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Abstract. We present a method of bounding incomplete character sums for finite abelian groups
with arguments produced by a first-order recursion. This method is particularly effective if the
recursion involves a special type of permutation called an R-orthomorphism. Examples of R-
orthomorphisms are given.

1. Introduction

Let G be a finite abelian group of order m ≥ 2 and Sym(G) the group of permutations of G.
For a fixed permutation ψ ∈ Sym(G) the sequence u0, u1, . . . of elements of G is generated
by the recursion

(1) un+1 = ψ(un) for n = 0, 1, . . . ,

where u0 is a given initial value. This sequence is purely periodic with least period t ≤ m.
For 1 ≤ N ≤ t and a nontrivial character χ of G we consider the problem of finding nontrivial
upper bounds for the absolute value of the character sum

(2)
N−1∑
n=0

χ(un).

This problem arises in applications such as pseudorandom number generation for simulation
methods and for cryptography. In these applications the typical groups G are Z/MZ – the
additive group of residue classes mod M , (Z/MZ)∗ – the multiplicative group of reduced
residue classes mod M , IFq – the additive group of the finite field of order q, and IF∗q – the
multiplicative group of nonzero elements of IFq, as well as their subgroups.

Until recently, nontrivial bounds for the character sum (2) have been known only in
some very special cases. If we write the operation in G additively, then an easy case arises
when ψ(g) = g + a for all g ∈ G, where a ∈ G is fixed. A less trivial case that has been
treated before is G = Z/MZ and ψ(g) = ag for all g ∈ G, where a ∈ (Z/MZ)∗ is fixed (see
[4], [6, Section 8], [12, Section 9.2]). In 1998 Niederreiter and Shparlinski [7] invented a new
method for the case where G = IFp, p prime, and ψ(g) = ag + b for all g ∈ G, where a ∈ IF∗p
and b ∈ IFp are fixed, g denotes the multiplicative inverse of g for g ∈ IF∗p, and 0 = 0 for the
zero element 0 ∈ IFp. This method was later applied to related cases (see [3], [8], [9], [10]).

In the present paper we develop the method of [7] for bounding the character sum (2)
in a general framework. The method is particularly effective if the permutation ψ in the
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recursion (1) is a so-called R-orthomorphism. This special type of permutation is also of
interest for other applications, such as to combinatorial design theory. We devote some
attention to this special case, in particular to the construction of R-orthomorphisms.

2. Bounds for incomplete character sums

The notation in the previous section remains in force and we introduce some further notation.
Without loss of generality we write G additively. For a positive integer r we define the
complete character sum

(3) Sr(χ, ψ) =
∑
g∈G

χ(ψr(g)− g).

If K is a finite nonempty set of integers, then Ar(K) denotes the number of ordered pairs
(i, j) ∈ K2 with i−j = r. Note that Ar(K) = 0 for all sufficiently large r. Now we are ready
to prove a bound for the incomplete character sum (2) in terms of the complete character
sums (3).

Theorem 1. Let G be a finite abelian group of order m ≥ 2 and let u0, u1, . . . be the sequence
generated by (1) with least period t. Then for any nontrivial character χ of G and for any
finite nonempty set K of integers we have∣∣∣∣∣

N−1∑
n=0

χ(un)

∣∣∣∣∣ ≤ K−1/2N1/2m1/2 +

√
2N1/2

K

( ∞∑
r=1

Ar(K)|Sr(χ, ψ)|
)1/2

+
2

K

∑
k∈K
|k| for 1 ≤ N ≤ t,

where K is the cardinality of K.

Proof. We use the abbreviation

S =
N−1∑
n=0

χ(un).

From (1) we get un = ψn(u0) for all integers n ≥ 0, and we use this identity to define un for
all negative integers n. It is easy to see that for any integer k we have∣∣∣∣∣S −

N−1∑
n=0

χ(un+k)

∣∣∣∣∣ ≤ 2|k|.

