Midterm 1 review, Math 116

(1) FTC1: $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$
(2) FTC2: $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$. More generally, $\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)$.
(3) Let R be the region in the x, y plane with $a \leq x \leq b$ and $f(x) \leq y \leq g(x)$, for some prescribed functions $f(x)$ and $g(x)$ such that $f(x) \leq g(x)$ for $a \leq x \leq b$. Then the solid obtained by rotating R around the line $y=c$ has volume $\int_{a}^{b} \pi\left((f(x)-c)^{2}-(g(x)-c)^{2}\right) d x$, and a small piece near $x=x_{i}$ has volume approximately $\pi\left(\left(f\left(x_{i}\right)-c\right)^{2}-\left(g\left(x_{i}\right)-c\right)^{2}\right) \Delta x$. The solid obtained by rotating R around the line $x=c$ has volume $\int_{a}^{b}(f(x)-g(x)) 2 \pi|x-c| d x$, and a small piece obtained by rotating the portion of R near $x=x_{i}$ has volume approximately $\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) 2 \pi\left|x_{i}-c\right| \Delta x$.
(4) If a solid S intersects the plane $x=x_{0}$ (in x, y, z space) in a cross-section with area $A\left(x_{0}\right)$, then the volume of the solid for $a \leq x \leq b$ is $\int_{a}^{b} A(x) d x$, and a small piece near $x=x_{i}$ has volume approximately $A\left(x_{i}\right) \Delta x$.
(5) The arc length of $y=f(x)$ from $x=a$ to $x=b$ is $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$. This must be positive - if it isn't then switch a and b.
(6) Mass from density ($\S 8.4$, to be covered in class on Wednesday): find mass of one slice, then integrate over slices to get total mass. If density is constant then slice in any direction; if density depends on x then need $d x$ in integral, so slice perpendicular to x-axis; if density depends on y then need $d y$ in integral, so slice perpendicular to y-axis. Mass is density times volume.
(7) Be able to compute $\operatorname{LEFT}(n), \operatorname{RIGHT}(n), \operatorname{MID}(n)$, and $\operatorname{TRAP}(n)$ as estimates to an integral.
(8) Among LEFT $(n), \operatorname{RIGHT}(n), \operatorname{MID}(n), \operatorname{TRAP}(n), \int_{a}^{b} f(x) d x$: if $f(x)$ is increasing on $[a, b]$ then $\operatorname{LEFT}(n)$ is the smallest of these five values, and $\operatorname{RIGHT}(n)$ is the biggest; if $f(x)$ is decreasing on $[a, b]$ then $\operatorname{LEFT}(n)$ is the biggest and $\operatorname{RIGHT}(n)$ is the smallest; if $f(x)$ is sometimes increasing and sometimes decreasing then in general we do not know how $\operatorname{LEFT}(n)$ and $\operatorname{RIGHT}(n)$ compare to the other three values.
(9) If $f(x)$ is concave up on $[a, b]$ then $\operatorname{MID}(n)<\int_{a}^{b} f(x) d x<\operatorname{TRAP}(n)$; if $f(x)$ is concave down on $[a, b]$ then $\operatorname{MID}(n)>\int_{a}^{b} f(x) d x>\operatorname{TRAP}(n)$.
(10) Keep in mind that $\int_{a}^{b} f(x) d x$ is the signed area between $y=f(x), y=0, x=a$, and $x=b$. This means you count the portion below the x-axis as negative.
(11) $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$ and $\int_{a}^{b}(f(x)+c \cdot g(x)) d x=\int_{a}^{b} f(x) d x+c \int_{a}^{b} g(x) d x$.
(12) If $f(x)$ is odd (i.e., $f(-x)=-f(x)$; think x^{n} with n odd) then $\int_{-a}^{a} f(x) d x=0$.
(13) If $f(x)$ is even (i.e., $f(-x)=f(x)$; think x^{n} with n even) then $\int_{-a}^{0} f(x) d x=\int_{0}^{a} f(x) d x$.
(14) The average value of $f(x)$ on the interval $[a, b]$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
(15) Antiderivatives: $\int f(x) d x$ (with no bounds a, b) is the collection of all antiderivatives of $f(x)$. It has the form $F(x)+C$ for any specific antiderivative $F(x)$ of $f(x)$, meaning that $F^{\prime}(x)=f(x)$. Don't forget the C.
(16) Integration methods: if you see $e^{x^{3}}$ or $\sin \left(x^{3}\right)$ or $\ln \left(x^{3}\right)$ then you'll usually substitute $u=x^{3}$. Likewise if you see $e^{\sin x}$ or $\cos (\sin x)$ or $\ln (\sin x)$ then you'll usually substitute $u=\sin x$. Basically you make a substitution that simplifies the expression you're trying to integrate. Don't forget to rewrite $d x$ in terms of $d u$, and to be careful that the bounds on the integral are x-values rather than u-values. Integration by parts: $\int u d v=u v-\int v d u$. For this, choose $d v$ to be a quantity that doesn't become much more complicated when we integrate it (best choices are $e^{x}, \sin x, \cos x$; next-best is x^{n}), and choose u to be a quantity that becomes simpler when we differentiate it (best choice is $\ln x$, next-best is x^{n}). Be sure you can integrate $\ln x$ (by parts, with $d v=1$ and $u=\ln x$), and know that $\int x f^{\prime}(x) d x=x f(x)-\int f(x) d x$ and $\int x f^{\prime \prime}(x) d x=x f^{\prime}(x)-f(x)+C$.
(17) Partial fractions: to integrate $f(x):=\frac{u x+v}{(x-a)(x-b)}$ with $a \neq b$, find r, s so that $f(x)=\frac{r}{x-a}+\frac{s}{x-b}$, and then $\int f(x) d x=r \ln |x-a|+s \ln |x-b|+C$; to integrate $f(x):=\frac{u x^{2}+v x+w}{(x-a)^{2}(x-b)}$ with $a \neq b$, find r, s, t so that $f(x)=\frac{r}{(x-a)^{2}}+\frac{s}{x-a}+\frac{t}{x-b}$ (and you should be able to find r, s, t in practice), and then $\int f(x) d x=\frac{-r}{x-a}+s \ln |x-a|+t \ln |x-b|+C$; to integrate $f(x):=\frac{u x^{2}+v w+w}{\left(x^{2}+a\right)(x-b)}$ with $a>0$, find r, s, t so that $f(x)=\frac{r x+s}{x^{2}+a}+\frac{t}{x-b}$ (but you'll never have to find r, s, t in practice), and then $\left.\int f(x) d x=\frac{r}{2} \ln \right\rvert\, x^{2}+$ $\left.a\left|+\frac{s}{\sqrt{a}} \arctan \left(\frac{x}{\sqrt{a}}\right)+t \ln \right| x-b \right\rvert\,+C$.
(18) The maximum and minimum of a function $f(x)$ on an interval $[a, b]$ always occur at either a or b or at some c satisfying $f^{\prime}(c)=0$. If $f^{\prime}(c)=0$ then c can be a local max, a local min, or neither of these (e.g. $c=0$ for $\left.f(x)=x^{3}\right)$.
(19) If you're drawing the graph of a function $f(x)$, keep in mind where $f(x)$ is positive, where $f^{\prime}(x)$ is positive (i.e., $f(x)$ is increasing), and where $f^{\prime \prime}(x)$ is positive (i.e., $f(x)$ is concave up). Make sure that your graph is continuous and has no sharp corners, and that if you know the value $f(c)$ for some c then your graph passes through the point $(c, f(c))$.

