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Abstract. In the 1920’s, Ritt studied the operation of functional com-
position g ◦ h(x) = g(h(x)) on complex rational functions. In the case
of polynomials, he described all the ways in which a polynomial can
have multiple ‘prime factorizations’ with respect to this operation. De-
spite significant effort by Ritt and others, little progress has been made
towards solving the analogous problem for rational functions. In this
paper we use results of Avanzi–Zannier and Bilu–Tichy to prove ana-
logues of Ritt’s results for decompositions of Laurent polynomials, i.e.,
rational functions with denominator xn.

1. Introduction

In the 1920’s, Ritt [28] studied the possible ways of writing a complex
polynomial as a composition of lower-degree polynomials. To this end, a
polynomial f ∈ C[x] with deg(f) > 1 is called indecomposable if it can-
not be written as a composition f(x) = g(h(x)) with g, h ∈ C[x] and
deg(g),deg(h) < deg(f). By induction, any polynomial of degree more than
one can be written as the composition of indecomposable polynomials. Al-
though this decomposition need not be unique, Ritt proved that its length is
unique, and moreover he gave a recursive procedure for obtaining any decom-
position from any other. Ritt’s results are quite fundamental, and have been
applied in various wide-ranging contexts (cf. [3, 6, 13, 14, 24, 25, 26, 27, 35],
among others).

Unfortunately, there are no known analogues of Ritt’s results in the case
of rational functions. Ritt himself was the first to study this [29, 30]. He
noted [30] that the action of the group A4 on the Riemann sphere, together
with the fact that A4 has maximal chains of subgroups 1 < C2 < V4 < A4

and 1 < C3 < A4, implies that a certain degree-12 rational function can be
written as both the composition of two indecomposables and the composition
of three indecomposables. (This example is reproduced in the context of
modular forms in [15, 21].) Further, if f(x) is the map on x-coordinates
induced by multiplication-by-p on the elliptic curve y2 = x3+1, for any prime
p with p ≡ 2 (mod 3), then f is indecomposable but there is a decomposable
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g ∈ C(x) for which x3 ◦ f = g ◦ x3 [19]. Further families of counterexamples
to the rational function analogues of Ritt’s results are given in [19]; however,
as noted there, all known examples fit into one of three simple types, which
suggests there may be a concise description of all examples. On the other
hand, proving such a possibility seems far beyond current techniques.

In this paper we study a situation which lies between the polynomial and
rational function cases: namely, we study Laurent polynomials, i.e., ratio-
nal functions of the form f(x)/xn with f ∈ C[x]. We will prove that de-
compositions of Laurent polynomials satisfy variants of Ritt’s results. Our
statements involve the Dickson polynomials Dn(x), which are defined by
the functional equation Dn(x + 1/x) = xn + 1/xn; these are related to the
classical Chebychev polynomials Tn(x) via Dn(x) = 2Tn(x/2). We say a
rational function of degree > 1 is indecomposable if it cannot be written as
the composition of rational functions of strictly lower degrees, and a com-
plete decomposition of a rational function is an expression of the rational
function as the composition of indecomposable rational functions. We note
(cf. Lemma 2.3) that a decomposable Laurent polynomial can actually be
written as the composition of two Laurent polynomials of strictly lower de-
grees, rather than just as the composition of lower-degree rational functions.
Writing L for the set of all complex Laurent polynomials, our Laurent poly-
nomial analogue of the classical ‘first theorem of Ritt’ is as follows:
Theorem 1.1. If f = p1 ◦ p2 ◦ · · · ◦ pr = q1 ◦ q2 ◦ · · · ◦ qs where pi, qj ∈ C(x)
are indecomposable and f ∈ L, then the sequences (deg(p1), . . . ,deg(pr)) and
(deg(q1), . . . ,deg(qs)) are permutations of one another (so r = s). Moreover,
there is a finite sequence of complete decompositions of f which begins with
p1 ◦ · · · ◦ pr and ends with q1 ◦ · · · ◦ qs, where consecutive decompositions
in the sequence differ only in that two adjacent indecomposables in the first
decomposition are replaced in the second decomposition by two others having
the same composition.

Our Laurent polynomial analogue of the ‘second theorem of Ritt’ is:
Theorem 1.2. If f = g1 ◦ h1 = g2 ◦ h2 where g1, g2, h1, h2 ∈ C(x) are
indecomposable and f ∈ L, then (after perhaps exchanging the pairs (g1, h1)
and (g2, h2)) there exist degree-one µ1, . . . , µ4 ∈ C(x) such that

g1 = µ1 ◦G1 ◦ µ3

g2 = µ1 ◦G2 ◦ µ4

h1 = µ−1
3 ◦H1 ◦ µ2

h2 = µ−1
4 ◦H2 ◦ µ2,

where one of the following holds (with n prime):
(1.2.1) G1 = G2 and H1 = H2 with G1,H2 ∈ L and either G1 ∈ C[x] or

H2 = xn;
(1.2.2) G1 = H2 = xn, H1 = xrq(xn), and G2 = xrq(x)n with q ∈ C(x) and

r ∈ Z>0 coprime to n;
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(1.2.3) G1 = H2 = Dm and H1 = G2 = Dn, where m 6= n is prime;
(1.2.4) G1 = Dn, H1 = G2 = x+ 1/x, and H2 = xn;
(1.2.5) G1 = G2 = Dn, H1 = x+1/x, and H2 = ζx+1/(ζx), where ζn = 1.

We emphasize that, in (1.2.2), we do not require q ∈ L. In fact, our proof
shows we can require either q ∈ L or q = Q( 1

x+1) with Q ∈ xC[x]. To see
why the latter case gives rise to Laurent polynomials (after composing with
µ2), put q = Q( 1

x+1) with Q ∈ xC[x], so xq(x2) ◦ ix−1
x+1 = ix−1

x+1Q( (x+1)2

4x ),
which is in L.

These results generalize the classical theorems of Ritt, which are obtained
by requiring all the rational functions to be polynomials. Stated in the
other direction, if we begin with Ritt’s results and attempt to generalize
them to decompositions of Laurent polynomials, we must replace the various
polynomials in Ritt’s results by rational functions, and also we must allow
the new possibilities (1.2.4) and (1.2.5). In fact, (1.2.5) can be obtained
from two applications of (1.2.4), in addition to composing with linears: for,
if ζn = 1 then

Dn ◦
(
ζx+

1
ζx

)
= Dn ◦

(
x+

1
x

)
◦ ζx

=
(
x+

1
x

)
◦ xn ◦ ζx

=
(
x+

1
x

)
◦ xn

= Dn ◦
(
x+

1
x

)
.

One consequence of Ritt’s results, which actually was deduced as a step in
Ritt’s proofs, is a certain ‘rigidity’ property of polynomial decompositions:
Corollary 1.3. If g1 ◦ h1 = g2 ◦ h2 where g1, g2, h1, h2 ∈ C[x] \ C and
deg(g1) = deg(g2), then there is a linear µ ∈ C[x] such that g2 = g1 ◦ µ and
h2 = µ−1 ◦ h1.

Note that (1.2.5) provides counterexamples to the Laurent polynomial
analogue of Corollary 1.3. Further counterexamples are obtained by putting
n = 2 in (1.2.4). We will determine all examples:
Proposition 1.4. If f = g1◦h1 = g2◦h2 where f ∈ L\C and g1, g2, h1, h2 ∈
C(x) satisfy deg(g1) = deg(g2), then, perhaps after exchanging (g1, h1) and
(g2, h2), there exist G ∈ C[x], H ∈ L, and degree-one µ1, µ2 ∈ C(x) such
that

g1 = G ◦G1 ◦ µ1

g2 = G ◦G2 ◦ µ2

h1 = µ−1
1 ◦H1 ◦H

h2 = µ−1
2 ◦H2 ◦H,
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where one of the following holds (in which n ∈ Z>0):
(1.4.1) G1 = G2 = H1 = H2 = x;
(1.4.2) G1 = H2 = xn, H1 = (xn + 1)/xr, and G2 = (x + 1)n/xr, where

0 < r < n and gcd(r, n) = 1;
(1.4.3) G1 = −G2 = Dn, H1 = x + 1/x, and H2 = ζx + 1/(ζx), where

ζn = −1;
(1.4.4) G1 = D2, H1 = G2 = x+ 1/x, and H2 = x2.
Moreover, in (1.4.2)–(1.4.4) we may assume H = αxs with α ∈ C∗ and
s ∈ Z>0.

Ritt proved a generalization of the polynomial version of Theorem 1.2,
which can be used to describe all polynomials g1, g2, h1, h2 with g1 ◦ h1 =
g2 ◦ h2 [3]. We will prove the following analogue for Laurent polynomials:
Theorem 1.5. Let f ∈ L \C and g1, g2, h1, h2 ∈ C(x) satisfy f = g1 ◦ h1 =
g2 ◦ h2. Then, perhaps after switching (g1, h1) and (g2, h2), we have

g1 = G ◦G1 ◦ µ1

g2 = G ◦G2 ◦ µ2

h1 = µ−1
1 ◦H1 ◦H

h2 = µ−1
2 ◦H2 ◦H

for some G ∈ C[x], some H ∈ L, and some degree-one µ1, µ2 ∈ C(x), where
one of the following holds (in which m,n are coprime positive integers, and
p ∈ C[x] \ {0}):
(1.5.1) G1 = H2 = xn, H1 = xrp(xn), and G2 = xrp(x)n, where r ∈ Z with

gcd(r, n) = 1;
(1.5.2) G1 = x2, H1 = (x − 1

x)p(x + 1
x), G2 = (x2 − 4)p(x)2, and H2 =

x+ 1/x;
(1.5.3) G1 = H2 = Dm and H1 = G2 = Dn;
(1.5.4) G1 = (x

2

3 − 1)3, H1 = x2 + 2x + 1
x −

1
4x2 , G2 = 3x4 − 4x3, and

H2 = 1
3((x+ 1− 1

2x)3 + 4);
(1.5.5) G1 = Ddm, H1 = xn + 1/xn, G2 = −Ddn, and H2 = (ζx)m +

1/(ζx)m, where d ∈ Z>1 and ζdmn = −1;
(1.5.6) G1 = Dm, H1 = G2 = xn + 1/xn, and H2 = xm.
Moreover, in all cases besides (1.5.1) and (1.5.3), we may assume H = αxs

with α ∈ C∗ and s ∈ Z>0.
The analogous result for decompositions of polynomials [3] involves only

cases (1.5.1) and (1.5.3).
Ritt’s proofs of the polynomial versions of Theorems 1.1 and 1.2 are in-

dependent of one another, and have quite distinct flavors. His proof of
Theorem 1.1 for polynomials is essentially group theoretic: if f is a poly-
nomial then the inertia group I at any infinite place of (the Galois closure
of) C(x)/C(f(x)) is transitive, so one can translate questions about decom-
positions of f into questions about subgroups of I, which are not difficult
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to resolve since I is cyclic. On the other hand, Ritt’s proof of Theorem
1.2 for polynomials is a genus computation, as he determines all polynomi-
als g1, h1 of coprime degrees for which the curve g1(x) − h1(y) has genus
zero. For Laurent polynomials we require a different approach, since there
is no longer a transitive inertia group, so Theorem 1.1 cannot be proved via
group theory. Instead we first prove Theorem 1.5, using results of Avanzi–
Zannier [2] and Bilu–Tichy [6], which in turn rely on Ritt’s second theorem
and related genus computations (among other things). After determining
the possible decompositions of the specific rational functions appearing in
Theorem 1.5, we can then deduce Theorems 1.1 and 1.2. We pay special
attention to decompositions of H1 and G2 from (1.2.2), in view of their role
in potential analogues of Ritt’s results for rational functions: these H1 and
G2 are especially important since they have the same shape as one of the
main sources of rational function counterexamples (the one including the
elliptic curve examples mentioned above).

Ritt’s proofs used the language of Riemann surfaces; several authors have
rewritten his proofs in different languages [7, 8, 9, 11, 12, 16, 17, 20, 22, 31,
32, 33, 34]. For some applications the recursive procedure in Theorem 1.2 is
not sufficient, and one needs more precise information about the collection
of all the different decompositions of a polynomial; see [23] for the state of
the art on polynomial decomposition. We do not know whether there are
Laurent polynomial analogues of the latter results.