If we use this for all k ∈ K, then we get

(4) K|S| ≤W + 2
∑
k∈K
|k|,

where

W =
N−1∑
n=0

∣∣∣∣∣∣
∑
k∈K

χ(un+k)

∣∣∣∣∣∣ =
N−1∑
n=0

∣∣∣∣∣∣
∑
k∈K

χ(ψk(un))

∣∣∣∣∣∣ .
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By the Cauchy–Schwarz inequality we obtain

W 2 ≤ N
N−1∑
n=0

∣∣∣∣∣∣
∑
k∈K

χ
(
ψk(un)

)∣∣∣∣∣∣
2

≤ N
∑
g∈G

∣∣∣∣∣∣
∑
k∈K

χ
(
ψk(g)

)∣∣∣∣∣∣
2

= N
∑
g∈G

∑
i,j∈K

χ
(
ψi(g)− ψj(g)

)

≤ N
∑
i,j∈K

∣∣∣∣∣∣
∑
g∈G

χ
(
ψi(g)− ψj(g)

)∣∣∣∣∣∣
= KNm+ 2N

∑
i,j∈K
i>j

∣∣∣∣∣∣
∑
g∈G

χ
(
ψi(g)− ψj(g)

)∣∣∣∣∣∣ .
Since ψj is a permutation of G, the inner sum in the last expression is equal to the sum
Si−j(χ, ψ) in (3). Thus we get

W 2 ≤ KNm+ 2N
∞∑
r=1

Ar(K)|Sr(χ, ψ)|,

and by appealing to (4) we arrive at the desired result. 2

Corollary 1. Let G be a finite abelian group of order m ≥ 2 and let u0, u1, . . . be the
sequence generated by (1) with least period t. Then for any nontrivial character χ of G and
any positive integer K we have∣∣∣∣∣

N−1∑
n=0

χ(un)

∣∣∣∣∣ ≤ K−1/2N1/2m1/2 +

√
2N1/2

K

(
K−1∑
r=1

(K − r)|Sr(χ, ψ)|
)1/2

+
K

2
for 1 ≤ N ≤ t.

Proof. Apply Theorem 1 with

K =
{
k ∈ Z : −K

2
+ 1 ≤ k ≤ K

2

}
if K is even and

K =
{
k ∈ Z : −K − 1

2
≤ k ≤ K − 1

2

}
if K is odd. 2

In various applications the complete character sums Sr(χ, ψ) can be bounded by known
results, e.g. the Weil bound or the Bombieri-Weil bound. In such cases one obtains good
bounds for the character sum (2) by optimizing the choice of K in Theorem 1 or the choice
of K in Corollary 1 (see e.g. [7], [10]). A similar procedure, applied to subgroups G of
the group of IFq-rational points of an elliptic curve over IFq, may yield results of interest for
cryptology.
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3. R-orthomorphisms

A particularly favorable case arises in the bounds in Section 2 if the complete character
sums Sr(χ, ψ) vanish. This happens, for instance, if the corresponding maps ψr − ι are
permutations of G, where ι is the identity map on G. This observation suggests the following
definition.

Definition 1. Let G be a finite abelian group and R a nonempty set of nonzero integers.
Then a permutation ψ of G is called an R-orthomorphism of G if ψr − ι ∈ Sym(G) for all
r ∈ R.

In the caseR = {1} we get the classical concept of an orthomorphism of G which is useful
for the construction of orthogonal Latin squares (see [13, Chapter 22]). An application of
orthomorphisms to cryptology appears in the work of Schnorr and Vaudenay [11]. Special
types of R-orthomorphisms with applications to combinatorial design theory arise in the
recent paper of Dénes and Owens [2].

Since it is obvious that ψr − ι ∈ Sym(G) if and only if ψ−r − ι ∈ Sym(G), it suffices to
take R to be a nonempty set of positive integers. In fact, we can take

R ⊆ {1, 2, . . . , ord(ψ)− 1} ⊆ {1, 2, . . . , e(G)− 1},

where ord(ψ) is the order of ψ in Sym(G) and e(G) is the exponent of Sym(G). It is also
trivial that if S is a nonempty subset of R and ψ is an R-orthomorphism of G, then ψ is
an S-orthomorphism of G.

