- (1) Can every proper ideal of $\mathbb{Z}[\sqrt{-3}]$ be written as a product of prime ideals? Are there proper ideals of $\mathbb{Z}[\sqrt{-3}]$ which can be written in more than one way as a product of prime ideals?
- (2) Let x_1, \ldots, x_n be a basis for a free \mathbb{Z} -module G, and let y_1, \ldots, y_n be a basis (as a \mathbb{Z} -module) for a sub- \mathbb{Z} module H of G with rank n. Write $y_j = \sum_{i=1}^n a_{ij} x_i$ with $a_{ij} \in \mathbb{Z}$, and let A be the n-by-n matrix with ijentry beig a_{ij} . Show that the index [G:H] equals $|\det(A)|$.
- (3) Let I and J be proper ideals of a Dedekind domain R. Show:
 - (a) if $I = P_1 P_2 \dots P_k$ with each P_i being a prime ideal, then $I^{-1} =$ (a) $P_1^{-1}P_2^{-1}\dots P_k^{-1}$ (b) $II^{-1} = R$

 - (c) $I \supseteq J$ if and only if I divides J, in the sense that IM = J for some ideal M of R.