The contents of this paper are as follows. In the next section we prove
some general results about decompositions of Laurent polynomials, based on
which we outline our strategy for proving our main results. In Sections 3 and
4 we describe all decompositions of the various special Laurent polynomials
occurring in the statements of the above results. We use these specific
decompositions to prove preliminary versions of Theorem 1.5 in Sections 5
and 6, and finally we conclude in Section 7 by proving the results stated in
this introduction.

2. Preliminary reductions

Recall that the set L of Laurent polynomials consists of all rational func-
tions whose denominator is a power of x, or equivalently, all rational func-
tions having no poles besides 0 and∞. This perspective yields the following
result:
Lemma 2.1. If f = g ◦ h where f ∈ L \ C and g, h ∈ C(x), then there is a
degree-one µ ∈ C(x) such that G := g ◦ µ and H := µ−1 ◦ h satisfy one of
the following:
(2.1.1) G ∈ C[x] and H ∈ L;
(2.1.2) G ∈ L and H = xn for some n ∈ Z>0.

Proof. The poles of f = g ◦ h are the preimages under h of the poles of g;
by hypothesis, these preimages form a subset of {0,∞}. Hence g has at
most two poles. First suppose g has a unique pole, say α. Pick a degree-one
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µ ∈ C(x) for which µ(∞) = α, so that G := g ◦ µ has ∞ as its unique pole,
whence G ∈ C[x]. Then f = G ◦ H where H := µ−1 ◦ h, and H can have
no poles besides 0 and ∞, so H ∈ L, as in (2.1.1). Now suppose g has two
poles, say α and β. Since g ◦ h has at most two poles, both α and β must
have unique preimages under h, which must be 0 and ∞. Say α = h(0)
and β = h(∞), and put γ = h(1). Pick a degree-one µ ∈ C(x) which maps
0 7→ α and ∞ 7→ β and 1 7→ γ. Then the poles of G := g ◦ µ are 0 and ∞,
so G ∈ L, and H := µ−1 ◦ h has its unique pole at ∞ (so H ∈ C[x]) and
has 0 as its unique root (so H is a monomial) and maps 1 7→ 1 (so H is
monic). �

Thus, in what follows we will restrict to decompositions f = G ◦H where
G and H satisfy (2.1.1) or (2.1.2). We refer to decompositions of these
types as ‘Type 1’ and ‘Type 2’ decompositions. A pair of decompositions
of the same Laurent polynomial must be in one of three categories: both
decompositions could be Type 1, both could be Type 2, or one could be
Type 1 and the other Type 2. It is easy to describe the pairs of Type 2
decompositions of a Laurent polynomial:
Proposition 2.2. If g1 ◦ xn = g2 ◦ xm with gi ∈ L and n,m > 0, then there
exists G ∈ L such that g1 = G ◦ xlcm(n,m)/n and g2 = G ◦ xlcm(n,m)/m.

In other words, if we write a Laurent polynomial f as f = G ◦xN with N
maximal, then every Type 2 decomposition of f is (up to linears) G(xn) ◦
xN/n.

Proof. Writing f = g1 ◦ xn, the field C(f) is contained in C(xn) ∩ C(xm) =
C(xd), where d = lcm(n,m). Write d = Nn = Mm, so g1 ◦ xn = G1 ◦ xd
for some G1 ∈ C(x) (which is automatically a Laurent polynomial), whence
g1 = G1 ◦ xN . Likewise g2 = G2 ◦ xM , and we have G1 ◦ xd = f = G2 ◦ xd,
so G1 = G2. Thus f = G1(xNn), and its two Type 2 decompositions are
G1(xN ) ◦ xn and G1(xM ) ◦ xm. �

Next we consider Laurent polynomials with two Type 1 decompositions:
f = g1 ◦h1 = g2 ◦h2 with gi ∈ C[x] and hi ∈ L. Then there is an irreducible
factor E(x, y) of g1(x)− g2(y) such that E(h1(x), h2(x)) = 0, so E(x, y) = 0
defines a genus-zero curve having at most two closed points lying over x =∞
(since f has at most two poles). To classify the possibilities in this case, we
use a result of Bilu and Tichy [6] describing the polynomials g1, g2 for which
the curve g1(x) = g2(y) has an irreducible component with these properties.
Note that in this situation there automatically exist nonconstant h1, h2 ∈ L
such that g1 ◦ h1 = g2 ◦ h2, coming from a rational parametrization of the
component in question.

Finally we consider Laurent polynomials with decompositions of both
types: f = g1 ◦ h1 = g2 ◦ xn where g1 ∈ C[x] and h1, g2 ∈ L (and n > 1).
Letting ζ be a primitive nth root of unity, we have

g1 ◦ h1(ζx) = g2 ◦ xn ◦ ζx = g2 ◦ xn = g1 ◦ h1(x).
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Let h2(x) = h1(ζx). To classify the possibilities where h2 6= h1, we use
a result of Avanzi and Zannier [2] describing the polynomials g1 for which
there are distinct nonconstant rational functions h1, h2 such that g1 ◦ h1 =
g1 ◦ h2. Finally, if h1(ζx) = h1(x) then h1 = H(xn) for some H ∈ L, where
g1 ◦ H = g2. Thus, these possibilities come from decompositions of the
Laurent polynomial g2, which can be controlled inductively.

We now recall the well-known connection between decompositions of a
rational function f and intermediate fields between C(x) and C(f(x)), as
well as the corresponding results for polynomials and Laurent polynomials.
Lemma 2.3. For f ∈ C(x) \ C, the fields between C(x) and C(f) are
precisely the fields C(h), where g, h ∈ C(x) satisfy f = g ◦ h; moreover,
for h,H ∈ C(x), we have C(h) = C(H) if and only if there is a degree-one
µ ∈ C(x) such that h = µ ◦ H. If f is a Laurent polynomial (respectively,
polynomial) and f = g ◦ h with g, h ∈ C(x), then there is a degree-one µ ∈
C(x) such that both g ◦ µ and µ−1 ◦ h are Laurent polynomials (respectively,
polynomials).

Proof. The first statement follows from Lüroth’s theorem. Now suppose
f = g ◦h where g, h ∈ C(x) and f ∈ C[x]; since∞ is the unique pole of f , it
follows that g has a unique pole α, and∞ is the unique preimage of α under
h. Pick a degree-one µ ∈ C(x) which maps∞ 7→ α, so both g◦µ and µ−1 ◦h
are rational functions whose unique pole is ∞, hence they are polynomials.
Next suppose f = g ◦ h where g, h ∈ C(x) and f ∈ L; then f has no poles
besides 0 and∞, so g also has at most two poles, and the preimages of these
poles under h are a subset of {0,∞}. Pick a degree-one µ ∈ C(x) which
maps the poles of g to either {∞} or {0,∞}; then both g ◦ µ and µ−1 ◦ h
have no poles outside {0,∞}, hence are Laurent polynomials. �

3. Decompositions of Laurent polynomials of special types

In this section we describe all decompositions of certain special Laurent
polynomials occurring in our results. Knowledge of these decompositions
will be used in the proofs of our main results.

We begin with f = xn + 1/xn (where n ∈ Z>0), whose decompositions
turn out to be the main source of Laurent polynomial decompositions that
are not polynomial decompositions.
Lemma 3.1. If g, h ∈ C(x) satisfy g ◦ h = xn + x−n for some n > 0, then
there is a divisor d of n and a degree-one µ ∈ C(x) such that one of the
following holds:
(3.1.1) g ◦ µ = xn/d + x−n/d and µ−1 ◦ h = xd;
(3.1.2) g ◦ µ = βnDn/d and µ−1 ◦ h = (x/β)d + (β/x)d where β2n = 1.

Proof. Writing f = xn + x−n, we see that C(x)/C(f) is Galois, with Galois
group G being dihedral of order 2n and consisting of the automorphisms
x 7→ ζxe with ζn = 1 and e ∈ {1,−1}. Let C be the cyclic subgroup of G
consisting of the automorphisms x 7→ ζx. Let H be a subgroup of G, and
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let d = #(H ∩ C); then H ∩ C consists of the automorphisms x 7→ δx with
δd = 1, so the fixed field C(x)H∩C equals C(xd). If H = H∩C then the chain
of groups 1 < H < G corresponds (via Lemma 2.3) to the decomposition
f = (xn/d + x−n/d) ◦ xd. Now suppose H 6= H ∩ C, so #H = 2d. Pick
some ζ for which H contains the automorphism x 7→ ζ/x. Then C(x)H =
C(xd + (ζ/x)d) = C((x/β)d + (β/x)d) where β2 = ζ (so β2n = 1), and the
corresponding decomposition is f = (βnDn/d) ◦ ((x/β)d + (β/x)d). �

We also recall the possible decompositions of xn and Dn:

Lemma 3.2. If g ◦h = xn with g, h ∈ C[x] and n > 0, then there is a linear
µ ∈ C[x] and a divisor d of n such that g ◦ µ = xd and µ−1 ◦ h = xn/d. If
g ◦ h = Dn with g, h ∈ C[x] and n > 0, then there is a linear µ ∈ C[x] and
a divisor d of n such that g ◦ µ = Dd and µ−1 ◦ h = Dn/d.

Proof. This follows from Corollary 1.3, together with the fact that Dd ◦
Dn/d = Dn (which follows from the functional equation defining Dn). �

Rather than writing out all the decompositions of the rational functions
in (1.5.4), we show that (1.5.4) is a consequence of (1.5.1) and (1.5.2), if we
allow compositions with linear polynomials. Namely, putting p = x

2 +
√

2
and ν = x

√
2, we have

x2 + 2x+
1
x
− 1

4x2
=
(
x+

1
x

)
· p
(
x− 1

x

)
◦ ν,

so for

f :=
(
x2

3
− 1
)3

◦
(
x2 + 2x+

1
x
− 1

4x2

)
we have

f =
(x

3
− 1
)3
◦ x2 ◦

(
x+

1
x

)
· p
(
x− 1

x

)
◦ ν

=
(x

3
− 1
)3
◦ (x2 + 4)p(x)2 ◦

(
x− 1

x

)
◦ ν,

where the last equality comes from (1.5.2). Now put µ =
√

2(x− 1), so

(x2 + 4)p(x)2 ◦ µ = x4 + 4x+ 3

and

µ−1 ◦
(
x− 1

x

)
◦ ν = x+ 1− 1

2x
,
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and thus if we put λ = 3x− 4 then

f = x3 ◦
(x

3
− 1
)
◦ (x4 + 4x+ 3) ◦

(
x+ 1− 1

2x

)
= x3 ◦ x

4 + 4x
3

◦
(
x+ 1− 1

2x

)
= x

(
x+ 4

3

)3

◦ λ ◦ λ−1 ◦ x3 ◦
(
x+ 1− 1

2x

)
(from (1.5.1))

= (3x− 4)x3 ◦ x+ 4
3
◦ x3 ◦

(
x+ 1− 1

2x

)
= (3x4 − 4x3) ◦

(x+ 1− 1
2x)3 + 4

3
.

4. Decompositions of Ritt-twistable Laurent polynomials

In this section we study decompositions of the Laurent polynomials oc-
curring in (1.5.1) and (1.5.2). Some of the results we prove will be used
in the proofs of our main results. We also prove other results giving a full
picture of the decompositions of these special Laurent polynomials, in view
of the important role these examples play in the study of rational function
analogues of Ritt’s results.

Case (1.5.1) involves Laurent polynomials of the form xrq(xn) and xrq(x)n,
where q ∈ L \ {0} and gcd(r, n) = 1. These are the natural Laurent poly-
nomial analogues of the polynomials occurring in Ritt’s results (which have
the same shape but with q ∈ C[x]). The Laurent polynomials in (1.5.2),
however, have a different shape, namely H1 = (x − 1/x)p(x + 1/x) and
G2 = (x2 − 4)p(x)2, with p ∈ C[x] \ {0}. We now show that there are linear
changes of variables which transform H2 and G2 into the same general shape
as the previous Laurent polynomials, namely xq(x2) and xq(x)2, although
here we must allow q to be a rational function that is not in L. Specifically,
if we put

(4.1.1) q = 4i
p(2x−1

x+1)
x+ 1

,

then

xq(x2) = H1 ◦
x+ i

x− i
(4.1.2)

xq(x)2 = G2 ◦
2x− 2
x+ 1

.(4.1.3)

It is shown in [23] that a polynomial of the form xrq(xn) (with gcd(r, n) = 1)
can only decompose into polynomials of the same shape (composed with lin-
ears), and likewise for xrq(x)n. We will prove the analogous result for Lau-
rent polynomials; the corresponding assertion is not generally true when q
is one of the rational functions in (4.1.1), but nevertheless we determine all
decompositions in this situation. We remark (cf. [19]) that Ritt’s original
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A4 example (after linear changes) provides an example of an ‘odd’ rational
function xq(x2) which can be written as the composition of two rational
functions that are not linear changes of odd rational functions; similar ex-
amples occur for q as in (4.1.1).
Proposition 4.2. Let n, r ∈ Z satisfy n > 1 and gcd(n, r) = 1, and pick
p ∈ C[x] with x - p. Suppose g, h ∈ C(x) satisfy g ◦ h = xrp(x)n. Then there
is a degree-one µ ∈ C(x) such that g ◦ µ = xiGn and µ−1 ◦ h = xjHn for
some δ ∈ C, some i, j ∈ Z, and some G,H ∈ C[x].

