(1) Let $n \geq 3$ be an integer for which $p:=4 n-1$ is prime. Show that $\mathbb{Q}(\sqrt{-p})$ has class number 1 if and only if $x^{2}+x+n$ is prime for each $x=0,1,2, \ldots, n-2$. Find a monic quadratic $f(x) \in \mathbb{Z}[x]$ which takes prime values at 40 consecutive integers.
(2) For any nonnegative integers r_{1} and r_{2} which are not both zero, show that the set S is a convex subset of $\mathbb{R}^{r_{1}+2 r_{2}}$, where S consists of all tuples $\left(a_{1}, \ldots, a_{r_{1}}, b_{1}, c_{1}, b_{2}, c_{2}, \ldots, b_{r_{2}}, c_{r_{2}}\right)$ of real numbers satisfying

$$
\left|a_{1}\right|+\cdots+\left|a_{r_{1}}\right|+2 \sqrt{b_{1}^{2}+c_{1}^{2}}+\cdots+2 \sqrt{b_{r_{2}}^{2}+c_{r_{2}}^{2}} \leq n .
$$

(Here a set is called "convex" if whenever it contains two points, it also contains the line segment between them.)
(3) Show that if α is a nonzero algebraic integer such that every conjugate of α over \mathbb{Q} is a complex number of absolute value 1 , then α is a root of unity.
(Extra Credit) Let n be a positive integer. Suppose that some equilateral polygon in a plane has all angles being integral multiples of $\frac{\pi}{n}$, with the possible exception of two consecutive angles. Show that the remaining two angles are integral multiples of $\frac{\pi}{n}$ as well.

