p*-TORSION OF GENUS TWO CURVES OVER Fpm

MICHAEL E. ZIEVE

ABSTRACT. We determine the isogeny classes of abelian surfaces over
[F, whose group of F,-rational points has order divisible by ¢*. We also
solve the same problem for Jacobians of genus-2 curves.

In a recent paper [4], Ravnshgj proved: if C is a genus-2 curve over
a prime field F,, and if one assumes that the endomorphism ring of the
Jacobian J of C' is the ring of integers in a primitive quartic CM-field, and
that the Frobenius endomorphism of J has a certain special form, then
p? t #J(F,). Our purpose here is to deduce this conclusion under less
restrictive hypotheses. We write ¢ = p™ where p is prime, and for any
abelian variety J over F, we let Py denote the Weil polynomial of J, namely
the characteristic polynomial of the Frobenius endomorphism 7y of J. As
shown by Tate [6, Thm. 1], two abelian varieties over F, are isogenous
if and only if their Weil polynomials are identical. Thus, the following
result describes the isogeny classes of abelian surfaces J over I, for which

q2 | #J(Fq)-
Theorem 1. The Weil polynomials of abelian surfaces J over Fy satisfying
¢* | #J(F,) are as follows:

(1.1) X4+ X% — (¢ +2)X2+qX +¢* (if q is odd and ¢ > 8);

(1 2) X4 o X2 + q2;

(1.3) X* — X3+ qX?% —qX +¢* (if m is odd or p % 1 mod 4);

(1.4) X*—2X3 +(2¢+1)X2 - 2¢X + ¢%;

(1.5) X*+aX?+bX?+aqX + ¢%, where (a,b) occurs in the same row as
q in the following table:

| ¢ [ (a,b)
131 (9,42)
6, 20)
4,16)
3,6) or (8, 26)
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The special form required of the Frobenius endomorphism in [4] has an
immediate consequence for the shape of its characteristic polynomial, and
by inspection the above polynomials do not have the required shape. Thus
the main result of [4] follows from the above result.

Our proof of Theorem 1 relies on the classical results of Tate ([6, Thm. 1]
and [8, Thm. 8]) and Honda [2] describing the Weil polynomials of abelian
varieties over finite fields. An explicit version of their results in the case of
simple abelian surfaces was given by Riick [5, Thm. 1.1]; together with the
analogous results of Waterhouse [7, Thm. 4.1] for elliptic curves, this yields
the following:

Lemma 2. The Weil polynomials of abelian surfaces over Fy are precisely
the polynomials X*4+a X3 +bX%+aqX +¢>, where a,b € Z satisfy |a| < 4,/q
and 2lal\/q —2q < b < % + 2q, and where a, b, and the values A =
a® —4(b—2q) and § := (b+ 2q)? — 4qa® satisfy one of the conditions (2.1)—
(2.4) below:
(2.1) vp(b) =0;
(2.2) vp(b) > m/2 and vy(a) = 0, and either 6 =0 or J is a non-square in
the ring Z,, of p-adic integers;
(2.3) vp(b) > m and vy(a) > m/2 and A is a square in Z, and if q is a
square and we write a = \/qa’ and b= qb/ then
p#Zl1lmod4 ifb =2
p#Z1mod3 ifad #b mod?2;

(2.4) the conditions in one of the rows of the following table are satisfied:

‘ (a,b) ‘ Conditions on p and ¢ ‘

(0,0) q is a square and p # 1 mod 8, or
q is a non-square and p # 2

(0,—q) q is a square and p Z 1 mod 12, or
q is a non-square and p # 3

(0,q) ¢ is a non-square

(0,—2q) | q is a non-square

(0,2q) q is a square and p = 1 mod 4
(£1/4,9) |qis asquare and p # 1 mod 5
(£v/2q,q) | ¢ is a non-square and p = 2

(£2/4,3q) | q is a square and p = 1 mod 3
(+£4/5¢,3q) | q is a non-square and p = 5

Moreover, the surface J is simple if and only if either
e A is a non-square in Z; or
e (a,b) =(0,2q) and q is a square and p =1 mod 4; or
e (a,b) = (£2,/q,3q) and q is a square and p =1 mod 3.
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The p-rank of J (namely, the rank of the p-torsion subgroup of J(F,)) is 2
in (2.1), 1 in (2.2), and 0 in (2.3) and (2.4).

Proof of Theorem 1. As shown by Weil [9], for any abelian surface J over [,
the Weil polynomial Py is a monic quartic in Z[X] whose complex roots have
absolute value \/g. In particular, #J(F,) = deg(m;—1) = P;(1) < (\/g+1)*,
so if #J(F,) = cq® with ¢ € Z then ¢ < (1 4+ ¢~ '/?)%. Tt follows that ¢ = 1
unless ¢ < 27. In light of the above lemma, there are just finitely many cases
to consider with ¢ > 1; we treated these cases using the computer program
presented at the end of this paper, which gave rise to precisely the solutions
in (1.5). Henceforth assume ¢ = 1.

