0

(
X2 − αq

i

d XY + Y 2 + β2qi

d a
)
.

For d ∈ {1, 2}, there corresponds a single factor of the form (X−ζdY ). Here
αd and βd denote ζd + ζ−1

d and ζd − ζ−1
d respectively for some choice of ζd,

and kd is the least positive integer such that qkd ≡ ±1 (mod d).
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Proof. Note that the quadratic factors of Dm(X, a) − Dm(Y, a) over Fq as
given in the previous theorem are distinct, since α1, . . . , αb(m−1)/2c are dis-
tinct. Hence Dm(X, a) −Dm(Y, a) is the product of its distinct monic irre-
ducible factors over Fq, and each such factor is either of the form (X − ζdY )
for d = 1 or 2, or is of the form

N−1∏
i=0

(
X2 − αq

i

d XY + Y 2 + β2qi

d a
)
,

for some d | m with d > 2, where N denotes the least positive integer such
that both αd and β2

d are elements of FqN . However, note that β2
d = α2

d − 4 ∈
Fq(αd), and, as before, the smallest integer M such that αq

M

d = αd is M = kd.
Hence N = kd, and the theorem follows.

Remark. There does not appear to be an analogous way to treat the bivari-
ate Dickson polynomial En(X, a) − En(Y, a) of the second kind, and in fact
little is known about this factorization, although G. Turnwald has some pre-
liminary results [6]. Finally, we mention one further factorization involving
Dickson polynomials:

q−1∑
i=0

Ei(X, 1)Y (q−1)(q−1−i) =
∏
a∈F∗q

[Dq−1(Y, a)−X].

Many further results along these lines can be found in [1].
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