(1) Assuming that the Picard group of $\mathbb{Z}[\sqrt{-19}]$ has order 3, find all integer solutions of $x^{2}+19=y^{5}$. Here the Picard group of an integral domain R is the quotient of the group of invertible fractional ideals of R by the subgroup of principal fractional ideals, where a fractional ideal I is called invertible if there exists a fractional ideal J for which $I J=R$.
(2) Show that if R is a PID ("principal ideal domain") which is not a field, then R is a Dedekind domain. Conversely, show that if R is a Dedekind domain then R is a PID if and only if R is a UFD ("unique factorization domain").
(3) Let K be a number field, and for $\alpha \in K$ let $L_{\alpha}: K \rightarrow K$ be the linear transformation of \mathbb{Q}-vector spaces defined by $\beta \mapsto \alpha \beta$. Show that $\left|N_{K / \mathbb{Q}}(\alpha)\right|=\left|\operatorname{det}\left(L_{\alpha}\right)\right|$.
(4) Let K be a degree- n number field, let $\alpha \in \mathcal{O}_{K}$ satisfy $\mathbb{Q}(\alpha)=K$, and let $f(x)$ be the minimal polynomial for α over \mathbb{Q}. Write $\Delta(\alpha)$ for the discriminant $\Delta\left(1, \alpha, \ldots, \alpha^{n-1}\right)$ of the basis $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ of K / \mathbb{Q}. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the conjugates of α over \mathbb{Q}.
(a) Show that

$$
\Delta(\alpha)=(-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right)=(-1)^{\frac{n(n-1)}{2}} N_{K / \mathbb{Q}}\left(f^{\prime}(\alpha)\right) .
$$

(b) Suppose that $f(x)=x^{n}+a x+b$. Show that

$$
\Delta(\alpha)=(-1)^{\frac{n(n-1)}{2}}\left((1-n)^{n-1} a^{n}+n^{n} b^{n-1}\right) .
$$

Deduce that if $f(x)=x^{2}+a x+b$ then $\Delta(\alpha)=a^{2}-4 b$, and if $f(x)=$ $x^{3}+a x+b$ then $\Delta(\alpha)=-4 a^{3}-27 b^{2}$.