The following result is an immediate consequence of Corollary 1 if ψ is a suitable R-
orthomorphism of G.

Corollary 2. Let G be a finite abelian group of order m ≥ 2 and for some integer K ≥ 2 let
ψ be an R-orthomorphism of G with R = {1, 2, . . . , K−1}. Then for the sequence u0, u1, . . .
generated by (1) with least period t and for any nontrivial character χ of G we have∣∣∣∣∣

N−1∑
n=0

χ(un)

∣∣∣∣∣ ≤ K−1/2N1/2m1/2 +
K

2
for 1 ≤ N ≤ t.

Corollary 3. Let G be a finite abelian group of order m ≥ 2 and let u0, u1, . . . be the
sequence generated by (1) with least period t. Let the integer N with 1 ≤ N ≤ t be given and
assume that the permutation ψ in (1) is anR-orthomorphism of G withR = {1, 2, . . . , L−1}
for some integer L ≥ N1/3m1/3. Then for any nontrivial character χ of G we have∣∣∣∣∣

N−1∑
n=0

χ(un)

∣∣∣∣∣ ≤ 3

2
N1/3m1/3 +

1

2
.

Proof. Apply Corollary 2 with K = dN1/3m1/3e. 2

We now show that some variation of our method produces a bound that is sometimes
better than the result of Corollary 2.
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Theorem 2. Let G be a finite abelian group of order m ≥ 2 and let u0, u1, . . . be the sequence
generated by (1) with least period t. Let the integer N with 1 ≤ N ≤ t be given and assume
that the permutation ψ in (1) is an R-orthomorphism of G with R = {1, 2, . . . , K − 1} for
some integer K ≥ 2. Then for any nontrivial character χ of G we have∣∣∣∣∣

N−1∑
n=0

χ(un)

∣∣∣∣∣ < K−1/2t1/2m1/2
(

4

π2
log t+ 2

)
.

Proof. Let us consider the sums

σa =
t−1∑
n=0

χ(un) exp(2πian/t), a = 0, 1, . . . , t− 1.

We first show that

(5) |σa| ≤ K−1/2t1/2m1/2.

Fix a and note that for any integer k ≥ 0 we have

σa =
t−1∑
n=0

χ(un+k) exp(2πia(n+ k)/t)

since the terms of the sum σa have period t. It follows that

|σa| =
1

K

∣∣∣∣∣
t−1∑
n=0

K−1∑
k=0

χ(un+k) exp(2πia(n+ k)/t)

∣∣∣∣∣
≤ 1

K

t−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

χ
(
ψk(un)

)
exp(2πia(n+ k)/t)

∣∣∣∣∣
=

1

K

t−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

χ
(
ψk(un)

)
exp(2πiak/t)

∣∣∣∣∣ .
By the Cauchy–Schwarz inequality we obtain

|σa|2 ≤
t

K2

t−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

χ
(
ψk(un)

)
exp(2πiak/t)

∣∣∣∣∣
2

≤ t

K2

∑
g∈G

∣∣∣∣∣
K−1∑
k=0

χ
(
ψk(g)

)
exp(2πiak/t)

∣∣∣∣∣
2

=
t

K2

∑
g∈G

K−1∑
h,j=0

χ
(
ψh(g)− ψj(g)

)
exp(2πia(h− j)/t)

=
t

K2

K−1∑
h,j=0

exp(2πia(h− j)/t)
∑
g∈G

χ
(
ψh(g)− ψj(g)

)
.

The inner sum is equal to m if h = j and equal to 0 otherwise, and so (5) follows.

To bound the sum in the theorem, we use a standard method by starting from the
identity

N−1∑
n=0

χ(un) =
t−1∑
n=0

χ(un)
N−1∑
b=0

1

t

t−1∑
a=0

exp(2πia(n− b)/t),
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which is valid since the sum over b is 1 for 0 ≤ n ≤ N − 1 and 0 for N ≤ n ≤ t − 1.
Rearranging terms, we get

N−1∑
n=0

χ(un) =
1

t

t−1∑
a=0

σa
N−1∑
b=0

exp(−2πiab/t).