Proof. If r ≥ 0 then xrp(x)n is a polynomial, in which case the result is
proved in [23] if g, h ∈ C[x], and the general case follows from Lemma 2.3.
Henceforth assume r < 0.

By Lemma 2.1, after replacing g and h by g ◦ µ and µ−1 ◦ h for suitable
degree-one µ ∈ C(x), we may assume g, h ∈ L and either g ∈ C[x] or h = xm

with m ∈ Z>0. First suppose h = xm. Letting ζ be a primitive mth root of
unity, we have g ◦ h(ζx) = g ◦ h(x), so ζrxrp(ζx)n = xrp(x)n. Thus p(ζx) is
a constant times p(x), so p = xsG(xm) with G ∈ C[x] and x ∈ Z≥0. Since
xrp(x)n = g ◦ xm, we have r + ns = mi with i ∈ Z≥0, so g = xiG(x)n.
Putting j = m and H = 1 gives the desired conclusion. Henceforth assume
g ∈ C[x].

Write h = A/xs where s ∈ Z>0 and A ∈ C[x] with x - A. Write g =
θ
∏
α(x−α)nα , where the α are the distinct complex roots of g (and nα ∈ Z>0

and θ ∈ C∗). Then xrp(x)n = θ
∏
α(A − αxs)nα/xs

∑
α nα . Note that each

pα := A − αxs is a polynomial, and no two pα’s have a common root, and
x = 0 is not a root of any pα. Thus, for each α, every root of pnαα has
multiplicity divisible by n, so every root of pα has multiplicity divisible by
n/ gcd(n, nα).

Suppose α, β are distinct roots of g such that neither nα nor nβ is divisible
by n. Then A − αxs = ai and A − βxs = bj where a, b ∈ C[x] and i, j > 1
are divisors of n. Thus ai − bj = (β − α)xs, so â := a(xi)/(β − α)1/i and
b̂ := b(xi)/(β − α)1/j satisfy âi − b̂j = xis. Note that x - âb̂. Now

b̂j = âi − (xs)i =
∏
ζi=1

(â− ζxs),

and the various polynomials â− ζxs are coprime (since x - â), so for each ζ
we have â − ζxs = Ajζ for some Aζ ∈ C[x]. Moreover, we may assume that

b̂ =
∏
ζ Aζ . Pick some ζ 6= 1 with ζi = 1. Since x - â, we have x - A1Aζ and

gcd(A1, Aζ) = 1. But∏
ξj=1

(A1 − ξAζ) = Aj1 −A
j
ζ = (ζ − 1)xs,

and any two polynomials A1 − ξAζ are coprime, so every A1 − ξAζ is an
sth power. Since each of these polynomials divides xs, it follows that one of
them is a constant times xs, and the rest are constants. But since at least
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one of A1 and Aζ is nonconstant, there is at most one ξ for which A1− ξAζ
is constant, whence j = 2. Similarly i = 2, so ζ = −1. Solving for A1 and
Aζ , and then â and b̂, we find that a = γ + δxs and b = ±(γ − δxs) for
some γ, δ ∈ C∗. Since a2 − b2 = (β − α)xs, we have 4γδ = β − α; moreover,
A = αxs + a2 = δ2x2s + (β + α)xs/2 + γ2. Conversely, given A and s, this
last equation determines the values of α + β, γ2, and δ2, and hence also
16γ2δ2 = (β−α)2 = (α+ β)2− 4αβ and finally αβ. Thus A and s uniquely
determine the set {α, β}. It follows that n | nχ for every root χ of g besides
α and β, whence g = ((x − α)(x − β)p2)n/2 for some p ∈ C[x]. But then
n | deg(g), so the order of the pole of xrpn at x = 0 is divisible by n, but
this order is −r, contradiction.

This last argument also implies that g is not an nth power, so g has a
unique root α for which n - nα. Moreover, for this α we have gcd(n, nα) = 1.
Thus g = (x − α)nαGn for some G ∈ C[x], and A − αxs = Hn for some
H ∈ C[x], whence h = −α+Hn/xs, as desired. �

To determine the decompositions of Laurent polynomials of the form
xrp(xn), we use the following result of Avanzi and Zannier [2, §5]:
Proposition 4.3 (Avanzi–Zannier). Let g ∈ C[x] be indecomposable, and
suppose h1, h2 ∈ C(x) \C satisfy g ◦ h1 = γg ◦ h2 where γ ∈ C∗ \ {1}. Then
(g, h1, h2) = (θG ◦ µ, µ−1 ◦H1 ◦H, µ−1 ◦H2 ◦H) where θ ∈ C∗, µ ∈ C[x] is
linear, H ∈ C(x) \ C, and one of the following occurs:
(4.3.1) H2 = x, H1 = δx, and G ∈ xrC[xn], where r ∈ Z>0, δr = γ,

n ∈ Z≥0, and δn = 1;
(4.3.2) G = Dn with n an odd prime, γ = −1, H1 = x + 1/x, and H2 =

H1 ◦ δx where δn = −1;
(4.3.3) H1 = (1− δxm)/(δxm+n−1), H2 = −1 + (xn−1)/(δxm+n−1), and

G = xm(x+ 1)n, where m,n ∈ Z>0 are coprime and δn = γ;
(4.3.4) G = D3(x) + δ, where δ ∈ C \ {0, 2,−2} and either

(i) γ = (δ + 2)/(δ − 2), H1 = −1 + 3(γx2 + 1)/(γx3 + 1), and
H2 = −2 + 3(1− x)/(γx3 + 1); or

(ii) γ = (δ − 2)/(δ + 2), H1 = −2 + 3γ(1− x)/(x3 + γ), and H2 =
−1 + 3(x2 + γ)/(x3 + γ);

(4.3.5) G = x4 − 4
3(α+ 1)x3 + 2αx2, H1 = (E−α)(E− 1

α
)(x− 6α

x
)+4(α+1)(E3+1)

6(E4+1)
,

and H2 = EH1, where γ = −1, α4 + 1 = 2(α3 + α), and

E =
−1

2
√

2(2α2 − 5α+ 2)

(
x+

6α
x

)
−
(
α+

1
α

)
;

(4.3.6) G = x4 − 4
3(α + β)x3 + 2αβx2 + 1, where ω = e2πi/3, γ ∈ {ω, ω2},

(α + ω2)3 = −2, and β = (1 − α)ω − 1; if γ = ω then H2 =
ω2(H1 − α)E and

H1 =
(E2 + pE + i√

3
α2 − w(α− 1))U + 2i√

3
((α− 1)E3 − ω(α− ω))

E4 − 1
+ α,
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where E = (x − δ/x)/2 + p and U = (x + δ/x)/(2
√
−3(α− 1)/2)

with p = − iω√
3
α2−ω(α− 1) and δ = −ω(α2− i

√
3α+ 3ω); if γ = ω2

then exchange the above H1 and H2;
(4.3.7) G = x(x + α)2(x + 1)2 and H2 = −Z2H1, where γ = −1 and Z :=

(x− 251+7ξ
x +6−2ξ)/32 with ξ2 + ξ+4 = 0 and α2− 22+5ξ

9 α+1 = 0,
and

H1 =
(α+ 1)(Z3 + 1) + (α− 1)(Z2 − ξZ + 1)U

2(Z5 − 1)

with U := (x+ 251+7ξ
x )/32.

Remark. In the above statement we have implicitly made several corrections
to the results stated in [2]. Specifically, in the definition of P4 in [2], the
equation for ξ should be ξ2 − 2ξ − 2 = 0. Our other corrections refer to [2,
Prop. 5.6]. In cases (1) and (3) of that result, g1 and h1 should be switched;
in case (8), U should be replaced by U/16; and in case (7), the sign preceding
2/3 in the expression for g1 should be ‘+’, and also an additional comment
must be made for the case c = ω2. We also combined case (1) of [2, Prop. 5.2,
5.6] with case (3), and we combined case (2) with cases (3) and (4).

Avanzi and Zannier [2, Thm. 2] generalized Proposition 4.3 to the case
of decomposable g, obtaining a recursive description of the possible poly-
nomials g. In case the genus-zero factor can be parametrized by Laurent
polynomials, we require the following non-recursive description.

Proposition 4.4. Let g ∈ C[x] satisfy deg(g) > 1, and let h1, h2 ∈ L \ C
and γ ∈ C \ {1} satisfy g ◦ h1 = γg ◦ h2. Then, after replacing (g, h1, h2) by
(g◦µ, µ−1 ◦h1 ◦θx, µ−1 ◦h2 ◦θx) for some θ ∈ C∗ and some linear µ ∈ C[x],
one of the following holds (where n ∈ Z≥0 and r,m ∈ Z>0):

(4.4.1) h1 = αh2 and g ∈ xrC[xn], where αn = 1 and αr = γ;
(4.4.2) h1 = xm + 1/xm, h2 = h1 ◦ αx, and g = G ◦ Dn, where γ = −1,

G ∈ xC[x2], and αnm = −1;
(4.4.3) h1 = xm + 1/xm, h2 = (xm− 1/xm)/

√
α, and g = G ◦ ( (1−α)x2

2 − 2),
where G ∈ xrC[xn], αr = γ, and αn = 1 but α 6= −1.

Proof. Write g = g1 ◦ · · · ◦ gs where the gi are indecomposable polynomials.
Let j be the largest integer ≤ s for which H1 := gj+1 ◦ · · · ◦ gs ◦ h1 and
H2 := gj+1 ◦ · · · ◦gs ◦h2 satisfy gj ◦H1 = ν ◦gj ◦H2 for some linear ν ∈ C[x],
and put G = g1 ◦ · · · ◦ gj−1. Writing ν(x) = αx+ β and comparing leading
coefficients in the identity G ◦ ν = γG, we see that αdeg(G) = γ 6= 1, so
α 6= 1. Now put λ := x + β/(α − 1), so λ ◦ ν = αλ; replacing G and gj
by G ◦ λ−1 and λ ◦ gj , we have gj ◦ H1 = αgj ◦ H2, so G(αx) = γG(x).
Hence G ∈ xrC[xn] for some r > 0 and n ≥ 0 such that αn = 1 and αr = γ.
If h1 = ν̂ ◦ h2 with ν̂ ∈ C[x] linear, then this argument shows that (4.4.1)
holds. Henceforth assume there is no such ν̂, so there is no linear ν̂ ∈ C[x]
such that H1 = ν̂ ◦H2.
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By Proposition 4.3, there exist θ̂ ∈ C∗, H ∈ C(x) \C, and a linear µC[x]
such that

gj = θ̂ĝj ◦ µ̂

H1 = µ̂−1 ◦ Ĥ1 ◦H

H2 = µ̂−1 ◦ Ĥ2 ◦H,

where ĝj , Ĥ1, and Ĥ2 satisfy the conditions required of G, H1, and H2 in
one of (4.3.1)–(4.3.7). By replacing G by G ◦ θ̂x, we may replace gj by ĝj
while also replacing H1 and H2 by Ĥ1 ◦H and Ĥ2 ◦H.

Since H1,H2 ∈ L have at most two poles, also Ĥ1 and Ĥ2 have at most
two poles. This rules out (4.3.4)–(4.3.7). In (4.3.3) it implies m = n = 1,
so gj = x2 + x, Ĥ1 = (1 − αx)/(αx2 − 1) and Ĥ2 = (x − αx2)/(αx2 − 1).
Putting

µ1 =
4x+ 2√

1− α
and µ2 =

1√
α

x(1 +
√
α) +

√
1− α

x(1 +
√
α)−

√
1− α

,

we have

8gj ◦ µ−1
1 =

1− α
2

x2 − 2

µ1 ◦ Ĥ1 ◦ µ2 = x+
1
x

µ1 ◦ Ĥ2 ◦ µ2 =
1√
α

(
x− 1

x

)
.

