Math 676, Homework 8: due by midnight Oct 29 (Thursday!)

- (1) Find the class group of the ring of integers of $\mathbb{Q}(\alpha)$, where $\alpha^3 + \alpha^2 + 5\alpha 16 = 0$.
- (2) Let K be a number field with real embeddings $\sigma_1, \ldots, \sigma_{r_1}$ and with $\tau_1, \ldots, \tau_{r_2}$ being representatives for the pairs of complex-conjugate non-real complex embeddings of K. Assuming Dirichlet's theorem, pick $\alpha_1, \ldots, \alpha_{r_1+r_2-1}$ such that \mathcal{O}_K^* is generated by the α_i 's and the roots of unity in \mathcal{O}_K^* . Let M be the $(r_1 + r_2 - 1) \times (r_1 + r_2)$ matrix whose *j*-th row is

 $(\log |\sigma_1(\alpha_j)|, \ldots, \log |\sigma_{r_1}(\alpha_j)|, 2\log |\tau_1(\alpha_j)|, \ldots, 2\log |\tau_{r_2}(\alpha_j)|).$

Let M' be the matrix obtained by deleting any column of M. Show that $|\det(M')|$ is a positive real number which depends only on K, and not on the choice of α_i 's or the choice of column. (This number is called the *regulator* of K.)

- (3) Let p be a prime number.
 - (a) For any prescribed integer a coprime to p, show that $\Lambda := \{(x, y) \in \mathbb{Z}^2 : y \equiv ax \pmod{p}\}$ is a lattice in \mathbb{R}^2 with covolume p.
 - (b) For any prescribed integers a, b with $a^2 + b^2 \equiv -1 \pmod{p}$, show that $\Lambda := \{(x, y, z, w) \in \mathbb{Z}^4 : z \equiv ax + by \pmod{p} \text{ and } w \equiv bx - ay \pmod{p}\}$ is a lattice in \mathbb{R}^4 with covolume p^2 .
- (4) Let Λ be a rank-*n* lattice in \mathbb{R}^n , and let $S \subset \mathbb{R}^n$ be compact, convex, and centrally symmetric. Show that if $\operatorname{vol}(S) \geq 2^n \operatorname{vol}(\mathbb{R}^n/\Lambda)$ then S contains a nonzero element of Λ .

(In class we showed that if "compact" is replaced by "bounded" then this is true if the hypothesized inequality is strict; the problem here is to deduce that if S is compact and the inequality is an equality then the conclusion still holds.)