In view of (5) this yields∣∣∣∣∣
N−1∑
n=0

χ(un)

∣∣∣∣∣ ≤ K−1/2t−1/2m1/2
t−1∑
a=0

∣∣∣∣∣
N−1∑
b=0

exp(2πiab/t)

∣∣∣∣∣
= K−1/2t−1/2m1/2

(
N +

t−1∑
a=1

∣∣∣∣∣sin(πaN/t)

sin(πa/t)

∣∣∣∣∣
)
.

By an inequality of Cochrane [1] we have

t−1∑
a=1

∣∣∣∣∣sin(πaN/t)

sin(πa/t)

∣∣∣∣∣ < 4

π2
t log t+

t

2
+ 1,

and so the result of the theorem follows. 2

Remark 1. There is also an alternative method of improving the result of Corollary 3 if
larger values of L are available, but not so large that Theorem 2 becomes efficient. The
method is based on induction on the sum length N . Indeed, using the representation

N−1∑
n=0

χ(un) =
N−1∑
n=0

χ(un+k) +
k−1∑
n=0

χ(un)−
N+k−1∑
n=N

χ(un)

for integers k > 0 (and analogously for k < 0), one can bound the last two sums inductively
rather than trivially (as we have done in Theorem 1 and thus in Corollary 3).

4. Examples of R-orthomorphisms

We present two classes of examples of R-orthomorphisms for G = IFq. The first class of
examples is obtained from linear algebra.

Proposition 1. Let ψ be a linear operator on the vector space IFq over its prime subfield
IFp and let R be a nonempty set of positive integers. Then ψ is an R-orthomorphism of IFq
if and only if neither 0 nor an rth root of unity for some r ∈ R is an eigenvalue of ψ.

Proof. This follows from the definition of an R-orthomorphism and elementary linear alge-
bra. 2

Remark 2. To get a concrete example from Proposition 1, let ψ be such that its charac-
teristic polynomial f is irreducible over IFp, with f(0) 6= 0 if q = p. Let h be the order of f
in the sense of [5, Definition 3.2], then all roots of f have order h in IF∗q. It follows therefore
from Proposition 1 that ψ is an R-orthomorphism of IFq whenever R contains no multiple
of h. For instance, if q ≥ 3 and the characteristic polynomial of ψ is primitive over IFp, so
that h = q − 1, then ψ is an R-orthomorphism of IFq with R = {1, 2, . . . , q − 2}.
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Remark 3. The last example in Remark 2 is best possible in the sense that if G is an
arbitrary finite abelian group of order m ≥ 2, then there are no R-orthomorphisms of G
with R = {1, 2, . . . ,m − 1}. To see this, observe that an orthomorphism ψ of G has a
(unique) fixed point, hence the length c of any other cycle of ψ satisfies c ≤ m− 1, and so
ψ is not a {c}-orthomorphism of G. Similarly, if the sequence in (1) has least period t ≥ 2,
then the permutation ψ in (1) is not an R-orthomorphism of G with R = {1, 2, . . . , t}.

In the second class of examples we consider maps of the following form. Let q ≥ 5 be
odd and choose a ∈ IFq with a 6= 0,±1. Then the self-map ψa of IFq is defined by

(6) ψa(c) = c
(
c(q−1)/2 − a

)2
for c ∈ IFq.

By [5, Theorem 7.10] or by a simple direct argument (compare with the proof of Proposition 2
below), ψa is a permutation of IFq.

Proposition 2. Let the permutation ψa of IFq be as in (6) and let R be a nonempty set of
positive integers. Then ψa is an R-orthomorphism of IFq if and only if

η
(
((a− 1)2r − 1)((a+ 1)2r − 1)

)
= 1 for all r ∈ R,

where η is the quadratic character of IFq.