Now replace G by G ◦ 8x and gj by gj ◦ µ−1
1 , while also replacing Ĥ1 and

Ĥ2 by µ1 ◦ Ĥ1 ◦ µ2 and µ2 ◦ Ĥ2 ◦ µ2 (and replacing H by µ−1
2 ◦ H). Thus

we have gj = 1−α
2 x2 − 2, Ĥ1 = x + x−1, and Ĥ2 = (x − x−1)/

√
α. Since

H1 = Ĥ1◦H has no poles besides 0 and∞, and Ĥ1 has poles at 0 and∞, the
full H-preimage of {0,∞} is {0,∞}, so H = (θx)m for some nonzero m ∈ Z
and θ ∈ C∗. If m < 0 then replace H by (θx)−m and Ĥ2 by −Ĥ2, thereby
preserving the compositions Ĥ1◦H and Ĥ2◦H. Thus we may assume m > 0
by making the appropriate choice of

√
α. NowH1 = Ĥ1◦H = (xm+x−m)◦θx

and H2 = (xm − x−m)/
√
α ◦ θx. Write R = gj+1 ◦ · · · ◦ gs, so

R ◦ h1 = H1 =
(
xm +

1
xm

)
◦ θx

R ◦ h2 = H2 =
1√
α

(
xm − 1

xm

)
◦ θx.

By Lemma 3.1, we have R = Dm/d ◦ µ where d | m and µ ∈ C[x] is linear;
moreover, h1 = µ−1 ◦ (xd + 1/xd) ◦ θx. Since R ◦ h2 = xm+x−m

i
√
α
◦ θi1/mx,

Lemma 3.1 implies that R = Dm/d(x)/(i
√
α) ◦ µ̃ and h2 = µ̃−1 ◦ (xd +

x−d) ◦ θi1/mx for some linear µ̃ ∈ C[x]. Equating coefficients in the identity
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Dm/d ◦ µ = R = Dm/d/(i
√
α) ◦ µ̃, we see that either α = −1 or m = d.

If m = d then g = G ◦ gj ◦ µ and h1 = µ−1 ◦ (xm + x−m) ◦ θx and h2 =
µ−1 ◦ (xm − x−m)/

√
α ◦ θx, as in (4.4.3). Now assume m 6= d, so α = −1,

whence gj = D2. Replacing g, h1 and h2 by g ◦ µ−1, µ ◦ h1 ◦ x/θ, and
µ◦h2 ◦x/θ, we have g = G◦D2m/d and h1 = xd+x−d and h2 = ±h1 ◦ i1/mx.
Thus h2 = h1 ◦ α̂x where α̂2m = −1, and we have obtained (4.4.2) with
n = 2.

Now assume gj , Ĥ1 and Ĥ2 satisfy (4.3.1). Then Ĥ1 = δx and Ĥ2 = x

for some δ ∈ C∗, so H1 = Ĥ1 ◦ H = δH2, contradicting our hypothesis to
the contrary.

Finally, assume gj , Ĥ1 and Ĥ2 satisfy (4.3.3). Thus α = −1 and gj = Dp

with p an odd prime, and moreover Ĥ1 = x+ 1/x and Ĥ2 = Ĥ1 ◦ δx where
δp = −1. Since H1 = Ĥ1 ◦ H is a Laurent polynomial, we must have
H = (θx)m for some nonzero m ∈ Z and θ ∈ C∗. If m < 0 then we can
replace m by −m if we replace δ and θ by 1/δ and 1/θ; since these changes
do not affect H1 or H2, we may assume m > 0. Write R = gj+1 ◦ · · · ◦ gs, so
R ◦h1 = (x+ 1/x) ◦ (θx)m and R ◦h2 = (x+ 1/x) ◦ δ(θx)m. By Lemma 3.1,
we have R = Dm/d ◦ µ where d | m and µ ∈ C[x] is linear; moreover,
h1 = µ−1 ◦ (xd+1/xd)◦θx. Likewise R = Dm/d ◦ µ̃ for some linear µ̃ ∈ C[x],
and moreover h2 = µ̃−1 ◦ (xd + 1/xd) ◦ xθδ1/m. The identity Dm/d ◦ µ =
R = Dm/d ◦ µ̃ implies that µ̃ = εµ with ε ∈ {1,−1} and εm/d = 1. After
replacing g, h1 and h2 by g ◦ µ−1, µ ◦ h1 ◦ x/θ, and µ ◦ h2 ◦ x/θ, we have
g = G ◦Dpm/d and h1 = xd + 1/xd and h2 = εh1 ◦ xδ1/m, so h2 = h1 ◦ α̂x
where α̂mp = −1. Thus we have (4.4.2). �

We can now describe the decompositions of Laurent polynomials of the
form xrp(xn):
Proposition 4.5. Let n, r ∈ Z satisfy n > 1 and n - r, and pick p ∈ C[x]
with x - p. Suppose g, h ∈ C(x) satisfy g ◦ h = xrp(xn). Then there is a
degree-one µ ∈ C(x) such that, after replacing g and h by g ◦µ and µ−1 ◦ h,
one of the following occurs (with s, t,m ∈ Z and m > 0):
(4.5.1) g ∈ xsC[xm] and h ∈ xtC[xn] where n | mt;
(4.5.2) g = G ◦ Dt and h = (xm + 1/xm) ◦ θx where G ∈ xC[x2] and

mt ≡ r ≡ n/2 (mod n), with n even, t > 0, and θ ∈ C∗.
Moreover, if g ∈ C[x] and h ∈ L then we may choose mu ∈ C[x].

Proof. By Lemma 2.1, we may assume g, h ∈ L and either g ∈ C[x] or h = xt

with t ∈ Z>0. In the latter case the condition xrp(xn) ∈ C[xt] implies t | r
and p = P (xt/ gcd(n,t)) with P ∈ C[x]. Thus g = xr/tP (xn/ gcd(n,t)), as in
(4.5.1). Henceforth assume g ∈ C[x]. If deg(g) = 1 then we may assume
g = x, so again (4.5.1) holds. Now assume deg(g) > 1.

Let ζ be a primitive nth root of unity. Then g ◦ h(ζx) = ζrg ◦ h(x),
and γ := ζr 6= 1. Write h2 := h(x) and h1 := h(ζx), so g ◦ h1 = γg ◦ h2.
By Proposition 4.4, there exist θ ∈ C∗ and a linear µ ∈ C[x] such that,
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after replacing g, h1, h2 by g ◦ µ, µ−1 ◦ h1 ◦ θx, and µ−1 ◦ h2 ◦ θx, one of
(4.4.1)–(4.4.3) holds. We will use the equation h1 = h2 ◦ ζx to analyze these
possibilities.

If (4.4.1) holds then αh2 = h1 = h2 ◦ ζx, so h2 ∈ xtC[xn] with ζt = α;
here also g ∈ xsC[xm] where αm = 1 and αs = γ. Thus ζtm = 1, so we have
(4.5.1).

If (4.4.2) holds then

xm +
1
xm

= h1 = h2 ◦ ζx =
(
xm +

1
xm

)
◦ αζx,

so (αζ)m = 1. Here g = G ◦ Dt where γ = −1 and G ∈ xC[x2], and
αmt = −1. Thus ζmt = −1, and we have (4.5.2).

If (4.4.3) holds then, for some α 6= −1, we have

xm +
1
xm

= h1 = h2 ◦ ζx =
1√
α

(
xm − 1

xm

)
◦ ζx,

so ζm =
√
α = −1/ζm. But then α = ζ2m = −1, contradiction. �

Next we consider decompositions of (x2 − 4)p(x)2 with p ∈ C[x]; since
these are polynomials, Ritt’s results provide information about their de-
compositions, but we go further by precisely describing the shape of every
decomposition:
Proposition 4.6. Let g, h, p ∈ C[x]\{0} satisfy g◦h = (x2−4)p(x)2. Then,
after replacing g and h by g ◦ µ and µ−1 ◦ h for some linear µ ∈ C[x], there
exist B,D ∈ C[x] and n ∈ Z>0 such that one of the following holds:
(4.6.1) g = xB2 and h = (x2 − 4)D2;
(4.6.2) g = (x2 − 4)B2 and h = Dn.
Remark. To verify that the polynomials g and h in (4.6.2) satisfy g ◦ h =
(x2 − 4)p(x)2 for suitable p, note that D2

n − 4 = (x2 − 4)E2
n−1, where the

polynomial En−1 is a ‘Dickson polynomial of the second kind’, and is defined
by the functional equation En−1(x+ x−1) = (xn − x−n)/(x− x−1).

Proof of Proposition 4.6. Write g = AB2 and h = CD2 with A,B,C,D ∈
C[x] and A,C squarefree and monic. Then (x2 − 4)p(x)2 = A(h) ·B(h)2, so
A(h) is a square times x2 − 4. Write A(x) =

∏
α(x− α), where the product

ranges over the roots of A, and write h−α = E2
αFα with Eα, Fα ∈ C[x] and

Fα squarefree and monic. For distinct roots α, α′ of A, plainly h−α and h−α′
are coprime, so gcd(Eα, Eα′) = 1 = gcd(Fα, Fα′). Since A(h) =

∏
αE

2
αFα is

a square times x2−4, and the various polynomials Fα are monic, squarefree
and coprime, we have x2−4 =

∏
α Fα. Moreover, differentiating the equation

h − α = E2
αFα implies Eα | h′, and since the various polynomials Eα are

coprime, we have
∏
αEα | h′. Writing n = deg(h) and r = deg(A), it follows

that n− 1 ≥
∑

α deg(Eα), and since

nr = deg(h ◦A) =
∑
α

deg(h− α) = 2 + 2
∑
α

deg(Eα),
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we conclude that r ≤ 2. If r = 1 then, after replacing g and h by g ◦ µ
and µ−1 ◦ h for a suitable linear µ ∈ C[x], we may assume A = x; but then
C = F0 = x2−4, so we have (4.6.1). Now assume r = 2, so, after inserting a
linear and its inverse between g and h as above, we may assume A = x2−4.
There are four possibilities:

(i) F2 = x2 − 4 and F−2 = 1;
(ii) F2 = x− 2 and F−2 = x+ 2;
(iii) F2 = x+ 2 and F−2 = x− 2; or
(iv) F2 = 1 and F−2 = x2 − 4.

By replacing g and h by g ◦ (−x) and (−x) ◦ h, we may assume that (i) or
(ii) holds. In either case, the cover h : P1 → P

1 is totally ramified over ∞,
and every point lying over 2 or −2 has even ramification index except 2 and
−2. This data determines h up to composition on both sides with linears,
as was first shown by Ritt [28], and as has been reproved in every proof of
Ritt’s results. Thus, h = ν1 ◦Dn ◦ ν2 for some linear ν1, ν2 ∈ C[x]. In case
(ii) we have h− 2 = (x− 2)E2

2 , so n is odd; if n = 1 then E2 is a constant,
and since (x + 2) | (h + 2) we must have E2 = ±1, so h = x and (4.6.2)
holds. If (ii) holds with n > 1 then 2 and −2 are the unique finite branch
points of h : P1 → P

1, and their unique unramified preimages are 2 and
−2, respectively. Since Dn has the same property, each νi preserves {2,−2},
hence equals ±x, and we must have ν2 = ν1. Since −Dn(−x) = Dn(x), this
gives (4.6.2). In case (i), n is even; if n = 2 then −2 is the unique finite
branch point of both h and Dn, so ν1 fixes −2 and thus ν1 = −2+β · (x+2).
Since h(±2) = 2 and D2 = x2 − 2, we find that ν2 = αx where β = 1/α2,
which implies h = D2 as desired. Now suppose n > 2. Then both h and Dn

have 2 and −2 as their unique finite branch points, and all of their preimages
are ramified except for ±2, both of which lie over 2. Thus ν1 fixes 2 and −2,
so ν1 = x. Also ν2 preserves {2,−2}, so ν2 = ±x, whence h = Dn. �

Finally, we determine the decompositions of the other Laurent polynomi-
als in (1.5.2), namely (x − 1/x) · p(x + 1/x) with p ∈ C[x]. As we noted
in (4.1.1), composition with a degree-one rational function transforms these
into the form xq(x2), but the resulting q ∈ C(x) is not a Laurent polynomial.
Proposition 4.7. Let g, p ∈ C[x] and h ∈ L satisfy p 6= 0 and g ◦ h =
(x− 1/x) · p(x + 1/x). Then there exist µ, q ∈ C[x] with µ linear such that
one of the following holds:
(4.7.1) µ−1◦h = (x−1/x)·q(x+1/x) and g◦µ ∈ xC[x2] is an odd polynomial;
(4.7.2) µ−1 ◦h = xm√

γ +
√
γ

xm and g◦µ = G◦Dn with G ∈ xC[x2] and γn = −1.

