(1) Can every proper ideal of $\mathbb{Z}[\sqrt{-3}]$ be written as a product of prime ideals? Are there proper ideals of $\mathbb{Z}[\sqrt{-3}]$ which can be written in more than one way as a product of prime ideals?
(2) Let x_{1}, \ldots, x_{n} be a basis for a free \mathbb{Z}-module G, and let y_{1}, \ldots, y_{n} be a basis (as a \mathbb{Z}-module) for a sub- \mathbb{Z} module H of G with rank n. Write $y_{j}=\sum_{i=1}^{n} a_{i j} x_{i}$ with $a_{i j} \in \mathbb{Z}$, and let A be the n-by- n matrix with $i j$ entry beig $a_{i j}$. Show that the index $[G: H]$ equals $|\operatorname{det}(A)|$.
(3) Let I and J be proper ideals of a Dedekind domain R. Show:
(a) if $I=P_{1} P_{2} \ldots P_{k}$ with each P_{i} being a prime ideal, then $I^{-1}=$ $P_{1}^{-1} P_{2}^{-1} \ldots P_{k}-1$
(b) $I I^{-1}=R$
(c) $I \supseteq J$ if and only if I divides J, in the sense that $I M=J$ for some ideal M of R.