The Weil polynomials of abelian surfaces over F, are the polynomials
P(X) := X*+aX?+bX?+aqX +¢? occurring in the above lemma. We must
determine which of these polynomials satisfy P(1) = ¢, or equivalently,
b= —1—a(q+1). The inequality —1 — a(q + 1) = b < a?/4 + 2q says that
¢> < (a/2 + ¢+ 1) and since a/2 +q+1 > —2,/g+ ¢+ 1 > 0, this is
equivalent to ¢ < a/2 + ¢ + 1, or in other words —2 < a. The inequality
2lal\/q—2q < b= —1—a(g+1) always holds if a € {0, -1, -2}, and ifa > 1
it is equivalent to a(,/q + 1)? < 2¢ — 1; since 2 — 1 < 2¢ < 2(,/g + 1)?, this
implies a = 1, in which case (/g + 1)? < 2¢ — 1 is equivalent to ¢ > 8.

Condition (2.1) holds if and only if a # —1 mod p, or equivalently either
a € {0,—2} or both a = 1 and p # 2. This accounts for (1.1), (1.2), and
(1.4).

Condition (2.3) cannot hold, since p | @ implies b = —1 mod p.

The condition v,(b) > m/2 says that a = —1 mod p/™/?] or equivalently
a = —1. In this case, b = ¢ and § = 9¢®> — 4q, so 6 # 0. If ¢ is odd then ¢ is
a square in Z, if and only if J is a square modulo pg, or equivalently, m is
even and —4 is a square modulo p, which means that p = 1 mod 4. If ¢ is
even then ¢ is not a square in Zg, since for ¢ < 8 we have § € {28,128, 544},
and for ¢ > 8 we have § = —4¢ mod 16¢. Thus (2.2) gives rise to (1.3).

Finally, if a = —2 then b = 2¢g + 1, and if a = 0 then b = —1, so in either
case ¢ 1b. Thus (2.4) cannot hold, and the proof is complete. O

Next we determine which of the Weil polynomials in (1.1)-(1.5) occur
for Jacobians. We use the classification of Weil polynomials of Jacobians of
genus-2 curves. This classification was achieved by the combined efforts of
many mathematicians, culminating in the following result [3, Thm. 1.2]:

Lemma 3. Let Py = X* +aX? + bX? + agX + ¢° be the Weil polynomial
of an abelian surface J over IFy.

(1) If J is simple then J is not isogenous to a Jacobian if and only if
the conditions in one of the rows of the following table are met:
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Condition on p and ¢ Conditions on a and b

— a’>—b=gand b <0 and

all prime divisors of b are 1 mod 3
— a=0and b=1-—2q

p>2 a=0and b=2—2q

p =11 mod 12 and ¢ square | a =0 and b = —q

p = 3 and ¢ square a=0and b= —q
p = 2 and ¢ non-square a=0and b= —q
g=2o0rq=3 a=0and b= —2q

(2) If J is not simple then there are integers s,t such that Py = (X% —
sX +q) (X% —tX +q), and s and t are unique if we require that
|s| > |t| and that if s = —t then s > 0. For such s and t, J is not
isogenous to a Jacobian if and only if the conditions in one of the
rows of the following table are met:

‘ p-rank of J ‘ Condition on p and ¢ ‘ Conditions on s and t ‘

— — |ls—t| =1

2 — s=tand t? —4q € {-3,—4,-T7}
q=2 s=landt=-1

1 q square s? = 4q and s — t squarefree
p>3 52 # t?
p = 3 and ¢ non-square | s> = t? = 3¢

0 p = 3 and q square s —t is not divisible by 3,/q
p=2 s? — t? is not divisible by 2¢
gq=2o0rqg=3 s=t
g=4orq=9 s? =12 =4q

Theorem 4. The polynomials in (1.1)—(1.5) which are not Weil polynomials
of Jacobians are precisely the polynomials X*+aX3+bX2+aqX +¢> where
q and (a,b) satisfy the conditions in one of the rows of the following table:

(4 [(a.0) |
51 (8,26)
476, 17)
2| (=2,5), (0,3), (1,4), (2,5), or (3,6)

Proof. Let J be an abelian surface over F, whose Weil polynomial P; =
X4 4+ aX? + bX? + aqX + ¢? satisfies one of (1.1)-(1.5). In each case,
a? —b+# q, and if a = 0 then b € {—1,3}, so if J is simple then Lemma 3
implies J is isogenous to a Jacobian.
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Henceforth assume J is not simple, so Py = (X2 —sX +¢)(X? —tX +q)
where s,t € 7Z; we may assume that |s| > |¢|, and that s > 0 if s = —¢. Note
that a = —s —tand b =2q + st, s0 (X —s)(X —t) = X?+aX +b—2q. In
particular, A := a? — 4(b — 2q) is a square, say A = 22 with z > 0.

Suppose Py satisfies (1.1), so A = 12¢ +9. Then (z — 3)(z + 3) = 12¢
is even, so z — 3 and z + 3 are even and incongruent mod 4, whence their
product is divisible by 8 so ¢ is even, contradiction.