Remark. We note that the examples in (4.7.2) do satisfy the hypotheses:
for, f := g ◦ h = G ◦ Dn ◦ (x + 1/x) ◦ xm/√γ. Writing I =

√
γn, we have

I2 = −1, so f = G ◦ (x + 1/x) ◦ Ixnm = G ◦ I(x − 1/x) ◦ xnm. There is a
polynomial Enm−1 (the Dickson polynomial of the second kind) satisfying
(x− 1/x) ◦ xnm = (x− 1/x)Enm−1(x+ 1/x). Since G is odd, it follows that
f(x) = (x− 1/x) · p(x+ 1/x) for some p ∈ C[x].



DECOMPOSITIONS OF LAURENT POLYNOMIALS 17

Proof of Proposition 4.7. Write f = (x− 1/x) · p(x+ 1/x). Since f(1/x) =
−f(x) (and f ∈ L), we can write f(x) = F (x) − F (1/x) with F ∈ xC[x].
Write the leading terms of F and g as βxs and θxr. Viewing f as a finite
Laurent series, its highest and lowest-degree terms have degrees s and −s,
so we can write h = δ(xe+ δ1x

e−1 + · · ·+ δe−1x) + ξ+ ζ(x−e+ ζ1x
1−e+ · · ·+

ζe−1x
−1) with δ, ζ ∈ C∗ and δi, ζi, ξ ∈ C, where e = s/r. Then δr = β/θ =

−ζr, and moreover the δi are uniquely determined by F , since the coefficients
of xs−1, . . . , xs−e+1 in the congruence (xe + δ1x

e−1 + · · · + δe−1x)r ≡ F/β
(mod xs−e) successively determine δ1, . . . , δe−1. Since the ζi are determined
by the same congruence, we have ζi = δi, whence h = H(x) + γH(1/x) + ξ
with H ∈ xC[x] and γr = −1. Since f(1/x) = −f(x), we have g ◦ h(x) =
−g ◦ h(1/x). By Proposition 4.4, there exist θ̂ ∈ C∗ and a linear µ ∈ C[x]
such that one of (4.4.1)–(4.4.3) holds for ĝ := g ◦ µ, h1 := µ−1 ◦ h ◦ θ̂x, and
h2 := µ−1 ◦h◦(θ̂x)−1. Write Ĥ(x) = µ−1 ◦H(x)−µ−1(0), so Ĥ ∈ xC[x] and
h1 = Ĥ(θ̂x)+γĤ(1/(θ̂x))+µ−1(ξ) and h2 = Ĥ(1/(θ̂x))+γĤ(θ̂x)+µ−1(ξ).

In case (4.4.1) we have h1 = αh2, where α 6= 1. Comparing the terms
of highest and lowest degrees in this identity gives 1

α · µ
−1 = µ−1 ◦ γx =

α · µ−1, so α = γ = −1. Now (4.4.1) implies ĝ ∈ xC[x2]. Since h1 and
h2 = −h1 both have constant term µ−1(ξ), this term must be zero, so
h1(x) = Ĥ(x)− Ĥ(1/x). Letting σ be the automorphism of C(x) mapping
x 7→ 1/x, we see that R := h1(x)/(x − 1/x) is fixed by σ, and thus lies in
the fixed field C(x)σ = C(x+ 1/x). Thus R = q(x+ 1/x) for some q ∈ C(x).
The only poles of 1/(x − 1/x) are 1 and −1, both of which have order 1;
since h1(1) = h1(−1) = 0, neither 1 nor −1 is a pole of R, so R has no poles
besides 0 and ∞. Since R = q(x+ 1/x), and the images of 0 and ∞ under
x + 1/x are both ∞, it follows that q has no poles besides ∞, so q ∈ C[x].
This proves that (4.7.1) holds.

In cases (4.4.2) and (4.4.3) we have h1 = xm + 1/xm, so xm = Ĥ(θ̂x)
and 1/xm = γĤ( 1

θ̂x
), whence Ĥ(x) = (x/θ̂)m and θ̂2m = γ. Thus h2 =

xm/γ+γ/xm, which is incompatible with (4.4.3), so (4.4.2) holds. Moreover,
in (4.4.2) we must have αm = 1/γ, and ĝ = G ◦ Dn where G is an odd
polynomial and αmn = −1. This yields (4.7.2). �

5. Laurent polynomials with two Type 1 decompositions

In this section we describe all instances of Laurent polynomials with two
Type 1 decompositions. Our proofs make crucial use of a result of Bilu
and Tichy [6, Thm. 9.3], whose proof relies on Ritt’s results among other
things. The statement of this result involves the general degree-n Dickson
polynomial Dn(x, α) (with α ∈ C), which is defined by the functional equa-
tion Dn(z + α/z, α) = zn + (α/z)n (in this notation, our previously defined
Dn(x) is Dn(x, 1)).
Proposition 5.1 (Bilu–Tichy). Let g1, g2 ∈ C[x] \ C, and let E(x, y) ∈
C[x, y] be a factor of g1(x)−g2(y). Suppose that E(x, y) = 0 is an irreducible



18 MICHAEL E. ZIEVE

curve of genus 0 which has at most two closed points lying over x =∞. Then
g1 = G ◦ G1 ◦ µ1 and g2 = G ◦ G2 ◦ µ2, where G,µ1, µ2 ∈ C[x] with µ1, µ2

linear, and where either (G1, G2) or (G2, G1) is in the following list (in which
p ∈ C[x] is nonzero, m,n are coprime positive integers, and α, β ∈ C∗):

(5.1.1) (xn, αxrp(x)n) where 0 ≤ r < n and gcd(r, n) = 1;
(5.1.2) (x2, (αx2 + β)p(x)2);
(5.1.3) (Dm(x, αn), Dn(x, αm));
(5.1.4) (α−mD2m(x, α), −β−nD2n(x, β));
(5.1.5) ((αx2 − 1)3, 3x4 − 4x3);
(5.1.6) (Ddm(x, αn), −Ddn(x cos(π/d), αm)) where d ≥ 3.

Moreover, there exists (G1, G2) as above such that E(x, y) is a factor of
G1 ◦ µ1(x) − G2 ◦ µ2(y), and such that in all but the last case E(x, y) is a
constant times G1 ◦ µ1(x)−G2 ◦ µ2(y).

Remark. In the above result we have corrected an error from [6], namely
that an/d and am/d should be switched in the definition of ‘specific pairs’ in
[6] in order to make [6, Thm. 9.3] be true.

Actually Bilu and Tichy proved a version of this result for polynomials
over an arbitrary field of characteristic zero; since we have restricted to the
complex numbers, we can simplify the statement somewhat:

Corollary 5.2. Proposition 5.1 remains true if we replace (5.1.1)–(5.1.6)
by the following (where m,n ∈ Z>0 are coprime, and p ∈ C[x] is nonzero):

(5.2.1) (xn, xrp(x)n) where 0 ≤ r < n and gcd(r, n) = 1;
(5.2.2) (x2, (x2 − 4)p(x)2);
(5.2.3) (Dm(x), Dn(x));
(5.2.4) ((x2/3− 1)3, 3x4 − 4x3);
(5.2.5) (Ddm(x), −Ddn(x)) where d > 1.

Before proving Corollary 5.2, we recall some basic properties of Dickson
polynomials. These follow readily from the definition; for details, and further
results, see [1, 18].

D1(x, α) = x; D2(x, α) = x2 − 2α;(5.3.1)

Dmn(x, α) = Dm(Dn(x, α), αn);(5.3.2)

βnDn(x, α) = Dn(βx, β2α).(5.3.3)

Proof of Corollary 5.2. If (5.1.1) holds then (5.2.1) holds, since αxrp(x)n =
xr( n
√
αp(x))n. Likewise, if (5.1.2) holds then so does (5.2.2) (perhaps after

changing p and µi), since (αx2 + β)p(x)2 = (x2 − 4)p̂(x)2 ◦ γx where γ2 =
−4α/β and p̂(x) = (

√
−β/2)p(x/γ). We pass from (5.1.5) to (5.2.4) in a

similar manner, since (αx2 − 1)3 = (x2/3− 1)3 ◦
√

3αx. If (5.1.4) holds, we
use (5.3.3) with γ2 = 1/α and δ2 = 1/β, getting α−mD2m(x, α) = D2m(xγ)
and −β−nD2n(x, β) = −D2n(xδ), which yields (5.2.5) (with d = 2).

If (5.1.3) holds, let γ be a square root of α, so (5.3.3) implies Dm(x, αn) =
γnmDm(x/γn), whence G ◦Dm(x, αn) = G(γnmx) ◦Dm(x) ◦x/γn. Since we
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could do the same thing after exchanging n and m, and since this change
would not affect G(γnmx), it follows that (5.2.3) holds here.

If (5.1.6) holds, we again let γ be a square root of α, so (5.3.3) implies
that −Ddn(x cos(π/d), αm) = −γdmnDdn(x cos(π/d)/γm) and Ddm(x, αn) =
γdmnDdm(x/γn). Thus, after replacing G(x) by G(γdmnx), and composing
µ1 and µ2 with x cos(π/d)/γm and x/γn, we obtain (5.2.5). �

To describe the Laurent polynomials with two Type 1 decompositions, we
need two more auxiliary results. The first is a neat observation of Fried’s
about factorizations of polynomials of the form g1(x)− g2(y) [10, Prop. 2];
we state the refined version given in [6, Thm. 8.1]:
Proposition 5.4. For any G1, G2 ∈ C[x]\C, there exist a1, a2, b2, b2 ∈ C[x]
such that
(5.4.1) G1 = a1 ◦ b1 and G2 = a2 ◦ b2;
(5.4.2) the splitting field of a1(x) − z over C(z) equals the splitting field of

a2(x)− z over C(z);
(5.4.3) the irreducible factors of G1(x)−G2(y) are precisely the polynomials

A(b1(x), b2(y)), where A is an irreducible factor of a1(x)− a2(y).
We also require the factorization of Dn(x) + Dn(y); as noted by Bilu [5,

Prop. 3.1], (5.3.1) and (5.3.2) imply D2n = D2
n − 2, so for Fn := Dn(x) −

Dn(y) we have Dn(x) +Dn(y) = F2n/Fn, and hence it suffices to factor Fn.
This last factorization is well-known; for a simple derivation see [4, Thm. 7].
Proposition 5.5. Put

Φn(x, y) =
∏

1≤k<n
k≡1 mod 2

(x2 − xy · 2 cos(πk/n) + y2 − 4 sin2(πk/n)).

Then

Dn(x) +Dn(y) =

{
Φn(x, y) if n is even
(x+ y)Φn(x, y) if n is odd.

We now classify Laurent polynomials with two Type 1 decompositions.
Theorem 5.6. Let g1, g2 ∈ C[x]\C and h1, h2 ∈ L\C satisfy g1◦h1 = g2◦h2.
Then, perhaps after switching (g1, g2) and (h1, h2), we have

g1 = G ◦G1 ◦ µ1

g2 = G ◦G2 ◦ µ2

h1 = µ−1
1 ◦H1 ◦H

h2 = µ−1
2 ◦H2 ◦H

for some G ∈ C[x], some H ∈ C(x), and some linear µ1, µ2 ∈ C[x], where
(G1, G2) satisfy one of (5.2.1)–(5.2.5) and (H1,H2) is the corresponding pair
below:
(5.6.1) (xrp(xn), xn);
(5.6.2) ((x− 1/x)p(x+ 1/x), x+ 1/x);
(5.6.3) (Dn(x), Dm(x));
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(5.6.4)
(
x2 + 2x+ 1

x −
1

4x2 ,
1
3

(
(x+ 1− 1

2x)3 + 4
))

;
(5.6.5) (xn + 1/xn, (ζx)m + 1/(ζx)m) where ζdmn = −1.

