(1) Factor the ideals (2), (3), (7), (29), and (31) into prime ideals in $\mathbb{Z}[\sqrt[3]{2}]$.
(2) Let p be a prime, and let $c \in \mathbb{Z} \backslash\{0,1,-1\}$ be a squarefree integer which is not divisible by p. Writing $\alpha:=\sqrt[p]{c}$ and $K:=\mathbb{Q}(\alpha)$, show that if $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ then $c^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$.
(Note: we showed the converse in class.)
(3) Determine the ideal class groups of $\mathbb{Z}[\sqrt{-14}], \mathbb{Z}[\sqrt{-21}]$ and $\mathbb{Z}[\sqrt[3]{2}]$. You may use the following result of Minkowski's, which will be proved in class: if K is a degree- n number field and r_{1} is the number of embeddings $K \hookrightarrow$ \mathbb{R}, then every ideal class in \mathcal{O}_{K} contains a nonzero ideal having norm at most

$$
\frac{n!}{n^{n}} \cdot\left(\frac{4}{\pi}\right)^{\frac{n-r_{1}}{2}} \cdot \sqrt{\left|\Delta_{K}\right|} .
$$