Now suppose Pj satisfies (1.2), so A = 8¢+4. Then (2 —2)(2+2) = 8¢, so
at least one of z—2 and z+2 is divisible by 4; but these numbers differ by 4,
so they are both divisible by 4, whence their product is divisible by 16 so ¢
is even. Thus 8¢ is a power of 2 which is the product of two positive integers
that differ by 4, so ¢ = 4. In this case, (q,a,b,s,t) = (4,0, —1,3,—3), which
indeed satisfies (1.2). Moreover, (2.1) holds, so Lemma 2 implies J has p-
rank 2. Since |[s—t| =6 ¢ {0,1} and ¢ # 2, Lemma 3 implies .J is isogenous
to a Jacobian.

Now suppose Pj satisfies (1.3), so A =4g+ 1. Then (z —1)(z + 1) = 4q,
so z — 1 and z + 1 are even and incongruent mod 4, whence their prod-
uct is divisible by 8, so ¢ is even. Thus 4q is a power of 2 which is the
product of two positive integers that differ by 2, so ¢ = 2. In this case,
(¢,a,b,s,t) = (2,—1,2,2,—1), which indeed satisfies (1.3). Moreover, (2.2)
holds, so Lemma 2 implies J has p-rank 1. Since |s —¢| =3 # 1 and ¢ is a
non-square, Lemma 3 implies J is isogenous to a Jacobian.

Now suppose P; satisfies (1.4), so A = 0 and a ¢ {0,+2,/g}, and thus
Lemma 3 implies J is non-simple. Here (a,b,s,t) = (—2,2¢ + 1,1,1), so
Lemma 2 implies J has p-rank 2. Since s =t = 1, Lemma 3 implies J is
isogenous to a Jacobian if and only if 1 —4q & {—3, —4, =7}, or equivalently
q # 2. This gives rise to the first entry in the last line of the table.

Finally, if Py satisfies (1.5) then the result follows from Lemma 3 and
Lemma 2 via a straightforward computation. [l

Remark. The result announced in the abstract of [4] is false, since its hy-
potheses are satisfied by every two-dimensional Jacobian over F,. This is
because the abstract of [4] does not mention the various hypotheses assumed
in the theorems of that paper.

We used the following Magma [1] program in the proof of Theorem 1.

for q in [2..27] do if IsPrimePower(q) then
Q:=Floor (4*Sqrt(q)); M:=Floor((Sqrt(q)+1)~4/q9"2);
for ¢ in [2..M] do
for a in [-Q..Q] do b:=-1-ax(q+1)+(c-1)*q~2;
if b le (a"2/4)+2*q and 2*Abs(a)*Sqrt(q)-2*q le b then
p:=Factorization(q) [1,1]; m:=Factorization(q) [1,2];
Delta:=a"2-4*(b-2*q); delta:=(b+2%q) "2-4*q*a"2;
if GCD(b,p) eq 1 then <qg,a,b,c>;
elif GCD(b,q) ge Sqrt(q) and GCD(a,p) eq 1 and
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(delta eq O or not IsSquare(pAdicRing(p)!delta)) then
<q,a,b,c>;
elif IsDivisibleBy(b,q) and GCD(a,q) ge Sqrt(q) and
IsSquare(Delta) then
if not IsSquare(q) then <q,a,b,c>;
else sq:=p~((m div 2)); ap:=a div sq; bp:=b div g;
if not ((bp eq 2 and IsDivisibleBy(p-1,4)) or
(IsDivisibleBy(ap-bp,2) and IsDivisibleBy(p-1,3)))
then <q,a,b,c>;
end if;
end if;
elif (a eq 0 and b eq 0) then
if ((IsSquare(q) and not IsDivisibleBy(p-1,8)) or
(not IsSquare(q) and p ne 2)) then <q,a,b,c>;
end if;
elif (a eq 0 and b eq -q) then
if ((IsSquare(q) and not IsDivisibleBy(p-1,12)) or
(not IsSquare(q) and p ne 3)) then <q,a,b,c>;
end if;
elif a eq 0 and b in {q,-2*q} and not IsSquare(q) then
<q,a,b,c>;
elif a eq 0 and b eq 2*q and IsSquare(q) and
IsDivisibleBy(p-1,4) then <qg,a,b,c>;
elif Abs(a) eq p"(m div 2) and b eq q and IsSquare(q) and
not IsDivisibleBy(p-1,5) then <q,a,b,c>;
elif Abs(a) eq p~((m+1) div 2) and b eq q and
not IsSquare(q) and p eq 2 then <q,a,b,c>;
elif Abs(a) eq 2*p~(m div 2) and b eq 3*q and IsSquare(q)
and IsDivisibleBy(p-1,3) then <q,a,b,c>;
elif Abs(a) eq p~((m+1) div 2) and b eq 3*q and
not IsSquare(q) and p eq 5 then <g,a,b,c>;
end if;

end if;
end for;
end for;
end if;
end for;
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