Proof. Since g1(x)− g2(y) vanishes when x = h1(z) and y = h2(z), there is
an irreducible factor E(x, y) of g1(x)− g2(y) such that E(h1(z), h2(z)) = 0.
Here E = 0 defines a genus-zero curve having at most two closed points lying
over x =∞. By Corollary 5.2, we have g1 = G◦G1 ◦µ1 and g2 = G◦G2 ◦µ2

where G,µ1, µ2 ∈ C[x] with µi linear, and moreover (perhaps after switching
g1 and g2) we may choose (G1, G2) to have the form of one of (5.2.1)–
(5.2.5). Furthermore, these choices can be made so that E(x, y) divides
G1 ◦µ1(x)−G2 ◦µ2(y). As noted in Proposition 5.1, in cases (5.2.1)–(5.2.4)
the polynomial G1(x) − G2(y) is irreducible. Thus, for any H1,H2 ∈ C(x)
satisfying G1 ◦ H1 = G2 ◦ H2 and gcd(deg(H1),deg(H2)) = 1, there exists
H ∈ C(x) such that µ1 ◦ h1 = H1 ◦ H and µ2 ◦ h2 = H2 ◦ H. Hence in
these cases it suffices to exhibit one such pair (H1,H2), and visibly the pairs
stated in the Theorem have the required properties.

Henceforth suppose that G1 = Ddm and G2 = −Ddn with m,n coprime
positive integers and d > 1. Let G1 = a1 ◦ b1 and G2 = a2 ◦ b2 be the decom-
positions occurring in Proposition 5.4. Denoting by Ω the splitting field of
a1(x)− z over C(z), we see that deg(a1) is the ramification index in Ω/C(z)
of any place lying over z =∞; but (5.4.2) implies the same description ap-
plies to deg(a2), so a1 and a2 have the same degree. By Lemma 3.1, there
exist linear ν1, ν2 ∈ C[x], and a divisor e of d, such that a1 = De ◦ ν1 and
a2 = −De ◦ ν2 (and b1 = ν−1

1 ◦Dmd/e and b2 = ν−1
2 ◦Dnd/e). Since Propo-

sition 5.4 holds for some linear ν1, ν2, it follows that Proposition 5.4 holds
for any arbitrarily chosen linears ν1, ν2, so we may assume ν1 = ν2 = x. A
factorization of a1(x)−a2(y) is given in Proposition 5.5, in terms of the poly-
nomials Ak,e := x2−xy·2 cos(πk/e)+y2−4 sin2(πk/e) where 1 ≤ k < e and k
is odd. Note that Ak,e is irreducible (since its degree-2 part is a nonsquare, it
has no degree-1 terms, and it has a nonzero constant term). Thus, by (5.4.3),
every irreducible factor of G1(x)−G2(y) has x-degree 2dm/e, unless e is odd
when there is also one factor of x-degree dm/e. But Proposition 5.5 implies
thatG1(x)−G2(y) is the product of several polynomialsAk,d(Dm(x), Dn(y)),
as well as (if d is odd) the polynomial Dm(x) + Dn(y). Thus every irre-
ducible factor of G1(x)−G2(y) has x-degree at most 2m, so either e = d or
(d, e) = (2, 1). In the latter case, G1(x)−G2(y) is irreducible. Thus, in either
case, the irreducible factors of G1(x)−G2(y) consist just of the polynomials
Ak,d(Dm(x), Dn(y)) with 1 ≤ k < d and k odd, unless d is odd in which
case Dm(x) + Dn(y) is another irreducible factor. Now E(µ−1

1 (x), µ−1
2 (y))

must be a scalar multiple of one of these factors, and we may assume the
scalar is 1 (since we are free to replace E by a scalar multiple of itself). Since
E(h1(x), h2(y)) = 0, we cannot have E(µ−1

1 (x), µ−1
2 (y)) = Dm(x)+Dn(y), so

we must have E(µ−1
1 (x), µ−1

2 (y)) = Ak,d(Dm(x), Dn(y)). Denote this poly-
nomial as R(x, y), and put H1 := xn + 1/xn and H2 := (ζx)m + 1/(ζx)m,
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where ζ = eπik/(dmn). Then R(H1(x),H2(x)) = 0, so (since R(x, y) is irre-
ducible) we have H1 = Ĥ1 ◦ J and H2 = Ĥ2 ◦ J for some Ĥ1, Ĥ2, J ∈ C(x)
such that R(Ĥ1(x), Ĥ2(x)) = 0, where in addition µ1 ◦ h1 = Ĥ1 ◦ H and
µ2 ◦ h2 = Ĥ2 ◦ H for some H ∈ C(x). If deg(J) = 1 this gives (5.6.5), so
assume deg(J) > 1. Since deg(J) divides gcd(deg(H1),deg(H2)) = 2, we
must have deg(J) = 2. If J ∈ C(x2) then H1,H2 ∈ C(x2) so both n and m
are even, contradiction. Now Lemma 3.1 implies that J = λ1 ◦ (x/γ + γ/x)
and J = λ2 ◦ (x/δ + δ/x) ◦ ζx, where γ2n = 1 = δ2m and λ1, λ2 ∈ C(x)
have degree one. Comparing images of x = 0, we see that λ1(∞) = λ2(∞),
so λ−1

2 ◦ λ1 fixes ∞ and thus is a linear polynomial. Thus J is a Laurent
polynomial, and its constant term is λ1(0) = λ2(0), so λ−1

2 ◦ λ1 = εx for
some ε ∈ C∗. Thus

ε

(
x

γ
+
γ

x

)
=
ζx

δ
+

δ

ζx
,

and equating coefficients of like terms yields εδ = ζγ and εγζ = δ, so
ε = ζγ/δ = ±1. Raising to the (2nm)th power gives ζ2mn = 1, but ζ2mn =
e2πik/d 6= 1 since 0 < k < d, contradiction. �

6. Laurent polynomials with decompositions of both types

In this section we prove the following result:

Theorem 6.1. Let g1 ∈ C[x] \C and g2, h1 ∈ L \C satisfy g1 ◦ h1 = g2 ◦ xn
with n ∈ Z>0. Then either h1 = A ◦ xn (and g2 = g1 ◦ A) for some A ∈ L,
or there exist G,µ ∈ C[x] with µ linear such that g1 = G ◦ G1 ◦ µ and
h1 = µ−1 ◦H1 and g2 = G◦G2, where one of the following holds (with e ∈ Z
and r = gcd(n, e)):

(6.1.1) G1 = xn/r, H1 = xep(xn), and G2 = xe/rp(x)n/r, where p ∈ C[x];
(6.1.2) G1 = Dn/r, H1 = (xe + 1/xe) ◦ αx, and G2 = (xe/r + 1/xe/r) ◦ αnx,

where α ∈ C∗.
We will use some results of Avanzi and Zannier [2, §4], which we state as

follows.

Proposition 6.2 (Avanzi–Zannier). Pick an indecomposable g ∈ C[x], and
distinct nonconstant h1, h2 ∈ C(x), and suppose that g ◦ h1 = g ◦ h2. Then
g = µ ◦ G ◦ ν and h1 = ν−1 ◦ H1 ◦ H and h2 = ν−1 ◦ H2 ◦ H, where
µ, ν ∈ C[x] are linear, H ∈ C(x), and either (G,H1,H2) or (G,H2,H1) is
in the following list:

(6.2.1) (xn, x, ζx), where n is prime and ζ is a primitive nth root of unity;
(6.2.2)

(
Dn, x+ 1

x , ζx+ 1
ζx

)
, where n is an odd prime and ζ is a primitive

nth root of unity;
(6.2.3)

(
(xr(x+ 1)m, 1−xr

xr+m−1
, −1 + xm−1

xr+m−1

)
, where r,m are coprime posi-

tive integers with r +m > 3;
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(6.2.4)
(
x(x+ α)2(x+ 1)2, −4αx

2

E , −
α
E

(
x2 − 7x

4 −
15
64

)2), where α ∈ C∗ sat-

isfies 9α2 − 2α+ 9 = 0 and

E = αx4 +
3
8

(3− 7α)x3 +
99
64

(1 + α)x2 +
45
512

(7− 3α)x+
225
4096

;

(6.2.5)
(
x(x+ α)3(x+ 1)3, −4096x

3

E ,
1
E (64− (x− α)2)3

)
, where α ∈ C∗ sat-

isfies α2 − 5α+ 8 = 0 and

E = x6 + (32− 10α)x5 + (31α− 88)x4 + (68α+ 1888)x3

+ (651α− 56)x2 + (11158α− 50288)x+ 41881α− 156520.

Remark. The polynomials in [2] involve some parameters which we have
removed by absorbing them into µ and ν. Also, the assertion in [2, Prop. 4.7]
about g1 being reduced is false in case (3).

Proof of Theorem 6.1. Let ζ be a primitive nth root of unity, so for h2 :=
h1 ◦ ζx we have g1 ◦h2 = g1 ◦h1. If h2 = h1 then h1 = A ◦xn with A ∈ L, in
which case g2 = g1 ◦ A. Henceforth assume h2 6= h1. This implies g1 is not
linear, so we can write g1 = f1 ◦ · · · ◦ fv where every fi is indecomposable.
Let j be the largest integer for which

fj ◦ fj+1 ◦ · · · ◦ fv ◦ h2 = fj ◦ fj+1 ◦ · · · ◦ fv ◦ h1,

and put R = fj+1 ◦ · · · ◦ fv and A = f1 ◦ · · · ◦ fj−1, so g1 = A ◦ fj ◦R. Then
S2 := R ◦ h2 and S1 := R ◦ h1 satisfy S2 6= S1 but fj ◦ S2 = fj ◦ S1. After
replacing A, fj , and R by A ◦µ, µ−1 ◦ fj ◦ ν−1, and ν ◦R, for suitable linear
µ, ν ∈ C[x], Proposition 6.2 implies that there exist s1, s2, T ∈ C(x) \ C
such that S1 = s1 ◦ T and S2 = s2 ◦ T and either (fj , s1, s2) or (fj , s2, s1)
is one of the triples (6.2.1)–(6.2.5). Since replacing ζ by 1/ζ has the effect
of exchanging s1 and s2, we may assume that (fj , s1, s2) is among (6.2.1)–
(6.2.5). Moreover, since hi ∈ L and R ∈ C[x], also Si = R ◦ hi is in L, so si
has at most two poles. This rules out (6.2.3), (6.2.4) and (6.2.5).

If (6.2.1) holds then fj = x` for some prime `, and moreover S2 = γS1 for
some primitive `th root of unity γ. Thus S1(ζx) = γS1(x), so S1 ∈ xtC[xn]
for some t ∈ Z with ζt = γ. By Proposition 4.5, after replacing R and h1

by R ◦ µ and µ−1 ◦ h1 for a suitable linear µ ∈ C[x], we may assume that R
and h1 satisfy the conditions required of g and h in either (4.5.1) or (4.5.2).
First suppose R and h1 satisfy (4.5.1), so R ∈ xdC[xm] and h1 = xep(xn)
with p ∈ C[x] and n | em; then γ = ζde, so n | `de. Putting r = gcd(n, e),
we have n | r gcd(d`,m), so fj ◦ R ∈ C[xn/r]. Since g1 = A ◦ fj ◦ R, we can
write g1 = G ◦ xn/r. It follows that g2 = xe/rp(x)n/r, so we have (6.1.1).
Now suppose R and h1 satisfy (4.5.2), so n is even, and also R = R̂◦Dd and
h1 = (xe + 1/xe) ◦ αx, where R̂ ∈ xC[x2] and ed ≡ t ≡ n/2 (mod n); thus
γ = ζt has order 2, so ` = 2. Now fj ◦R = x2 ◦ R̂ ◦Dd; since R̂ ∈ xC[x2], we
see that x2 ◦ R̂ is in C[x2], and thus can be written as R̃ ◦D2 with R̃ ∈ C[x].
Thus fj ◦ R = R̃ ◦D2d, so since n | 2ed we can write g1 = G ◦Dn/r where
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r = gcd(n, e) amd G = A◦R̃◦D2dr/n. This implies g2 = (xe/r+x−e/r)◦αnx,
so we have (6.1.2).

