(1) If K is a number field, show that \mathcal{O}_{K} is a principal ideal domain if and only if every ideal I of \mathcal{O}_{K} contains an element α with $\left|N\left(\alpha \mathcal{O}_{K}\right)\right|=N(I)$.
(2) Find an integral basis for $\mathcal{O}_{\mathbb{Q}(\alpha)}$ where α is a root of either $x^{3}-2 x+3$ or $x^{3}-x-4$.
(3) Show that every ideal in a Dedekind domain can be generated by two elements.
(4) If K is a degree- n number field, and $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}_{K}$, then show that $\Delta_{K / \mathbb{Q}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is congruent to 0 or $1 \bmod 4$.
Hint: consider odd and even permutations separately.