Proof. Note that the map ψa in (6) can be described also by ψa(c) = c(a − 1)2 if c is a
square in IFq and ψa(c) = c(a+ 1)2 if c is a nonsquare in IFq. We remark in passing that this
shows that ψa is a permutation of IFq. By straightforward induction it is seen that for any
positive integer r we have ψra(c) = c(a− 1)2r if c is a square in IFq and ψra(c) = c(a+ 1)2r if c
is a nonsquare in IFq. From this it follows immediately that ψra− ι ∈ Sym(IFq) if and only if

η
(
((a− 1)2r − 1)((a+ 1)2r − 1)

)
= 1,

and this yields the result of the proposition. 2

We now show a sufficient condition for the existence of R-orthomorphisms of the form
(6) for suitable sets R.

Theorem 3. Let q be odd and let R be a finite nonempty set of positive integers. Suppose
that

q − 1

2R
− (q1/2 + 1)

∑
r∈R

(2r − 1) ≥ 2,

where R is the cardinality of R. Then there exists an a ∈ IFq such that the map ψa in (6) is
an R-orthomorphism of IFq.

Proof. Let L(R) denote the number of a ∈ IF∗q for which

η
(
((a− 1)2r − 1)((a+ 1)2r − 1)

)
= 1 for all r ∈ R.

Furthermore, we put

dr(x) =
((x− 1)2r − 1)((x+ 1)2r − 1)

x2
∈ IFq[x] for r ∈ R.
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Then

L(R) ≥
∑
a∈IF∗q

∏
r∈R

1

2
(1 + η(dr(a)))− A

2

with
A = #{a ∈ IF∗q :

∏
r∈R

dr(a) = 0} ≤
∑
r∈R

(4r − 2).

Therefore

(7) L(R) ≥ 1

2R
∑
a∈IF∗q

∏
r∈R

(1 + η(dr(a)))−
∑
r∈R

(2r − 1).

Moreover,

(8)
∑
a∈IF∗q

∏
r∈R

(1 + η(dr(a))) = q − 1 +
R∑
k=1

∑
r1<r2<...<rk

ri∈R

∑
a∈IF∗q

η(dr1(a) · · · drk(a)).

Consider the innermost sum on the right-hand side of (8). If the polynomial dr1 · · · drk is
the square of a polynomial, then the corresponding sum is clearly nonnegative. If dr1 · · · drk
is not the square of a polynomial, then by the Weil bound (see [5, Theorem 5.41]) we obtain∣∣∣∣∣∣

∑
a∈IF∗q

η (dr1(a) · · · drk(a))

∣∣∣∣∣∣ < q1/2
k∑
i=1

(4ri − 2).

Together with (8) this yields

∑
a∈IF∗q

∏
r∈R

(1 + η(dr(a))) > q − 1− q1/2
R∑
k=1

∑
r1<r2<...<rk

ri∈R

k∑
i=1

(4ri − 2)

= q − 1− 4q1/2
R∑
k=1

∑
r1<r2<...<rk

ri∈R

(r1 + · · ·+ rk) + 2q1/2
R∑
k=1

k

(
R

k

)

= q − 1− 2R+1q1/2
∑
r∈R

r + 2RRq1/2.

Going back to (7), we get

L(R) >
q − 1

2R
− (q1/2 + 1)

∑
r∈R

(2r − 1).

By assumption, the last expression is at least 2, and so L(R) ≥ 3. Hence there exists an
a ∈ IF∗q with a 6= ±1 that is counted by L(R), which means by Proposition 2 that ψa is an
R-orthomorphism of IFq. 2

Remark 4. For sets R of the form R = {1, 2, . . . , K− 1} the condition on R in Theorem 3
is satisfied with some K ∼ 0.5 log2 q.

It would be desirable to find further examples, besides those in Remark 2, ofR-orthomor-
phisms of groups G with R = {1, 2, . . . , K − 1} and K large relative to the order m of G.
According to Remark 3 we must have K ≤ m−1, so one may ask for K at least of the order
of magnitude mθ for some 0 < θ ≤ 1. Such examples are of interest not only in their own
right, but also in view of the bounds for character sums in Section 3 and for applications to
combinatorial design theory (see [2] for such applications).
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