Finally, suppose (6.2.2) holds. Then fj = D` for some odd prime `, and
moreover s1 = x+ 1/x and s2 = γx+ 1/(γx) for some primitive `th root of
unity γ. Since s1 ◦ T is a Laurent polynomial, and s1 has poles at 0 and ∞,
Lemma 2.1 implies that T = δxd for some δ ∈ C∗ and d ∈ Z. Since we can
replace s1, s2, and T by s1◦1/x, s2◦1/x, and 1/x◦T , we may assume d > 0.
Now we have R ◦ h1 = δxd + 1/(δxd) and R ◦ h1(ζx) = γδxd + 1/(γδxd),
so ζd = γ and thus n | d`. Since R is a polynomial, Lemma 3.1 implies
that R = αdDd/e ◦ µ and h1 = µ−1 ◦ (xe + 1/xe) ◦ δ̂x/α where µ ∈ C[x]
is linear, α2d = 1, and δ̂d = δ. Likewise R = βdDd/e ◦ ν and h1 ◦ ζx =
ν−1 ◦ (xe + 1/xe) ◦ γ̂x/β where ν ∈ C[x] is linear, β2d = 1, and γ̂d = γδ.
Thus (α/β)dDd/e = Dd/e ◦ ν ◦ µ−1; equating coefficients of xd/e−1 shows
that ν ◦ µ−1 = θx with θ ∈ C∗, and equating coefficients of xd/e shows that
θd/e = (α/β)d. If d = e it follows that θ ∈ {1,−1}; if d 6= e then we also
obtain θ = ±1 upon equating coefficients of xd/e−2. Since ε := αd = ±1, we
have

g1 = A ◦D` ◦ εDd/e ◦ µ

= A ◦ ε`D` ◦Dd/e ◦ µ (by (5.3.3))

= A ◦ ε`D`d/e ◦ µ.

Recall that n | d`, so with r = gcd(e, n) we have en | `dr, and thus g1 =
G ◦Dn/r ◦ µ with G = A ◦ ε`D`dr/(en). Since h1 = µ−1 ◦ (xe + 1/xe) ◦ δ̂x/α,
we find g2 = G ◦ (xe/r + x−e/r) ◦ (δ̂/α)nx, so we have (6.1.2). �

7. Proofs of main results

In this section we prove the results stated in Section 1.

7.1. Proof of Theorem 1.1. Define an ‘admissible sequence’ to be a finite
sequence of complete decompositions of a rational function f , such that
consecutive decompositions in the sequence differ only in that two adjacent
indecomposables u, v in the first decomposition are replaced in the second
decomposition by two other indecomposables û, v̂ such that u◦v = û◦ v̂ and
{deg(u),deg(v)} = {deg(û),deg(v̂)}. It suffices to prove that, for any two
complete decompositions of a Laurent polynomial f , there is an admissible
sequence containing them both. We prove this by induction on deg(f).
So assume it holds for all Laurent polynomials of degree less than deg(f),
and consider two complete decompositions f = p1 ◦ p2 ◦ · · · ◦ pr = q1 ◦
q2 ◦ · · · ◦ qs (so pi, qj ∈ C(x) are indecomposable). If r = 1 or s = 1 then
these decompositions are identical, so trivially are contained in an admissible
sequence. Henceforth assume r, s > 1.

By Lemma 2.1, after replacing pr−1 and pr by pr−1◦µ and µ−1◦pr for some
µ ∈ C(x) with deg(µ) = 1, we may assume that both pr and p̂ := p1◦· · ·◦pr−1
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are Laurent polynomials, and moreover either p̂ ∈ C[x] or pr = xn with n
prime. Further, if p̂ ∈ C[x] and pr ∈ C(xn) with n > 1, then n is prime and
pr = µ̂ ◦ xn for some degree-one µ̂ ∈ C(x), so by replacing pr−1 and pr by
pr−1 ◦ µ̂ and µ̂−1 ◦ pr we may assume pr = xn; since p̂ ◦ pr = f ∈ L, we must
have p̂ ∈ L. Thus we may assume that p̂, pr ∈ L, and if there is no prime
n for which pr = xn, then p̂ ∈ C[x] and pr /∈ C(xn) for any n > 1. We can
make analogous assumptions about qs and q̂ := q1 ◦ · · · ◦ qs−1.

If there is a degree-one ν ∈ C(x) for which pr = ν ◦ qs, then p̂ = q̂ ◦ ν−1,
so by induction there is an admissible sequence containing p1 ◦ · · · ◦pr−1 and
q1 ◦ · · · ◦ qs−2 ◦ (qs−1 ◦ ν−1). Composing each complete decomposition in the
sequence with pr, we then get an admissible sequence containing p1 ◦ · · · ◦pr
and q1 ◦ · · · ◦ qs. Henceforth assume there is no such ν.

If pr = xn and qs = xm (with n,m distinct primes), then Proposition 2.2
implies p̂ = G ◦ xm and q̂ = G ◦ xn for some G ∈ L. Write G = g1 ◦
· · · ◦ gt where every gi ∈ C(x) is indecomposable. By induction, there is
an admissible sequence containing p1 ◦ · · · ◦ pr−1 and g1 ◦ · · · ◦ gt ◦ xm, so
composing with pr yields an admissible sequence containing p1◦· · ·◦pr−1◦pr
and g1 ◦· · ·◦gt ◦xm ◦xn. Likewise there is an admissible sequence containing
q1 ◦ · · · ◦ qs and g1 ◦ · · · ◦ gt ◦ xn ◦ xm. Since the sequence (xm ◦ xn, xn ◦ xm)
is admissible, there is an admissible sequence containing p1 ◦ · · · ◦ pr and
q1 ◦ · · · ◦ qs.

Now assume qs = xn but pr /∈ C(xm) for every m > 1. Then p̂ ∈ C[x]. By
Theorem 6.1, there exist G,µ ∈ C[x] with deg(µ) = 1 such that p̂ = G◦G1◦µ
and pr = µ−1 ◦H1 and q̂ = G◦G2, where G1, G2,H1 satisfy either (6.1.1) or
(6.1.2). In (6.1.2) we have H1 = (xe+1/xe)◦αx with α ∈ C∗ and e > 0, and
indecomposability of pr implies e = 1. Thus G1 = Dn and G2 = (x+ 1/x) ◦
αnx, so (G1 ◦H1, G2 ◦ qs) is admissible, and the inductive argument of the
previous paragraph produces an admissible sequence containing p1 ◦ · · · ◦ pr
and q1 ◦ · · · ◦ qs. In (6.1.1) we have H1 = xeh(xn) with h ∈ C[x] and e ∈ Z;
since pr /∈ C(xm) for m > 1, we must have gcd(e, n) = 1, so G1 = xn and
G2 = xeh(x)n. We will show that G2 is indecomposable. This implies that
(G1 ◦H1, G2 ◦ xn) is admissible, so as above there is an admissible sequence
containing p1 ◦ · · · ◦pr and q1 ◦ · · · ◦ qs. So suppose G2 is decomposable; then
Lemma 2.1 implies that G2 has a decomposition of either Type 1 or Type 2 in
which both rational functions involved have degree > 1. By Proposition 4.2,
if there is a Type 1 decomposition with this property, then G2 = u ◦ v
where u = xiA(x)n and v = xjB(x)n, with A,B ∈ C[x] and i, j ∈ Z and
i > 0. But then xn ◦ H1 = G2(xn) = u ◦ v(xn) = xiAn ◦ xn ◦ xjB(xn) =
xn ◦ xiA(xn) ◦ xjB(xn), so H1 = ζxiA(xn) ◦ xjB(xn) for some ζ ∈ C∗
with ζn = 1, contradicting indecomposability of pr. If G2 has a Type 2
decomposition into rational functions of degree > 1, say G2 ∈ C(xm) with
m > 1, then G2(ζx) = G2(x) where ζ is a primitive mth root of unity. Thus
ζeh(ζx)n = h(x)n, so h(ζx) = βh(x) where ζeβn = 1. Hence h = xdA(xm)
for some A ∈ C[x] and some d ∈ Z such that ζd = β. Thus 1 = ζeβn = ζe+nd,
so m | (e + nd). Now H1 = xeh(xn) = xe+ndA(xnm) is in C(xm), and
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since H1 is indecomposable we must have H1 = λ ◦ xm for some degree-one
λ ∈ C(x). But H1 = xeh(xn) has no constant term (since gcd(e, n) = 1),
so λ is a degree-one Laurent polynomial with no constant term, whence λ
is a monomial Laurent polynomial. Thus h is a monomial polynomial, so
G2 = xeh(x)n is a constant times H1 = xeh(xn), whence indecomposability
of H1 implies indecomposability of G2.

Now assume pr, qs /∈ C(xn) for every n > 1. This implies p̂, q̂ ∈ C[x],
so Theorem 5.6 applies. After switching (p̂, pr) and (q̂, qs) if necessary, we
obtain

p̂ = G ◦G1 ◦ µ1

q̂ = G ◦G2 ◦ µ2

pr = µ−1
1 ◦H1 ◦H

qs = µ−1
2 ◦H2 ◦H

for some H ∈ C(x) and G,µ1, µ2 ∈ C[x] with µi linear, where (G1, G2) is
one of (5.2.1)–(5.2.5) and (H1,H2) is the corresponding pair among (5.6.1)–
(5.6.5). If deg(H) > 1 then indecomposability of pr and qs implies pr =
ν ◦ qs for some degree-one ν ∈ C(x), a case treated previously. So assume
deg(H) = 1, whence H1 and H2 are indecomposable. In case (5.6.1) we
have H2 = xn with n > 0 (where indecomposability implies n is prime), and
H1 = xeh(xn) with h ∈ C[x] and e ∈ Z>0 coprime to n. Moreover, G1 = xn

and G2 = xeh(x)n. Here indecomposability of H1 implies indecomposability
of G2 (by Ritt’s first theorem), so our result follows by induction. In case
(5.6.2) we have H2 = x+ 1/x and H1 = (x− 1/x)p(x+ 1/x) with p ∈ C[x],
and moreover G1 = x2 and G2 = (x2− 4)p(x)2. Here we need only to prove
that G2 is indecomposable. If it were not, then by Proposition 4.6 there
would be nonlinear u, v ∈ C[x] such that u ◦ v = G2 and u, v satisfy the
conditions required of g, h in either (4.6.1) or (4.6.2). In (4.6.1) we have
u = xB2 and v = (x2 − 4)D2 with B,D ∈ C[x], so composing with x+ 1/x
gives

x2 ◦H1 = G2

(
x+

1
x

)
= u ◦ v

(
x+

1
x

)
= u ◦ x2 ◦

(
x− 1

x

)
·D
(
x+

1
x

)
= x2 ◦ xB(x2) ◦

(
x− 1

x

)
·D
(
x+

1
x

)
,

whence H1 = ±xB(x2) ◦ (x − 1/x)D(x + 1/x), contradicting indecompos-
ability of H1. In (4.6.2) we have u = (x2−4)B2 and v = Dn where B ∈ C[x]
and n > 1, so composing with x+ 1/x gives

x2 ◦H1 = G2

(
x+

1
x

)
= u ◦ v

(
x+

1
x

)
= u ◦

(
x+

1
x

)
◦ xn

= x2 ◦
(
x− 1

x

)
·B
(
x+

1
x

)
◦ xn,
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whence H1 = ±(x− 1/x)B(x+ 1/x) ◦ xn, again contradicting indecompos-
ability. If (5.6.3) holds then H1 = G2 = Dn and H2 = G1 = Dm where
m,n are distinct primes, so the result follows by induction. If (5.6.4) holds
then H2 is decomposable, a contradiction. Suppose (5.6.5) holds. Then
H1 = xn + 1/xn with n ∈ Z>0, and indecomposability implies n = 1. Like-
wise H2 = ζx + 1/(ζx), where ζd = −1 for some d ∈ Z>1, and moreover
G1 = Dd = −G2. Write d =

∏t
i=1 `i where the `i are primes which need not

be distinct, and put e = d/`1. Since De◦(x+1/x) = −De◦(ζ`1x+1/(ζ`1x)),
by induction there is an admissible sequence containing both D`2 ◦ · · ·◦D`t ◦
(x+ 1/x) and −D`2 ◦D`3 ◦ · · · ◦D`t ◦ (ζ`1x+ 1/(ζ`1x)). Composing with x`1
gives an admissible sequence containing D`t ◦ · · · ◦D`2 ◦ (x+ 1/x) ◦ x`1 and
−D`t◦D`t−1◦· · ·◦D`2◦(ζ`1x+1/(ζ`1x))◦x`1 , and plainly ((x+1/x)◦x`1 , D`1◦
(x+ 1/x)) is admissible, as is ((ζ`1x+ 1/(ζ`1x)) ◦ x`1 , D`1 ◦ (ζx+ 1/(ζx))).
Thus there is an admissible sequence containing D`t ◦ · · · ◦ D`1 ◦ H1 and
−D`t ◦D`t−1 ◦ · · · ◦D1 ◦H2, so there is an admissible sequence containing
p1 ◦ · · · ◦ pr and q1 ◦ · · · ◦ qs. This concludes the proof of Theorem 1.1.

7.2. Proof of Theorem 1.2. We prove the result by induction on deg(f).
So assume it holds for all Laurent polynomials of degree less than deg(f),
and write f = g1 ◦ h1 = g2 ◦ h2 with f ∈ L and with indecomposable
g1, g2, h1, h2 ∈ C(x). After replacing g1 and h1 by g1 ◦ µ and µ−1 ◦ h1

for some µ ∈ C(x) with deg(µ) = 1, we may assume that g1, h1 ∈ L and
either g1 ∈ C[x] or h1 = xn with n prime (by Lemma 2.1). Moreover,
this argument shows that if h1 ∈ C(xn) for some n > 1 we may assume
h1 = xn (and indecomposability implies n is prime). We can make analogous
assumptions about g2 and h2. If h1 = µ ◦ h2 for some degree-one µ ∈ C(x),
then g1 ◦ µ = g2, so we have (1.2.1). Henceforth assume h1 6= µ ◦ h2 for any
degree-1 µ ∈ C(x).

First suppose h1 = xm and h2 = xn, where m and n are distinct primes.
Proposition 2.2 implies g1 = G ◦ xn and g2 = G ◦ xm for some G ∈ L, which
must have degree 1 since g1 and h2 are indecomposable. This yields (1.2.2)
with r = m and q = 1.

Now suppose h2 = xn but h1 /∈ C(xm) for any m > 1. Then g1 ∈ C[x],
so Theorem 6.1 applies. Since h1 /∈ C(xn), there exist G,µ ∈ C[x] with
deg(µ) = 1 such that g1 = G ◦G1 ◦ µ and h1 = µ−1 ◦H1 and g2 = G ◦G2,
where either (6.1.1) or (6.1.2) holds. If deg(G) > 1 then indecomposability of
g1 implies deg(G1) = 1, so in both (6.1.1) and (6.1.2) we have n | e and thus
G1 ∈ C(xn), contradiction. Hence deg(G) = 1, so G1 is indecomposable and
thus gcd(n, e) = 1. In (6.1.1) we have G1 = xn and H1 = xeq(xn) and H2 =
xeq(x)n, with q ∈ C[x] and e ∈ Z coprime to n; this gives (1.2.2). In (6.1.2)
we have G1 = Dn and H1 = (αx)e + 1/(αx)e and G2 = (αnx)e + 1/(αnx)e

with α ∈ C∗ and e ∈ Z, and indecomposability implies e = ±1. After
adjusting G1, G2,H1,H2 by composing with linears, this gives (1.2.4).

Henceforth assume h1, h2 /∈ C(xm) for every m > 1. Then g1, g2 ∈ C[x], so
Theorem 5.6 applies. Thus, after switching (g1, h1) and (g2, h2) if necessary,
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we have

g1 = G ◦G1 ◦ µ1

g2 = G ◦G2 ◦ µ2

h1 = µ−1
1 ◦H1 ◦H

h2 = µ−1
2 ◦H2 ◦H

for some G ∈ C[x], some linear µ1, µ2 ∈ C[x], and some H ∈ C(x), where
(G1, G2) is one of the pairs (5.2.1)–(5.2.5) and (H1,H2) is the corresponding
pair among (5.6.1)–(5.6.5). If deg(G) > 1 then indecomposability of gi
implies deg(Gi) = 1, so we must have either (5.2.1) or (5.6.3). Thus (H1,H2)
satisfy (5.6.1) and (5.6.3), and in either case G1 ◦H1 = G2 ◦H2 is a linear
polynomial, so we have (1.2.1). Likewise if deg(H) > 1 then deg(Hi) = 1,
so since g1 ◦ µ−1

1 ◦H1 = g2 ◦ µ−1
2 ◦H2 we again have (1.2.1). Now assume

deg(G) = deg(H) = 1, so Gi and Hi are indecomposable. Since H2 6= xn,
we do not have (5.6.1). If (5.2.2) and (5.6.2) hold then, by (4.1.1)–(4.1.3),
there are ν1, ν2, q ∈ C(x) with deg(νi) = 1 such that H1 ◦ ν1 = xq(x2) and
G2◦ν2 = xq(x)2; here also G1 = x2 and ν−1

2 ◦H2◦ν1 = x2, so we have (1.2.2).
Note that in this case q is not a Laurent polynomial, instead q = Q(1/(x+1))
for some Q ∈ xC[x]. If (5.2.3) and (5.6.3) hold then (1.2.3) holds. Since
G1 is indecomposable, we do not have (5.2.4). Now suppose (5.2.5) and
(5.6.5) hold. Thus G1 = Ddm and G2 = −Ddn with d > 1 and m,n ≥ 1, so
indecomposability implies d is prime and m = n = 1. Here H1 = x + 1/x
and H2 = H1 ◦ ζx, where ζd = −1. If d is odd then, with µ = −x, we have
G2 = Ddn ◦µ and µ−1 ◦H2 = H1 ◦ (−ζx) where (−ζ)d = 1, which is (1.2.5).
Finally, if d = 2 then with µ = 2 − x we see that (µ ◦ G2, µ ◦ G1) satisfies
(5.2.2) and (H2,H1) satisfies (5.6.2) (both with p(x) = ζ), a case we have
already resolved. This concludes the proof of Theorem 1.2.

7.3. Proof of Theorem 1.5. Let f ∈ L\C and g1, g2, h1, h2 ∈ C(x) satisfy
f = g1 ◦ h1 = g2 ◦ h2. By Lemma 2.1, after replacing g1 and h1 by g1 ◦ µ
and µ−1 ◦ h1 for some degree-one µ ∈ C(x), we may assume g1, h1 ∈ L and
either g1 ∈ C[x] or h1 = xn with n ∈ Z>0. We can make similar assumptions
about g2 and h2.

If h1 = xn and h2 = xm with n,m > 0, then Proposition 2.2 implies
g1 = G ◦ xlcm(n,m)/n and g2 = G ◦ xlcm(n,m)/m for some G ∈ L. Thus (1.5.1)
holds with µi = x and H = xgcd(n,m) (and p = 1).

Now suppose precisely one of h1 and h2 has the form xn with n > 0;
by switching (g1, h1) and (g2, h2) if necessary, we may assume h2 = xn and
g1 ∈ C[x]. If there exists A ∈ L such that h1 = A ◦ xn and g2 = g1 ◦A, then
(1.5.1) holds with G = g1, µi = x, H = xn, and p = A. So assume there is
no such A. By Theorem 6.1, there exist G,µ ∈ C[x] with µ linear such that
g1 = G ◦ G1 ◦ µ and h1 = µ−1 ◦ H1 and g2 = G ◦ G2, where either (6.1.1)
or (6.1.2) holds. If (6.1.1) holds then (1.5.1) holds with H = xgcd(n,e). If
(6.1.2) holds then (1.5.6) holds with H = (αx)gcd(n,e).
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Finally, suppose g1, g2 ∈ C[x], so Theorem 5.6 applies. Thus, perhaps
after switching (g1, g2) and (h1, h2), we have

g1 = G ◦G1 ◦ µ1

g2 = G ◦G2 ◦ µ2

h1 = µ−1
1 ◦H1 ◦H

h2 = µ−1
2 ◦H2 ◦H

for some G ∈ C[x], some H ∈ C(x), and some linear µ1, µ2 ∈ C[x], where
(G1, G2) satisfy one of (5.2.1)–(5.2.5) and (H1,H2) is the corresponding pair
among (5.6.1)–(5.6.5). In each case, this implies the corresponding condition
among (1.5.1)–(1.5.5).

If G1 ◦H1 has poles at both 0 and ∞, then H preserves {0,∞}, so H is
a monomial. This occurs in (1.5.2) and (1.5.4)–(1.5.6).

Now we prove the final assertion in Theorem 1.5. Since f = G◦G1◦H1◦H
is a nonconstant Laurent polynomial, and G,G1 ∈ C[x], we see that H1 ◦H
has no poles besides 0 and∞. If any of (1.5.2) or (1.5.4)–(1.5.6) holds, then
H1 has poles at both 0 and ∞, so H preserves {0,∞} and thus H = αxs

with α ∈ C∗ and s ∈ Z. Here s 6= 0 (since f is nonconstant). To show
we can choose s > 0, it suffices to prove that, for some β ∈ C∗ and some
degree-one ν1, ν2 ∈ C(x), the decompositions (G1 ◦ ν1) ◦ (ν−1

1 ◦H1 ◦ β/x) =
(G2 ◦ ν2) ◦ (ν−1

2 ◦H2 ◦ β/x) satisfy the same one of (1.5.2) or (1.5.4)–(1.5.6)
that is satisfies by the original decompositions. In case (1.5.2) this is true
for β = 1 and ν2 = x = −ν1. In (1.5.4), we can take β = −1/2 and
ν2 = x = −ν1. In (1.5.5), we can take β = 1 and ν1 = x = ν2 (provided we
replace ζ by 1/ζ). In (1.5.6), we can take β = 1 and ν1 = x = 1/ν2. This
concludes the proof of Theorem 1.5.

7.4. Proof of Proposition 1.4. Pick f ∈ L \ C, and suppose there are
g1, g2, h1, h2 ∈ C(x) such that f = g1 ◦ h1 = g2 ◦ h2 and deg(g1) = deg(g2).
By Theorem 1.5, after possibly switching (g1, h1) and (g2, h2), we have

g1 = G ◦G1 ◦ µ1

g2 = G ◦G2 ◦ µ2

h1 = µ−1
1 ◦H1 ◦H

h2 = µ−1
2 ◦H2 ◦H

for some G ∈ C[x], some H ∈ L, and some degree-one µ1, µ2 ∈ C(x), where
one of (1.5.1)–(1.5.6) holds. Since deg(g1) = deg(g2), we have deg(G1) =
deg(G2), which greatly restricts the possibilities. In particular, (1.5.4) can-
not happen. In case (1.5.3) we must have m = n = 1, so (1.4.1) holds. In
case (1.5.5) we again have m = n = 1, so (1.4.3) holds. In case (1.5.6) we
have m = 2 and n = 1, so (1.4.4) holds. In case (1.5.2) we have p = αx with
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α ∈ C∗. Putting λ = 2 + x
α2 and ν = αx/i we get

λ ◦G1 ◦ ν = −D2(x)

λ ◦G2 = D2(x)

ν−1 ◦H1 = ix+
1
ix

H2 = x+
1
x
,

which is the n = 2 case of (1.4.3). Finally, suppose (1.5.1) holds, so G1 =
H2 = xn for some n > 0, and H1 = xrp(xn) and G2 = xrp(x)n where p ∈
C[x]\{0} and r ∈ Z is coprime to n. Write p = xeP where P ∈ C[x] satisfies
P (0) 6= 0, so with R = r − en we have H1 = xRP (xn) and G2 = xRP (x)n;
replacing r by R and p by P , we may therefore assume x - p. If r ≥ 0 then
deg(G2) = r+ n · deg(p), which must equal n, so deg(p) ≤ 1. In either case,
coprimality of r and n implies n = 1: for, if deg(p) = 1 then r = 0, and
if deg(p) = 0 then r = n. Thus G2 and H1 are linear, and G2 = H1, so
by composing with linears we obtain (1.4.1). Now assume r < 0, and write
s = −r. Then deg(G2) = max(s, n deg(p)), so deg(p) = 1 and 1 ≤ s ≤ n.
We may assume s < n, since otherwise s = n = 1 so we obtain (1.4.1) as
above. Now, composing with (scalar) linears gives (1.4.2).

Cases (1.4.3) and (1.4.4) are instances of (1.5.5) and (1.5.6), so by The-
orem 1.5 we may assume H = αxs with α ∈ C∗ and s ∈ Z>0. If (1.4.2)
holds, then f = G ◦G1 ◦H1 ◦H is a nonconstant Laurent polynomial, and
G,G1 ∈ C[x], so H1 ◦H has no poles besides 0 and ∞. But H1 has poles at
0 and ∞, so H preserves {0,∞}, and thus H = αxs with α ∈ C∗ and s ∈ Z
(and s 6= 0). If s < 0 then, writing ν = 1/x, we have H1 ◦ν = (xn+ 1)/xn−r

and ν ◦H2 ◦ ν = H2 and G2 ◦ ν = (x+ 1)n/xn−r, so by replacing r by n− r
we again have (1.4.2), but now with H replaced by x−s/α. Thus we may
assume s > 0, so the proof of Proposition 1.4 is complete.
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